Ordered/Disordered Structures of Water at Solid/Liquid Interfaces
Abstract
:1. Introduction
2. Phase Transition from Disordered to Ordered Water Structures Induces an “Ordered Water Monolayer That Does Not Completely Wet Water” at Room Temperature on Solid Surfaces
3. Ordered Phase of Composite Structures of Water Molecules Embedded into the Carboxylic Acid-Terminated Self-Assembled Monolayers (COOH-SAMs) and Hydroxyl-Terminated Self-Monolayer ((OH)2-SAMs) at Room Temperature
4. Effect of Ordered Phase of Water on the Dielectric Permittivity
5. Summary
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Stirnemann, G.; Castrillon, S.R.-V.; Hynes, J.T.; Rossky, P.J.; Debenedetti, P.G.; Laage, D. Non-monotonic dependence of water reorientation dynamics on surface hydrophilicity: Competing effects of the hydration structure and hydrogen-bond strength. Phys. Chem. Chem. Phys. 2011, 13, 19911–19917. [Google Scholar] [CrossRef] [PubMed]
- Giovambattista, N.; Debenedetti, P.G.; Rossky, P.J. Enhanced surface hydrophobicity by coupling of surface polarity and topography. Proc. Natl. Acad. Sci. USA 2009, 106, 15181–15185. [Google Scholar] [CrossRef] [PubMed]
- Godawat, R.; Jamadagni, S.N.; Garde, S. Characterizing hydrophobicity of interfaces by using cavity formation, solute binding, and water correlations. Proc. Natl. Acad. Sci. USA 2009, 106, 15119–15124. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Liu, J.; Wang, C.; Song, B.; Tu, Y.; Hu, J.; Fang, H. Ion Enrichment on the Hydrophobic Carbon-based Surface in Aqueous Salt Solutions due to Cation-π Interactions. Sci. Rep. 2013, 3, 3436. [Google Scholar] [CrossRef]
- Qiu, Y.; Liu, Y.; Tu, Y.; Wang, C.; Xu, Y. Defect-Induced Wetting Behavior on Solid Polar Surfaces with Small Charge Dipole Length. J. Phys. Chem. C 2017, 121, 17365–17370. [Google Scholar] [CrossRef]
- Rego, N.B.; Patel, A.J. Understanding Hydrophobic Effects: Insights from Water Density Fluctuations. Annu. Rev. Condens. Matter. Phys. 2022, 13, 303–324. [Google Scholar] [CrossRef]
- Zhang, Q.-L.; Yang, R.-Y.; Wang, C.-L.; Hu, J. Ultrafast active water pump driven by terahertz electric fields. Phys. Rev. Fluids 2022, 7, 114202. [Google Scholar] [CrossRef]
- Zhong, J.; Zhu, C.; Li, L.; Richmond, G.L.; Francisco, J.S.; Zeng, X.C. Interaction of SO2 with the Surface of a Water Nanodroplet. J. Am. Chem. Soc. 2017, 139, 17168–17174. [Google Scholar] [CrossRef]
- Zhong, J.; Wang, C.; Zeng, X.C.; Francisco, J.S. Heterogeneous Reactions of SO3 on Ice: An Overlooked Sink for SO3 Depletion. J. Am. Chem. Soc. 2020, 142, 2150–2154. [Google Scholar] [CrossRef]
- Chandler, D. Interfaces and the driving force of hydrophobic assembly. Nature 2005, 437, 640–647. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, C.L.; Liu, J.; Wen, B.H.; Tu, Y.S.; Wang, Z.W.; Fang, H.P. Reversible State Transition in Nanoconfined Aqueous Solutions. Phys. Rev. Lett. 2014, 112, 078301. [Google Scholar] [CrossRef]
- Prestipino, S.; Laio, A.; Tosatti, E. Systematic Improvement of Classical Nucleation Theory. Phys. Rev. Lett. 2012, 108, 225701. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, C.; Fang, H.; Tu, Y. The Gibbs-free-energy landscape for the solute association in nanoconfined aqueous solutions. Nucl. Sci. Tech. 2015, 26, 030504. [Google Scholar]
- Yang, J.J.; Meng, S.; Xu, L.F.; Wang, E.G. Water adsorption on hydroxylated silica surfaces studied using the density functional theory. Phys. Rev. B 2005, 71, 035413. [Google Scholar] [CrossRef]
- Hu, X.L.; Michaelides, A. Water on the hydroxylated (001) surface of kaolinite: From monomer adsorption to a flat 2D wetting layer. Surf. Sci. 2008, 602, 960–974. [Google Scholar] [CrossRef]
- Michaelides, A.; Ranea, V.A.; de Andres, P.L.; King, D.A. General Model for Water Monomer Adsorption on Close-Packed Transition and Noble Metal Surfaces. Phys. Rev. Lett. 2003, 90, 216102. [Google Scholar] [CrossRef]
- Wang, C.L.; Zhao, L.; Zhang, D.H.; Chen, J.G.; Shi, G.S.; Fang, H.P. Upright or Flat Orientations of the Ethanol Molecules on Surface with Charge Dipoles and the Implication on the Wetting Behavior. J. Phys. Chem. C 2014, 118, 1873. [Google Scholar] [CrossRef]
- Liu, X.; Pang, H.; Liu, X.; Li, Q.; Zhang, N.; Mao, L.; Qiu, M.; Hu, B.; Yang, H.; Wang, X. Orderly porous covalent organic frameworks-based materials: Superior adsorbents for pollutants removal from aqueous solutions. Innovation 2021, 2, 100076. [Google Scholar] [CrossRef]
- Secchi, E.; Marbach, S.; Niguès, A.; Stein, D.; Siria, A.; Bocquet, L. Massive radius-dependent flow slippage in carbon nanotubes. Nature 2016, 537, 210–213. [Google Scholar] [CrossRef]
- Wu, K.; Chen, Z.; Li, J.; Li, X.; Xu, J.; Dong, X. Wettability effect on nanoconfined water flow. Proc. Natl. Acad. Sci. USA 2017, 114, 3358–3363. [Google Scholar] [CrossRef]
- Limmer, D.T.; Willard, A.P.; Madden, P.; Chandler, D. Hydration of metal surfaces can be dynamically heterogeneous and hydrophobic. Proc. Natl. Acad. Sci. USA 2013, 110, 4200–4205. [Google Scholar] [CrossRef] [Green Version]
- Cong, S.; Liu, X.; Jiang, Y.; Zhang, W.; Zhao, Z. Surface Enhanced Raman Scattering Revealed by Interfacial Charge-Transfer Transitions. Innovation 2020, 1, 100051. [Google Scholar] [CrossRef] [PubMed]
- Dobson, C.M.; Sali, A.; Karplus, M. Protein folding: A perspective from theory and experiment. Angew. Chem. Int. Edit. 1998, 37, 868–893. [Google Scholar] [CrossRef]
- Kwon, O.-H.; Yoo, T.H.; Othon, C.M.; Van Deventer, J.A.; Tirrell, D.A.; Zewail, A.H. Hydration dynamics at fluorinated protein surfaces. Proc. Natl. Acad. Sci. USA 2010, 107, 17101–17106. [Google Scholar] [CrossRef]
- Roche, J.; Caro, J.A.; Norberto, D.R.; Barthe, P.; Roumestand, C.; Schlessman, J.L.; Garcia, A.E.; García-Moreno, E.B.; Royer, C.A. Cavities determine the pressure unfolding of proteins. Proc. Natl. Acad. Sci. USA 2012, 109, 6945–6950. [Google Scholar] [CrossRef]
- Lin, M.M.; Zewail, A.H. Hydrophobic forces and the length limit of foldable protein domains. Proc. Natl. Acad. Sci. USA 2012, 109, 9851–9856. [Google Scholar] [CrossRef]
- Zhu, C.; Gao, Y.; Li, H.; Meng, S.; Li, L.; Francisco, J.S.; Zeng, X.C. Characterizing hydrophobicity of amino acid side chains in a protein environment via measuring contact angle of a water nanodroplet on planar peptide network. Proc. Natl. Acad. Sci. USA 2016, 113, 12946–12951. [Google Scholar] [CrossRef]
- Dai, B.; Kang, S.-g.; Huynh, T.; Lei, H.; Castelli, M.; Hu, J.; Zhang, Y.; Zhou, R. Salts drive controllable multilayered upright assembly of amyloid-like peptides at mica/water interface. Proc. Natl. Acad. Sci. USA 2013, 110, 8543–8548. [Google Scholar] [CrossRef]
- Grimm, B.; Schornbaum, J.; Jasch, H.; Trukhina, O.; Wessendorf, F.; Hirsch, A.; Torres, T.; Guldi, D.M. Step-by-step self-assembled hybrids that feature control over energy and charge transfer. Proc. Natl. Acad. Sci. USA 2012, 109, 15565–15571. [Google Scholar] [CrossRef]
- Bai, J.; Angell, C.A.; Zeng, X.C. Guest-free monolayer clathrate and its coexistence with two-dimensional high-density ice. Proc. Natl. Acad. Sci. USA 2010, 107, 5718–5722. [Google Scholar] [CrossRef]
- Zangi, R.; Mark, A.E. Monolayer Ice. Phys. Rev. Lett. 2003, 91, 025502. [Google Scholar] [CrossRef] [Green Version]
- Fang, H.; Wan, R.; Gong, X.; Lu, H.; Li, S. Dynamics of single-file water chains inside nanoscale channels: Physics, biological significance and applications. J. Phys. D App. Phys. 2008, 41, 103002. [Google Scholar] [CrossRef]
- Wan, R.; Li, J.; Lu, H.; Fang, H. Controllable Water Channel Gating of Nanometer Dimensions. J. Am. Chem. Soc. 2005, 127, 7166–7170. [Google Scholar] [CrossRef]
- Bai, J.; Zeng, X.C. Polymorphism and polyamorphism in bilayer water confined to slit nanopore under high pressure. Proc. Natl. Acad. Sci. USA 2012, 109, 21240–21245. [Google Scholar] [CrossRef]
- Nair, R.R.; Wu, H.A.; Jayaram, P.N.; Grigorieva, I.V.; Geim, A.K. Unimpeded Permeation of Water Through Helium-Leak–Tight Graphene-Based Membranes. Science 2012, 335, 442–444. [Google Scholar] [CrossRef]
- Gong, X.J.; Li, J.Y.; Zhang, H.; Wan, R.Z.; Lu, H.J.; Wang, S.; Fang, H.P. Enhancement of Water Permeation across a Nanochannel by the Structure outside the Channel. Phys. Rev. Lett. 2008, 101, 257801. [Google Scholar] [CrossRef] [PubMed]
- Wan, R.Z.; Lu, H.J.; Li, J.Y.; Bao, J.D.; Hu, J.; Fang, H.P. Concerted orientation induced unidirectional water transport through nanochannels. Phys. Chem. Chem. Phys. 2009, 11, 9898–9902. [Google Scholar] [CrossRef]
- Tu, Y.S.; Xiu, P.; Wan, R.Z.; Hu, J.; Zhou, R.H.; Fang, H.P. Water-mediated signal multiplication with Y-shaped carbon nanotubes. Proc. Natl. Acad. Sci. USA 2009, 106, 18120–18124. [Google Scholar] [CrossRef]
- Tu, Y.S.; Zhou, R.H.; Fang, H.P. Signal transmission, conversion and multiplication by polar molecules confined in nanochannels. Nanoscale 2010, 2, 1976–1983. [Google Scholar] [CrossRef]
- Lu, H.; Li, J.; Gong, X.; Wan, R.; Zeng, L.; Fang, H. Water permeation and wavelike density distributions inside narrow nanochannels. Phys. Rev. B 2008, 77, 174115. [Google Scholar] [CrossRef]
- Zhou, X.Y.; Wang, C.L.; Wu, F.M.; Feng, M.; Li, J.Y.; Lu, H.J.; Zhou, R.H. The ice-like water monolayer near the wall makes inner water shells diffuse faster inside a charged nanotube. J. Chem. Phys. 2013, 138, 204710. [Google Scholar] [CrossRef] [PubMed]
- Lai, C.-Y.; Tang, T.-C.; Amadei, C.A.; Marsden, A.J.; Verdaguer, A.; Wilson, N.; Chiesa, M. A nanoscopic approach to studying evolution in graphene wettability. Carbon 2014, 80, 784–792. [Google Scholar] [CrossRef]
- Amadei, C.A.; Lai, C.-Y.; Heskes, D.; Chiesa, M. Time dependent wettability of graphite upon ambient exposure: The role of water adsorption. J. Chem. Phys. 2014, 141, 084709. [Google Scholar] [CrossRef] [PubMed]
- Amadei, C.A.; Tang, T.C.; Chiesa, M.; Santos, S. The aging of a surface and the evolution of conservative and dissipative nanoscale interactions. J. Chem. Phys. 2013, 139, 084708. [Google Scholar] [CrossRef]
- Lu, J.-Y.; Lai, C.-Y.; Almansoori, I.; Chiesa, M. The evolution in graphitic surface wettability with first-principles quantum simulations: The counterintuitive role of water. Phys. Chem. Chem. Phys. 2018, 20, 22636–22644. [Google Scholar] [CrossRef]
- Hakim, L.; Kurniawan, I.D.O.; Indahyanti, E.; Pradana, I.P. Molecular Dynamics Simulation of Wetting Behavior: Contact Angle Dependency on Water Potential Models. ICS Phys. Chem. 2021, 1, 10. [Google Scholar] [CrossRef]
- Khalkhali, M.; Kazemi, N.; Zhang, H.; Liu, Q. Wetting at the nanoscale: A molecular dynamics study. J. Chem. Phys. 2017, 146, 114704. [Google Scholar] [CrossRef]
- Hung, S.-W.; Shiomi, J. Dynamic wetting of nanodroplets on smooth and patterned graphene-coated surface. J. Phys. Chem. C 2018, 122, 8423–8429. [Google Scholar] [CrossRef]
- Ball, P. Water as an active constituent in cell biology. Chem. Rev. 2008, 108, 74–108. [Google Scholar] [CrossRef]
- Ewing, G.E. Ambient thin film water on insulator surfaces. Chem. Rev. 2006, 106, 1511–1526. [Google Scholar] [CrossRef]
- Verdaguer, A.; Sacha, G.M.; Bluhm, H.; Salmeron, M. Molecular structure of water at interfaces: Wetting at the nanometer scale. Chem. Rev. 2006, 106, 1478–1510. [Google Scholar] [CrossRef]
- Hummer, G.; Rasaiah, J.C.; Noworyta, J.P. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 2001, 414, 188–190. [Google Scholar] [CrossRef]
- Koga, K.; Gao, G.T.; Tanaka, H.; Zeng, X.C. Formation of ordered ice nanotubes inside carbon nanotubes. Nature 2001, 412, 802–805. [Google Scholar] [CrossRef]
- Hu, J.; Xiao, X.D.; Ogletree, D.F.; Salmeron, M. Imaging The Condensation and Evaporation of Molecularly Thin-films of Water with Nanometer Resolution. Science 1995, 268, 267–269. [Google Scholar] [CrossRef]
- Björneholm, O.; Hansen, M.H.; Hodgson, A.; Liu, L.-M.; Limmer, D.T.; Michaelides, A.; Pedevilla, P.; Rossmeisl, J.; Shen, H.; Tocci, G.; et al. Water at Interfaces. Chem. Rev. 2016, 116, 7698–7726. [Google Scholar] [CrossRef]
- Odelius, M.; Bernasconi, M.; Parrinello, M. Two dimensional ice adsorbed on mica surface. Phys. Rev. Lett. 1997, 78, 2855–2858. [Google Scholar] [CrossRef]
- Miranda, P.B.; Xu, L.; Shen, Y.R.; Salmeron, M. Icelike water monolayer adsorbed on mica at room temperature. Phys. Rev. Lett. 1998, 81, 5876–5879. [Google Scholar] [CrossRef]
- Guo, J.; Meng, X.; Chen, J.; Peng, J.; Sheng, J.; Li, X.-Z.; Xu, L.; Shi, J.-R.; Wang, E.; Jiang, Y. Real-space imaging of interfacial water with submolecular resolution. Nat. Mater. 2014, 13, 184. [Google Scholar] [CrossRef]
- Algara-Siller, G.; Lehtinen, O.; Wang, F.C.; Nair, R.R.; Kaiser, U.; Wu, H.A.; Geim, A.K.; Grigorieva, I.V. Square ice in graphene nanocapillaries. Nature 2015, 519, 443. [Google Scholar] [CrossRef]
- Koga, K.; Zeng, X.C.; Tanaka, H. Freezing of Confined Water: A Bilayer Ice Phase in Hydrophobic Nanopores. Phys. Rev. Lett. 1997, 79, 5262–5265. [Google Scholar] [CrossRef]
- Giovambattista, N.; Rossky, P.J.; Debenedetti, P.G. Phase Transitions Induced by Nanoconfinement in Liquid Water. Phys. Rev. Lett. 2009, 102, 050603. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, S.H.; Choi, M.Y.; Kumar, P.; Stanley, H.E. Phase transitions in confined water nanofilms. Nature Phys. 2010, 6, 685–689. [Google Scholar] [CrossRef]
- Kapil, V.; Schran, C.; Zen, A.; Chen, J.; Pickard, C.J.; Michaelides, A. The first-principles phase diagram of monolayer nanoconfined water. Nature 2022, 609, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.K.; Zewail, A.H. Dynamics of water in biological recognition. Chem. Rev. 2004, 104, 2099–2123. [Google Scholar] [CrossRef]
- Liou, Y.-C.; Tocilj, A.; Davies, P.L.; Jia, Z. Mimicry of ice structure by surface hydroxyls and water of a [beta]-helix antifreeze protein. Nature 2000, 406, 322–324. [Google Scholar] [CrossRef]
- Gu, W.; Helms, V. Tightly Connected Water Wires Facilitate Fast Proton Uptake at The Proton Entrance of Proton Pumping Proteins. J. Am. Chem. Soc. 2009, 131, 2080–2081. [Google Scholar] [CrossRef]
- Kasson, P.M.; Lindahl, E.; Pande, V.S. Water Ordering at Membrane Interfaces Controls Fusion Dynamics. J. Am. Chem. Soc. 2011, 133, 3812–3815. [Google Scholar] [CrossRef]
- Raschke, T.M. Water structure and interactions with protein surfaces. Curr. Opin. Struc. Biol. 2006, 16, 152–159. [Google Scholar] [CrossRef]
- Kimmel, G.A.; Petrik, N.G.; Dohnalek, Z.; Kay, B.D. Crystalline ice growth on Pt(111): Observation of a hydrophobic water monolayer. Phys. Rev. Lett. 2005, 95, 166102. [Google Scholar] [CrossRef]
- Wang, C.; Lu, H.; Wang, Z.; Xiu, P.; Zhou, B.; Zuo, G.; Wan, R.; Hu, J.; Fang, H. Stable liquid water droplet on a water monolayer formed at room temperature on ionic model substrates. Phys. Rev. Lett. 2009, 103, 137801. [Google Scholar] [CrossRef]
- Wang, C.L.; Yang, Y.Z.; Fang, H.P. Recent advances on “ordered water monolayer that does not completely wet water” at room temperature. Sci. China-Phys. Mech. Astron. 2014, 57, 802–809. [Google Scholar] [CrossRef]
- Qi, C.; Zhou, B.; Wang, C.; Zheng, Y.; Fang, H. A nonmonotonic dependence of the contact angles on the surface polarity for a model solid surface. Phys. Chem. Chem. Phys. 2017, 19, 6665–6670. [Google Scholar] [CrossRef]
- Shao, S.; Zhao, L.; Guo, P.; Wang, C. Ordered Water Monolayer on Ionic Model Substrates Studied by Molecular Dynamics Simulations. Nucl. Sci. Tech. 2014, 25, 020502. [Google Scholar]
- Wang, C.L.; Zhou, B.; Xiu, P.; Fang, H.P. Effect of Surface Morphology on the Ordered Water Layer at Room Temperature. J. Phys. Chem. C 2011, 115, 3018–3024. [Google Scholar] [CrossRef]
- Qu, M.; Zhou, B.; Wang, C. Molecular simulation study of the adhesion work for water droplets on water monolayer at room temperature. Chin. Phy. B 2021, 30, 106804. [Google Scholar] [CrossRef]
- Cheh, J.; Gao, Y.; Wang, C.; Zhao, H.; Fang, H. Ice or water: Thermal properties of monolayer water adsorbed on a substrate. J. Stat. Mech. Theory Exp. 2013, 2013, P06009. [Google Scholar] [CrossRef]
- Qi, C.; Lei, X.; Zhou, B.; Wang, C.; Zheng, Y. Temperature regulation of the contact angle of water droplets on the solid surfaces. J. Chem. Phys. 2019, 150, 234703. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, H.; Jiang, X.; Chen, Y.; Song, B.; Zhu, Y.; Zhuang, S. Reversible Hydrophobicity–Hydrophilicity Transition Modulated by Surface Curvature. J. Phys. Chem. Lett. 2018, 9, 2346–2352. [Google Scholar] [CrossRef]
- Wang, C.L.; Wen, B.H.; Tu, Y.S.; Wan, R.Z.; Fang, H.P. Friction Reduction at a Superhydrophilic Surface: Role of Ordered Water. J. Phys. Chem. C 2015, 119, 11679–11684. [Google Scholar] [CrossRef]
- Ma, P.; Liu, Y.; Sang, X.; Tan, J.; Ye, S.; Ma, L.; Tian, Y. Homogeneous interfacial water structure favors realizing a low-friction coefficient state. J. Colloid Interface Sci. 2022, 626, 324–333. [Google Scholar] [CrossRef]
- Wu, S.; He, F.; Xie, G.; Bian, Z.; Luo, J.; Wen, S. Black Phosphorus: Degradation Favors Lubrication. Nano Lett. 2018, 18, 5618–5627. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.F.; Jiang, S.Y. A new avenue to nonfouling materials. Adv. Mater. 2008, 20, 335–338. [Google Scholar] [CrossRef]
- Fujishima, A.; Zhang, X.; Tryk, D.A. TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 2008, 63, 515–582. [Google Scholar] [CrossRef]
- Liu, K.S.; Yao, X.; Jiang, L. Recent developments in bio-inspired special wettability. Chem. Soc. Rev. 2010, 39, 3240–3255. [Google Scholar] [CrossRef] [PubMed]
- Sun, T.L.; Feng, L.; Gao, X.F.; Jiang, L. Bioinspired surfaces with special wettability. Acc. Chem. Res. 2005, 38, 644–652. [Google Scholar] [CrossRef]
- Briscoe, W.H.; Titmuss, S.; Tiberg, F.; Thomas, R.K.; McGillivray, D.J.; Klein, J. Boundary lubrication under water. Nature 2006, 444, 191–194. [Google Scholar] [CrossRef]
- Drelich, J.; Chibowski, E.; Meng, D.D.; Terpilowski, K. Hydrophilic and superhydrophilic surfaces and materials. Soft Matter 2011, 7, 9804–9828. [Google Scholar] [CrossRef]
- Qu, M.; Huang, G.; Liu, X.; Nie, X.; Qi, C.; Wang, H.; Hu, J.; Fang, H.; Gao, Y.; Liu, W.-T.; et al. Room temperature bilayer water structures on a rutile TiO2(110) surface: Hydrophobic or hydrophilic? Chem. Sci. 2022, 13, 10546–10554. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Photogeneration of highly amphiphilic TiO2 surfaces. Adv. Mater. 1998, 10, 135–138. [Google Scholar] [CrossRef]
- Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431–432. [Google Scholar] [CrossRef]
- Ohler, B.; Langel, W. Molecular dynamics simulations on the interface between titanium dioxide and water droplets: A new model for the contact angle. J. Phys. Chem. C 2009, 113, 10189–10197. [Google Scholar] [CrossRef]
- Hennessy, D.C.; Pierce, M.; Chang, K.-C.; Takakusagi, S.; You, H.; Uosaki, K. Hydrophilicity transition of the clean rutile TiO2 (1 1 0) surface. Electrochim. Acta 2008, 53, 6173–6177. [Google Scholar] [CrossRef]
- Liu, K.; Cao, M.; Fujishima, A.; Jiang, L. Bio-Inspired Titanium Dioxide Materials with Special Wettability and Their Applications. Chem. Rev. 2014, 114, 10044. [Google Scholar] [CrossRef]
- Thompson, T.L.; Yates, J.T. Surface science studies of the photoactivation of TiO2 new photochemical processes. Chem. Rev. 2006, 106, 4428–4453. [Google Scholar] [CrossRef]
- Zubkov, T.; Stahl, D.; Thompson, T.L.; Panayotov, D.; Diwald, O.; Yates, J.T. Ultraviolet light-induced hydrophilicity effect on TiO2 (110)(1×1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J. Phys. Chem. B 2005, 109, 15454–15462. [Google Scholar] [CrossRef]
- Takeuchi, M.; Sakamoto, K.; Martra, G.; Coluccia, S.; Anpo, M. Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface. J. Phys. Chem. B 2005, 109, 15422–15428. [Google Scholar] [CrossRef]
- Balajka, J.; Hines, M.A.; DeBenedetti, W.J.; Komora, M.; Pavelec, J.; Schmid, M.; Diebold, U. High-affinity adsorption leads to molecularly ordered interfaces on TiO2 in air and solution. Science 2018, 361, 786–789. [Google Scholar] [CrossRef]
- Lee, K.; Kim, Q.; An, S.; An, J.; Kim, J.; Kim, B.; Jhe, W. Superwetting of TiO2 by light-induced water-layer growth via delocalized surface electrons. Proc. Natl. Acad. Sci. USA 2014, 111, 5784. [Google Scholar] [CrossRef]
- Kimmel, G.A.; Baer, M.; Petrik, N.G.; VandeVondele, J.; Rousseau, R.; Mundy, C.J. Polarization-and azimuth-resolved infrared spectroscopy of water on TiO2 (110): Anisotropy and the hydrogen-bonding network. J. Phys. Chem. Lett. 2012, 3, 778–784. [Google Scholar] [CrossRef]
- Petrik, N.G.; Kimmel, G.A. Hydrogen bonding, HD exchange, and molecular mobility in thin water films on TiO2 (110). Phy. Rev. Lett. 2007, 99, 196103. [Google Scholar] [CrossRef]
- Matthiesen, J.; Hansen, J.o.; Wendt, S.; Lira, E.; Schaub, R.; laegsgaard, E.; Besenbacher, F.; Hammer, B. Formation and diffusion of water dimers on rutile TiO2 (110). Phys. Rev. Lett. 2009, 102, 226101. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Sorescu, D.C.; Deng, X.; Jordan, K.D. Water chain formation on TiO2 (110). J. Phys. Chem. Lett. 2012, 4, 53–57. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-T.; Wang, Y.-G.; Mu, R.; Yoon, Y.; Dahal, A.; Schenter, G.K.; Glezakou, V.-A.; Rousseau, R.; Lyubinetsky, I.; Dohnálek, Z. Probing equilibrium of molecular and deprotonated water on TiO2 (110). Proc. Natl. Acad. Sci. USA 2017, 114, 1801–1805. [Google Scholar] [CrossRef] [PubMed]
- Tan, S.; Feng, H.; Zheng, Q.; Cui, X.; Zhao, J.; Luo, Y.; Yang, J.; Wang, B.; Hou, J.G. Interfacial hydrogen-bonding dynamics in surface-facilitated dehydrogenation of water on TiO2 (110). J. Am. Chem. Soc. 2019, 142, 826–834. [Google Scholar] [CrossRef]
- Serrano, G.; Bonanni, B.; Di Giovannantonio, M.; Kosmala, T.; Schmid, M.; Diebold, U.; Di Carlo, A.; Cheng, J.; VandeVondele, J.; Wandelt, K. Molecular ordering at the interface between liquid water and rutile TiO2 (110). Adv. Mater. Interfaces 2015, 2, 1500246. [Google Scholar] [CrossRef]
- Harris, L.A.; Quong, A.A. Molecular Chemisorption as the Theoretically Preferred Pathway for Water Adsorption on Ideal Rutile TiO2(110). Phys. Rev. Lett. 2004, 93, 086105. [Google Scholar] [CrossRef]
- Israelachvili, J.N. Intermolecular and Surface Forces; Academic Press: Cambridge, MA, USA, 2011. [Google Scholar]
- Xu, Z.; Gao, Y.; Wang, C.L.; Fang, H.P. Nano-scale Hydrophilicity on Metal Surfaces at Room Temperature: Coupling Lattice Constants and Crystal Faces. J. Phys. Chem. C 2015, 119, 20409. [Google Scholar] [CrossRef]
- Rotenberg, B.; Patel, A.J.; Chandler, D. Molecular Explanation for Why Talc Surfaces Can Be Both Hydrophilic and Hydrophobic. J. Am. Chem. Soc. 2011, 133, 20521–20527. [Google Scholar] [CrossRef]
- Giese, R.F.; Costanzo, P.M.; van Oss, C.J. The surface free energies of talc and pyrophyllite. Phys. Chem. Miner. 1991, 17, 611–616. [Google Scholar] [CrossRef]
- Phan, A.; Ho, T.A.; Cole, D.R.; Striolo, A. Molecular Structure and Dynamics in Thin Water Films at Metal Oxide Surfaces: Magnesium, Aluminum, and Silicon Oxide Surfaces. J. Phys. Chem. C 2012, 116, 15962–15973. [Google Scholar] [CrossRef]
- Gong, H.; Qi, C.; Yang, J.; Chen, J.; Lei, X.; Zhao, L.; Wang, C. Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica. Chin. Phy. B 2021, 30, 010503. [Google Scholar] [CrossRef]
- Wang, C.L.; Li, J.Y.; Fang, H.P. Ordered water monolayer at room temperature. Rend. Lincei 2011, 22, 5–16. [Google Scholar] [CrossRef]
- Lützenkirchen, J.; Franks, G.V.; Plaschke, M.; Zimmermann, R.; Heberling, F.; Abdelmonem, A.; Darbha, G.K.; Schild, D.; Filby, A.; Eng, P.; et al. The surface chemistry of sapphire-c: A literature review and a study on various factors influencing its IEP. Adv. Colloid Interface Sci. 2017, 251, 1–25. [Google Scholar] [CrossRef]
- Lützenkirchen, J.; Zimmermann, R.; Preocanin, T.; Filby, A.; Kupcik, T.; Kuttner, D.; Abdelmonem, A.; Schild, D.; Rabung, T.; Plaschke, M.; et al. An attempt to explain bimodal behaviour of the sapphire c-plane electrolyte interface. Adv. Colloid Interface Sci. 2010, 157, 61–74. [Google Scholar] [CrossRef]
- Zhang, J.; Tan, J.; Pei, R.; Ye, S.; Luo, Y. Ordered Water Layer on the Macroscopically Hydrophobic Fluorinated Polymer Surface and Its Ultrafast Vibrational Dynamics. J. Am. Chem. Soc. 2021, 143, 13074–13081. [Google Scholar] [CrossRef]
- Love, J.C.; Estroff, L.A.; Kriebel, J.K.; Nuzzo, R.G.; Whitesides, G.M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 2005, 105, 1103–1169. [Google Scholar] [CrossRef]
- Major, R.C.; Houston, J.E.; McGrath, M.J.; Siepmann, J.I.; Zhu, X.Y. Viscous water meniscus under nanoconfinement. Phys. Rev. Lett. 2006, 96, 177803. [Google Scholar] [CrossRef]
- Lahann, J.; Mitragotri, S.; Tran, T.-N.; Kaido, H.; Sundaram, J.; Choi, I.S.; Hoffer, S.; Somorjai, G.A.; Langer, R. A reversibly switching surface. Science 2003, 299, 371–374. [Google Scholar] [CrossRef]
- Chen, J.Y.; Ratera, I.; Park, J.Y.; Salmeron, M. Velocity dependence of friction and hydrogen bonding effects. Phys. Rev. Lett. 2006, 96, 236102. [Google Scholar] [CrossRef]
- Pei, Y.; Ma, J. Electric field induced switching behaviors of monolayer-modified silicon surfaces: Surface designs and molecular dynamics simulations. J. Am. Chem. Soc. 2005, 127, 6802–6813. [Google Scholar] [CrossRef]
- Lee, S.-W.; Laibinis, P.E. Directed movement of liquids on patterned surfaces using noncovalent molecular adsorption. J. Am. Chem. Soc. 2000, 122, 5395–5396. [Google Scholar] [CrossRef]
- Ferguson, M.K.; Lohr, J.R.; Day, B.S.; Morris, J.R. Influence of buried hydrogen-bonding groups within monolayer films on gas-surface energy exchange and accommodation. Phys. Rev. Lett. 2004, 92, 073201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konek, C.T.; Musorrafiti, M.J.; Al-Abadleh, H.A.; Bertin, P.A.; Nguyen, S.T.; Geiger, F.M. Interfacial acidities, charge densities, potentials, and energies of carboxylic acid-functionalized silica/water interfaces determined by second harmonic generation. J. Am. Chem. Soc. 2004, 126, 11754–11755. [Google Scholar] [CrossRef] [PubMed]
- Samanta, D.; Sarkar, A. Immobilization of bio-macromolecules on self-assembled monolayers: Methods and sensor applications. Chem. Soc. Rev. 2011, 40, 2567–2592. [Google Scholar] [CrossRef] [PubMed]
- Tu, A.; Kwag, H.R.; Barnette, A.L.; Kim, S.H. Water adsorption isotherms on CH3-, OH-, and COOH-terminated organic surfaces at ambient conditions measured with PM-RAIRS. Langmuir 2012, 28, 15263–15269. [Google Scholar] [CrossRef]
- Arima, Y.; Iwata, H. Effects of surface functional groups on protein adsorption and subsequent cell adhesion using self-assembled monolayers. J. Mater. Chem. 2007, 17, 4079–4087. [Google Scholar] [CrossRef]
- Choi, S.; Yang, Y.; Chae, J. Surface plasmon resonance protein sensor using Vroman effect. Biosens. Bioelectron. 2008, 24, 893–899. [Google Scholar] [CrossRef]
- Ohnuki, H.; Izumi, M.; Lenfant, S.; Guerin, D.; Imakubo, T.; Vuillaume, D. Deposition of TTF derivative on carboxyl terminated self-assembled monolayers. Appl. Surf. Sci. 2005, 246, 392–396. [Google Scholar] [CrossRef]
- James, M.; Darwish, T.A.; Ciampi, S.; Sylvester, S.O.; Zhang, Z.; Ng, A.; Gooding, J.J.; Hanley, T.L. Nanoscale condensation of water on self-assembled monolayers. Soft Matter 2011, 7, 5309–5318. [Google Scholar] [CrossRef]
- Guo, P.; Tu, Y.S.; Yang, J.R.; Wang, C.L.; Sheng, N.; Fang, H.P. Water-COOH Composite Structure with Enhanced Hydrophobicity Formed by Water Molecules Embedded into Carboxyl-Terminated Self-Assembled Monolayers. Phys. Rev. Lett. 2015, 115, 186101. [Google Scholar] [CrossRef]
- Wang, Y.; Duan, Z.; Fan, D. An Ion Diffusion Method for Visualising a Solid-like Water Nanofilm. Sci. Rep. 2013, 3, 3505. [Google Scholar] [CrossRef]
- Mao, D.; Wang, X.; Wu, Y.; Gu, Z.; Wang, C.; Tu, Y. Unexpected hydrophobicity on self-assembled monolayers terminated with two hydrophilic hydroxyl groups. Nanoscale 2021, 13, 19604–19609. [Google Scholar] [CrossRef]
- Massimiliano, S.; Spaldin, N.A. Origin of the dielectric dead layer in nanoscale capacitors. Nature 2006, 443, 679–682. [Google Scholar]
- Kim, Y.T.; Ito, Y.; Tadai, K.; Mitani, T.; Kim, U.-S.; Kim, H.-S.; Cho, B.-W. Drastic change of electric double layer capacitance by surface functionalization of carbon nanotubes. Appl. Phys. Lett. 2005, 87, 234106. [Google Scholar] [CrossRef]
- Ahmad, M.; Gu, W.; Geyer, T.; Helms, V. Adhesive Water Networks Facilitate Binding of Hydrophilic Protein Interfaces. Nat. Comm. 2011, 2, 1–7. [Google Scholar] [CrossRef]
- Wu, K.; Qi, C.; Zhu, Z.; Wang, C.; Song, B.; Chang, C. Terahertz Wave Accelerates DNA Unwinding: A Molecular Dynamics Simulation Study. J. Phys. Chem. Lett. 2020, 11, 7002–7008. [Google Scholar] [CrossRef]
- Szymczyk, A.; Fatin-Rouge, N.; Fievet, P.; Ramseyer, C.; Vidonne, A. Identification of dielectric effects in nanofiltration of metallic salts. J. Membr. Sci. 2007, 287, 102–110. [Google Scholar] [CrossRef]
- Zhu, Z.; Chang, C.; Shu, Y.; Song, B. Transition to a Superpermeation Phase of Confined Water Induced by a Terahertz Electromagnetic Wave. J. Phys. Chem. Lett. 2020, 11, 256–262. [Google Scholar] [CrossRef]
- Bonthuis, D.J.; Gekle, S.; Netz, R.R. Dielectric profile of interfacial water and its effect on double-layer capacitance. Phys. Rev. Lett. 2011, 107, 166102. [Google Scholar] [CrossRef]
- Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K.; et al. Anomalously low dielectric constant of confined water. Science 2018, 360, 1339–1342. [Google Scholar] [CrossRef]
- Sato, T.; Sasaki, T.; Ohnuki, J.; Umezawa, K.; Takano, M. Hydrophobic Surface Enhances Electrostatic Interaction in Water. Phys. Rev. Lett. 2018, 121, 206002. [Google Scholar] [CrossRef] [PubMed]
- Sarhangi, S.M.; Waskasi, M.M.; Hashemianzadeh, S.M.; Matyushov, D.V. Effective Dielectric Constant of Water at the Interface with Charged C60 Fullerenes. J. Phys. Chem. B 2019, 123, 3135–3143. [Google Scholar] [CrossRef] [PubMed]
- Schlaich, A.; Knapp, E.W.; Netz, R.R. Water Dielectric Effects in Planar Confinement. Phys. Rev. Lett. 2016, 117, 048001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, C.; Gygi, F.; Galli, G. Strongly Anisotropic Dielectric Relaxation of Water at the Nanoscale. J. Phys. Chem. Lett. 2013, 4, 2477–2481. [Google Scholar] [CrossRef]
- Qi, W.; Zhao, H. Hydrogen bond network in the hydration layer of the water confined in nanotubes increasing the dielectric constant parallel along the nanotube axis. J. Chem. Phys. 2015, 143, 631. [Google Scholar]
- Conway, B.E.; Bockris, J.O.M.; Ammar, I.A. The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution. Trans. Faraday Soc. 1951, 47, 756–766. [Google Scholar] [CrossRef]
- Hubbard, J.; Onsager, L. Dielectric dispersion and dielectric friction in electrolyte solutions. I. J. Chem. Phys. 1977, 67, 4850. [Google Scholar] [CrossRef]
- Chandra, A. Static dielectric constant of aqueous electrolyte solutions: Is there any dynamic contribution? J. Chem. Phys. 2000, 113, 903–905. [Google Scholar] [CrossRef]
- Zhu, H.; Ghoufi, A.; Szymczyk, A.; Balannec, B.; Morineau, D. Anomalous Dielectric Behavior of Nanoconfined Electrolytic Solutions. Phys. Rev. Lett. 2012, 109, 107801. [Google Scholar] [CrossRef]
- De Luca, S.; Kannam, S.K.; Todd, B.D.; Frascoli, F.; Hansen, J.S.; Daivis, P.J. Effects of Confinement on the Dielectric Response of Water Extends up to Mesoscale Dimensions. Langmuir 2016, 32, 4765–4773. [Google Scholar] [CrossRef]
- Varghese, S.; Kannam, S.K.; Hansen, J.S.; Sathian, S.P. Effect of Hydrogen Bonds on the Dielectric Properties of Interfacial Water. Langmuir 2019, 35, 8159–8166. [Google Scholar] [CrossRef]
- Zhang, C. Note: On the dielectric constant of nanoconfined water. J. Chem. Phys. 2018, 148, 156101. [Google Scholar] [CrossRef]
- Bonthuis, D.J.; Gekle, S.; and Netz, R.R. Profile of the Static Permittivity Tensor of Water at Interfaces: Consequences for Capacitance, Hydration Interaction and Ion Adsorption. Langmuir 2012, 28, 7679–7694. [Google Scholar] [CrossRef]
- Dong, A.; Yan, L.; Sun, L.; Yan, S.; Shan, X.; Guo, Y.; Meng, S.; Lu, X. Identifying Few-Molecule Water Clusters with High Precision on Au(111) Surface. ACS Nano 2018, 12, 6452–6457. [Google Scholar] [CrossRef]
- Li, S.; Chen, Y.; Zhao, J.; Wang, C.; Wei, N. Atomic structure rising obvious thermal conductance difference at Pd-H2O interface: A molecular dynamics simulation. Nanoscale 2020, 12, 17870. [Google Scholar] [CrossRef]
- Argyris, D.; Ho, T.; Cole, D.R.; Striolo, A. Molecular Dynamics Studies of Interfacial Water at the Alumina Surface. J. Phys. Chem. C 2011, 115, 2038–2046. [Google Scholar] [CrossRef]
- Qi, C.; Zhu, Z.; Wang, C.; Zheng, Y. Anomalously Low Dielectric Constant of Ordered Interfacial Water. J. Phys. Chem. Lett. 2021, 12, 931–937. [Google Scholar] [CrossRef]
- Shi, G.; Shen, Y.; Liu, J.; Wang, C.; Wang, Y.; Song, B.; Hu, J.; Fang, H. Molecular-scale Hydrophilicity Induced by Solute: Molecular-thick Charged Pancakes of Aqueous Salt Solution on Hydrophobic Carbon-based Surfaces. Sci. Rep. 2014, 4, 6793. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, P.; Liang, X.; Zhao, J.; Liu, Y.; Cao, Y.; Wang, H.; Chen, Y.; Zhang, Z.; Pan, F.; et al. Ultrafast seawater desalination with covalent organic framework membranes. Nat. Sustain. 2022, 5, 518–526. [Google Scholar] [CrossRef]
- Qiao, Y.-Q.; Gu, Y.; Meng, Y.-S.; Li, H.-X.; Zhang, B.-W.; Li, J.-Y. Fabrication of stable MWCNT bucky paper for solar-driven interfacial evaporation by coupling γ-ray irradiation with borate crosslinking. Nucl. Sci. Tech. 2021, 32, 135. [Google Scholar] [CrossRef]
- Li, W.; Lai, J.; Zu, Y.; Lai, P. Cartilage-inspired hydrogel lubrication strategy. Innovation 2022, 3, 100275. [Google Scholar] [CrossRef] [PubMed]
- Gonella, G.; Backus, E.H.G.; Nagata, Y.; Bonthuis, D.J.; Loche, P.; Schlaich, A.; Netz, R.R.; Kühnle, A.; McCrum, I.T.; Koper, M.T.M.; et al. Water at charged interfaces. Nat. Rev. Chem. 2021, 5, 466–485. [Google Scholar] [CrossRef]
- Wilkins, D.M.; Manolopoulos, D.E.; Pipolo, S.; Laage, D.; Hynes, J.T. Nuclear Quantum Effects in Water Reorientation and Hydrogen-Bond Dynamics. J. Phys. Chem. Lett. 2017, 8, 2602–2607. [Google Scholar] [CrossRef] [PubMed]
- Guo, J.; Lü, J.-T.; Feng, Y.; Chen, J.; Peng, J.; Lin, Z.; Meng, X.; Wang, Z.; Li, X.-Z.; Wang, E.-G.; et al. Nuclear quantum effects of hydrogen bonds probed by tip-enhanced inelastic electron tunneling. Science 2016, 352, 321–325. [Google Scholar] [CrossRef]
- Sun, Z.; Zheng, L.; Chen, M.; Klein, M.L.; Paesani, F.; Wu, X. Electron-Hole Theory of the Effect of Quantum Nuclei on the X-Ray Absorption Spectra of Liquid Water. Phys. Rev. Lett. 2018, 121, 137401. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, C.; Ling, C.; Wang, C. Ordered/Disordered Structures of Water at Solid/Liquid Interfaces. Crystals 2023, 13, 263. https://doi.org/10.3390/cryst13020263
Qi C, Ling C, Wang C. Ordered/Disordered Structures of Water at Solid/Liquid Interfaces. Crystals. 2023; 13(2):263. https://doi.org/10.3390/cryst13020263
Chicago/Turabian StyleQi, Chonghai, Cheng Ling, and Chunlei Wang. 2023. "Ordered/Disordered Structures of Water at Solid/Liquid Interfaces" Crystals 13, no. 2: 263. https://doi.org/10.3390/cryst13020263
APA StyleQi, C., Ling, C., & Wang, C. (2023). Ordered/Disordered Structures of Water at Solid/Liquid Interfaces. Crystals, 13(2), 263. https://doi.org/10.3390/cryst13020263