Preparation of Ti-Doped ZnO/Bi2O3 Nanofilm Heterojunction and Analysis of Microstructure and Photoelectric Properties
Abstract
:1. Introduction
2. Experiment
2.1. Target Material Preparation
2.2. Preparation of the TZO/Bi2O3 Films
2.3. Characterization of TZO/Bi2O3 Films
3. Experimental Results and Discussion
3.1. Appearance of TZO/Bi2O3 Films
3.2. Micromorphology of TZO/Bi2O3 Films
3.3. Microstructure of TZO/Bi2O3 Films
3.4. Optical Properties of the TZO/Bi2O3 Films
3.5. Electrical Properties of the TZO/Bi2O3 Films
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Shi, M.; Liu, J.; Li, J.; Xu, J.; Jiang, M.; Xu, D. Effects of the electric field on microstructure and electrical properties of ZnO-Bi2O3-Co2O3 varistor by flash sintering. J. Mater. Sci.-Mater. Electron. 2022, 33, 17900–17911. [Google Scholar] [CrossRef]
- Apaydin, F.; Celik, A.; Kara, F.; Toplan, H.O. Comparison of electrical properties of ZnO-Bi2O3-based ceramics prepared by conventional and spark plasma sintering (SPS) methods. J. Aust. Ceram. Soc. 2022, 58, 831–839. [Google Scholar] [CrossRef]
- Shi, M.; Zhang, L.; Cheng, Z.; Wang, Z.; He, Q.; Qin, J.; Jiu, Y.; Tang, B.; Xu, D. Effect of La2O3 doping on microstructure and electrical properties of flash-sintered ZnO-Bi2O3 varistor. J. Mater. Sci.-Mater. Electron. 2022, 33, 23437–23446. [Google Scholar] [CrossRef]
- Peiteado, M. Zinc oxide-based ceramic varistors. Bol. Soc. Esp. Ceram. Vidr. 2005, 44, 77–87. [Google Scholar] [CrossRef]
- Takada, M.; Sato, Y.; Yoshikado, S.; Levinson, L. Relation between Grain Boundary Structure and Electrical Degradation in Zinc Oxide Varistors. J. Am. Ceram. Soc. 2012, 95, 2579–2586. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, Z.; Wang, Q.; Fu, X. Highly nonlinear varistors from oxygen-deficient zinc oxide thin films by hot-dipping in Bi2O3: Influence of temperature. Appl. Surf. Sci. 2016, 390, 92–99. [Google Scholar] [CrossRef]
- Wang, Y.; Qi, H.; Wang, Q.; Peng, Z.; Fu, X. Effect of thermal treatment time on high-performance varistors prepared by hot-dipping oxygen-deficient zinc oxide thin films in bismuth oxide powder. J. Mater. Sci. Mater. Electron. 2018, 29, 20885–20894. [Google Scholar] [CrossRef]
- Nie, Y.; Xie, Y.; Zheng, Y.; Luo, Y.; Zhang, J.; Yi, Z.; Zheng, F.; Liu, L.; Chen, X.; Cai, P.; et al. Preparation of ZnO/Bi2O3 Composites as Heterogeneous Thin Film Materials with High Photoelectric Performance on FTO Base. Coatings 2021, 11, 1140. [Google Scholar] [CrossRef]
- Medina, J.C.; Portillo-Vélez, N.S.; Bizarro, M.; Hernández-Gordillo, A.; Rodil, S.E. Synergistic effect of supported ZnO/Bi2O3 heterojunctions for photocatalysis under visible light. Dye. Pigment. 2018, 153, 106–116. [Google Scholar] [CrossRef]
- Carcia, P.F.; McLean, R.S.; Reilly, M.H.; Nunes, G. Transparent ZnO thin-film transistor fabricated by rf magnetron sputtering. Appl. Phys. Lett. 2003, 82, 1117–1119. [Google Scholar] [CrossRef]
- Kluth, O.; Schöpe, G.; Rech, B.; Menner, R.; Oertel, M.; Orgassa, K.; Werner Schock, H. Comparative material study on RF and DC magnetron sputtered ZnO:Al films. Thin Solid Film. 2006, 502, 311–316. [Google Scholar] [CrossRef]
- Ji, Z.G.; Huang, D.; Xi, J.H.; Ke, W.Q.; Zou, R.F. Ultra-Low-Threshold Varistors Based on Columnar ZnO Thin Films. J. Mater. Sci. Eng. 2009, 27, 9–11. [Google Scholar]
- Kashuba, A.; Ilchuk, H.; Petrus, R.; Semkiv, I.; Bovgyra, O.; Kovalenko, M.; Dzikovskyi, V. Optical properties of Al-doped ZnO thin films obtained by the method of high-frequency magnetron sputtering. Mod. Phys. Lett. B 2021, 35, 2150189. [Google Scholar] [CrossRef]
- Chen, X.-L.; Wang, F.; Geng, X.-H.; Huang, Q.; Zhao, Y.; Zhang, X.-D. Natively textured surface hydrogenated gallium-doped zinc oxide transparent conductive thin films with buffer layers for solar cells. Thin Solid Film. 2013, 542, 343–347. [Google Scholar] [CrossRef]
- Herrera, V.; Díaz-Becerril, T.; Reyes-Cervantes, E.; García-Salgado, G.; Galeazzi, R.; Morales, C.; Rosendo, E.; Coyopol, A.; Romano, R.; Nieto-Caballero, F. Highly Visible Photoluminescence from Ta-Doped Structures of ZnO Films Grown by HFCVD. Crystals 2018, 8, 395. [Google Scholar] [CrossRef]
- Singh, S.K.; Hazra, P.; Tripathi, S.; Chakrabarti, P. Optical characterization of Mg-doped ZnO thin films deposited by RF magnetron sputtering technique. AIP Conf. Proc. 2016, 1728, 020168. [Google Scholar]
- Lu, J.J.; Lu, Y.M.; Tasi, S.I.; Hsiung, T.L.; Wang, H.P.; Jang, L.Y. Conductivity enhancement and semiconductor–metal transition in Ti-doped ZnO films. Opt. Mater. 2007, 29, 1548–1552. [Google Scholar] [CrossRef]
- Chen, Z.; Li, F.; Chen, X.; Xu, S.; Xiong, D.; Huang, Y.; Deng, W. Influence of sintering temperatures of ceramic targets on microstructures and photoelectric properties of titanium-doped ZnO nano-films. J. Mater. Sci. Mater. Electron. 2016, 28, 4654–4660. [Google Scholar] [CrossRef]
- Chitrada, K.C.; Raja, K.S. Nanoporous anodic bismuth oxide for electrochemical energy storage. ECS Trans. 2014, 61, 55. [Google Scholar] [CrossRef]
- Gomez, C.L.; Depablos-Rivera, O.; Medina, J.C.; Silva-Bermudez, P.; Muhl, S.; Zeinert, A.; Rodil, S.E. Stabilization of the delta-phase in Bi2O3 thin films. Solid State Ion. 2014, 255, 147–152. [Google Scholar] [CrossRef]
- Saji, K.J.; Populoh, S.; Tiwari, A.N.; Romanyuk, Y.E. Design of p-CuO/n-ZnO heterojunctions by rf magnetron sputtering. Phys. Status Solidi 2013, 210, 1386–1391. [Google Scholar] [CrossRef]
- Liu, Y.; Zhu, S. Preparation and characterization of Mg, Al and Ga co-doped ZnO transparent conductive films deposited by magnetron sputtering. Results Phys. 2019, 14, 102514. [Google Scholar] [CrossRef]
- Chen, H.; Ma, S.; Li, Y.; Ma, L.; Huang, X. Microstructures and optical absorption of Ti-doped ZnO films. In Proceedings of the 2011 International Conference on Electronics, Communications and Control (ICECC), Ningbo, China, 9–11 September 2011; pp. 906–909. [Google Scholar]
- Chen, H.; Ding, J.; Shi, F.; Li, Y.; Guo, W. Optical properties of Ti-doped ZnO films synthesized via magnetron sputtering. J. Alloys Compd. 2012, 534, 59–63. [Google Scholar] [CrossRef]
- Lunca Popa, P.; Sønderby, S.; Kerdsongpanya, S.; Lu, J.; Bonanos, N.; Eklund, P. Highly oriented δ-Bi2O3 thin films stable at room temperature synthesized by reactive magnetron sputtering. J. Appl. Phys. 2013, 113, 046101. [Google Scholar] [CrossRef]
- Vachhani, P.; Rawal, A.H.; Bhatnagar, A.; Rajput, P.; Jha, S.; Bhattacharyya. Absence of ferromagnetism in transition metal (Co, Ni and Cu) doped ZnO films. Mater. Res. Express 2019, 6, 066103. [Google Scholar] [CrossRef]
- Lu, Y.; Huang, J.; Li, B.; Tang, K.; Ma, Y.; Cao, M.; Wang, L.; Wang, L. A boron and gallium co-doped ZnO intermediate layer for ZnO/Si heterojunction diodes. Appl. Surf. Sci. 2018, 428, 61–65. [Google Scholar] [CrossRef]
- Morasch, J.; Li, S.; Brötz, J.; Jaegermann, W.; Klein, A. Reactively magnetron sputtered Bi2O3 thin films: Analysis of structure, optoelectronic, interface, and photovoltaic properties. Phys. Status Solidi (A) 2014, 211, 93–100. [Google Scholar] [CrossRef]
Name of the Film | Sputtering Pressure (Pa) | Argon Flow (sccm) | Oxygen Flow (sccm) | Sputtering Power (W) | Sputtering Time (min) |
---|---|---|---|---|---|
TZO | 0.5 | 35 | 0 | 150 | 50 |
Bi2O3 | 0.6 | 50 | 0.5 | 75 | 20 |
Name of the Film | TZO | Bi2O3 | TZO/Bi2O3 |
---|---|---|---|
Film thickness (nm) | 522.1 | 203.5 | 725.6 |
Name of the Film | 2θ (°) | 2θ of Intrinsic Oxide (°) | FWHM (°) | Grain Size (nm) |
---|---|---|---|---|
TZO | 34.481 | 34.421 | 0.298 | 28.197 |
Bi2O3 | 27.756 | 27.249 | 0.320 | 25.996 |
Name of the Film | TZO Film | Bi2O3 Film | TZO/Bi2O3 Film |
---|---|---|---|
Average transmittance (%) | 90 | 68 | 65 |
Name of the Film | Electrical Resistivity (Ω·cm) | Carrier Concentration (cm−3) | Carrier Mobility (cm2·v−1·s−1) | Conductivity Type |
---|---|---|---|---|
TZO film | 4.68 × 10−3 | 1.17 × 1020 | 11.40 | N-type |
Bi2O3 film | 1.71 × 102 | 3.89 × 1015 | 9.40 | P-type |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Cao, X.; Huang, Y.; Zhang, S.; Pan, W.; Deng, W. Preparation of Ti-Doped ZnO/Bi2O3 Nanofilm Heterojunction and Analysis of Microstructure and Photoelectric Properties. Crystals 2023, 13, 264. https://doi.org/10.3390/cryst13020264
Chen Z, Cao X, Huang Y, Zhang S, Pan W, Deng W. Preparation of Ti-Doped ZnO/Bi2O3 Nanofilm Heterojunction and Analysis of Microstructure and Photoelectric Properties. Crystals. 2023; 13(2):264. https://doi.org/10.3390/cryst13020264
Chicago/Turabian StyleChen, Zhenying, Xiuqing Cao, Yuyang Huang, Shuang Zhang, Wenjian Pan, and Wen Deng. 2023. "Preparation of Ti-Doped ZnO/Bi2O3 Nanofilm Heterojunction and Analysis of Microstructure and Photoelectric Properties" Crystals 13, no. 2: 264. https://doi.org/10.3390/cryst13020264
APA StyleChen, Z., Cao, X., Huang, Y., Zhang, S., Pan, W., & Deng, W. (2023). Preparation of Ti-Doped ZnO/Bi2O3 Nanofilm Heterojunction and Analysis of Microstructure and Photoelectric Properties. Crystals, 13(2), 264. https://doi.org/10.3390/cryst13020264