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Abstract: In this study, the adsorption of aromatic organic pollutants such as hexachlorobenzene,
decachlorobiphenyl, benzene, and biphenyl by 2D nanomaterials was investigated using quantum
chemical methods. The calculation results include reaction enthalpies, non-covalent intermolecular
and intramolecular interactions, optimized structures, hydrogen bonds, and molecular electrostatic
potentials. Fukui’s FMO electrophile sensitivity is used to predict the most reactive positions on
the chemical species for both nucleophilic and electrophilic roles. The results of hard–soft acid-
base reactivity descriptors show that the electronic structures of BN-doped graphene and C-doped
hexagonal boron nitride depend on the degree of doping and the modification of β-cyclodextrin.
C doping helps to significantly improve the conductivity of h-BN, and β-cyclodextrin enhances
the binding stability of aromatic organic pollutants. Hydrogen bonding between β-cyclodextrin
and chlorine-substituted compounds can enhance non-covalent interactions. In particular, the high
adsorption capacity and electron transfer capacity of decachlorobiphenyl laid the foundation for the
development of new sensors.

Keywords: aromatic organic pollutant; graphene; hexagonal boron nitride; β-cyclodextrin; quantum
chemical method

1. Introduction

Cyclodextrin is series of cyclic oligosaccharides produced through glucotransferase by
Bacillus, with multiple glucopyranose molecules composed of 1,4-glycosidic bonds in a
cone-shaped cylindrical structure. The inner cavity of cyclodextrin is hydrophobic, while
the outer cavity is hydrophilic. When the quantity of glucopyranose monomers is seven, it
is called β-cyclodextrin (BCD), which has the inclusion mechanism [1] and characteristics
of a moderate size for encapsulated molecules with a high stability [2], non-toxicity, high
availability, and a low cost [3], making it the best choice for complexes that it enables
interactions with organic or inorganic molecules [4–6]. Actually, the wide applications of
surface BCD-functionalized substrates as a host–guest chemistry system in drug delivery,
textiles, foods, chiral recognition, electrochemical sensing, and pollutant removal were
summarized [7,8].

Sometimes β-cyclodextrin still faces the limitation of catalytic activity, and many
researchers would modify the matrix to expand the scope of the applications [9]. Permethy-
lated cyclodextrins or heptakis(2,6-di-O-methyl)-β-cyclodextrin (DIMEB) showed a more
remarkable reduction in the volatility of fenitrothion to protect the insecticide molecule
from a nucleophilic attack by the hydroxide ion [10,11]. Amidoxime-functionalized car-
boxymethyl β-cyclodextrin/graphene aerogel (GDC) for uranium extraction and crosslink
cyclodextrin with epichlorohydrin for absorbing pesticides via CD inclusion, loading into
swelling water, and physical adsorption were developed [12,13].
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Chemical dyes with lots of benzene ring structures are colorful, but there are fatal risks.
Consequently, much attention should be paid before discharge that several conventional
technologies have been proposed for the treatment of dyes from wastewater such as liquid
extraction, membrane filtration, and adsorption. Recently, researches have pointed out that
magnetic β-cyclodextrin–chitosan/graphene oxide materials (MCCG) were fabricated as
excellent adsorbents for bisphenol A (BPA) elimination through a facile chemical route [14].
Acid fuchsin and Rhodamine 6G could be effectively removed from their solutions by the
magnetic GO-β-CD hybrid [15]. These principles are mainly benefiting from the surface
properties of graphene oxide, the hydrophobicity of β-cyclodextrin, and magnetic function-
alization [16,17]. Apart from that, it was found that anti-corrosion and inert performance
are two of the most important roles for avoiding materials being destroyed by exterior fac-
tors. The observations of cerium acetylacetonate-loaded beta-cyclodextrin/graphene oxide
(β-CD-CeA-MGO) derived from FE-SEM, EDS, and mapping investigations confirmed the
formation of anti-corrosive film [18]. The corrosion protection performance and reduction
in the electrolyte/ion diffusion was improved, assigning to β-CD-ZnA-MGO nano-filler in
the epoxy resin matrix [19].

Graphene and hexagonal boron nitride belong to hexagonal system with a two-dimensional
plane, and the former is arranged by sp2 hybridized carbon atoms, whereas it is arranged by
B atoms and N atoms for h-BN. In spite of the good optical, thermal, magnetic, and electronic
performance of graphene, mechanical stability is requested when using it on any sphere.
Hexagonal boron nitride as a substrate has been proved to solve this problem. For instance, a
zero-band gap has hindered the construction of graphene-based devices. Then, the isoelectronic
co-doping of B and N atoms, namely 2D h-BN, which could be formed to achieve the goal of
regulating and maintaining graphene’s geometrical and electrical properties [20].

The preparation of nanomaterials is not necessarily applicable to all conditions. Non-
covalent and covalent functionalization can promote physicochemical properties for different
targets [21]. Cyclodextrins with functionalized carbon nanotubes is possible for efficiently
adsorbing p-nitrophenol compared to activated carbon [22]. In the field of persistent toxic
substances (PTS), polychlorinated biphenyl (PCB) was determined by β-CD/CNTs/GCE [23].
Carbon nanotubes (CNTs)/β-cyclodextrin (β-CD) nanocomposite reinforcing hollow fiber
(HF) was developed and exhibited an outstanding adsorption capacity, molecular recognition,
sample clean-up effect, and pesticide residue analysis [24]. The β-CD/MWCNT-modified
glassy carbon electrode showed a great response to the MCPA detection system, with a high
sensitivity, stability, and lifetime [25]. β-cyclodextrin/graphene oxide gaining higher status
results from the structure with a large porosity ratio to provide an exceptional adsorption ca-
pability, with more hydroxyl and carboxyl groups on the surface to improve its hydrophilicity.
Accordingly, the achievements for applicability and diversity are limitless [26–31]. It is clear
that adsorbents functionalized with cyclodextrins are a broad research field. On the other
hand, it also motivates us to meet actual requirements and should focus on how to obtain the
development to be widespread in the coming years.

Aromatic organic pollutants, which are insoluble in water and easily soluble in organic
solvents, have a wide-application, including in agricultural drugs, industrial synthesis, and
so on. Once they enter the ecosystem by the grasshopper effect, they will be harmful to the
nerves, reproduction, and immune systems with biomagnification and bioaccumulation
that might also cause cancer in severe cases. They have become a topic of international
concern, e.g., hexachlorobenzene and decachlorobiphenyl, which have been listed as
persistent organic pollutants (POPs), banned globally in the Stockholm Convention.

Both N-doped graphene and B-doped graphene has been used as chemical sensors
for biomolecules due to the increase in the electronic density of states near the Fermi
level [32,33]. Boron–carbon–nitride may act as a candidate for sensing applications with a
superior binding strength to graphene and boron nitride-based materials [34]. Previous
studies provided useful guidance for the gas sensing applications of pristine and amine-
functionalized BNNTs to detect toxic gases at room temperature [35]. The encapsulation
of the anti-cancer docetaxel drug (DTX) into BNNTs was studied by molecular dynamics
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simulations in aqueous solution and EtOH co-solvent [36]. Previous literature based on
density functional theory (DFT) and the semiempirical method PM7 analyzed the adsorp-
tion process of pollutant gases at different positions of BNNTs [37]. The adsorption distance
and energy, charge transfer, and density of the states have been discussed based on the DFT
method. Combined with the desorption time, Rh-BNNTs are theoretically predicted to have
a potential as SO2 gas sensor materials [38]. In order to address the challenges of improv-
ing the therapeutic efficiency, the bioavailability and reducing adverse side effects at the
molecular level, the acid-functionalized CNTs with benserazide as a Levodopa nanodrug
carrier complex, was calculated [39]. The anti-cancer molecule crizotinib (CZT) on the
surface of CNTs and BNNTs was investigated using DFT and COSMO-RS. Simultaneously,
compute quantum molecular descriptors (QMDs) accounted for drug–carrier interaction
mechanisms and adsorption energies [40]. The results of the DFT calculations showed that
the electronic properties of Pd/CNT changed significantly after CH2O was adsorbed [41].
Studying the adsorption and encapsulation of the chemotherapeutic drug lomustine in
CNTs by a DFT calculation has become an effective choice for designing drug carriers [42].
Applying L-leucine amino acid to Pd-loaded CNTs and reactive functional groups can
combine hydrogen bonding, hydrophobic interactions, and Van der Waals forces with the
protein surface during detection [43].

Thus, β-cyclodextrin as a molecular receptor and doped nanosheets as an enhancer of
electron transfer are our concepts of designing electrochemical sensors. The objective of the
work is to design a β-cyclodextrin-decorated nano-level biosensor to explore the selectivity
of detecting aromatic organic pollutants and to realize the effect of doping and modifying
with β-cyclodextrin.

2. Computational Details

BN-doped graphene (CC_BN) and C-doped hexagonal boron nitride (h-BN_CC) nanosheets
terminated by hydrogen atoms along the edge are modeled with Nanotube Modeler software
(JCrystalSoft, 2018) to generate the XYZ coordinates. Two and ten hexagonal doped islands are,
respectively, named for serial number 1 and 2. The molecular structures of investigated aromatic
organic pollutants, including hexachlorobenzene (cb), decachlorobiphenyl (pcb), benzene (b),
and biphenyl (bp), are loaded from PubChem. The β-cyclodextrin molecule is downloaded
from the Cambridge Structural Database (CSD) in the Cambridge Crystallographic Data Centre
with the Entry: BCDEXD03. The ratio of β-cyclodextrin and pollutant molecule present 1:1
host–guest stoichiometry.

CC_BN and h-BN_CC with and without the functionalization of β-cyclodextrin on the
doped site via the strategy of adsorption are calculated by the PM7 [44] level in MOPAC
2016, which is available from http://openmopac.net (accessed on 14 June 2021) [45,46]. The
geometries of all the systems are fully optimized using tight optimization criteria with a
gradient threshold of 4.2 × 10−4 kJ mol−1 Å−1. The calculated results are illustrated by the
MoCalc 2012 software to study the optimized structure, hydrogen bonding, and molecular
electrostatic potential. MoCalc 2012 is also used to show non-covalent intermolecular and
intramolecular interactions (NCI) [47,48] with colorful and continuous surfaces. Fukui’s
FMO electrophilic susceptibilities for predicting the most reactive position on chemical
species are performed to realize the role of nucleophilicity (HOMO) and electrophilicity
(LUMO), which are concluded in the previous literature [49].

3. Results and Discussions
3.1. Non-Covalent Interaction (NCI)

The color between carbon doping of hexagonal boron nitride and β-cyclodextrin is
mainly composed of blue–green and yellow. Among them, the hydroxyl group on C6
of the β-cyclodextrin has a primary force of an electrostatic interaction. Both benzene
and hexachlorobenzene with β-cyclodextrin all appear sporadic green. Even though the
dipole moments of the two compounds above are zero, hexachlorobenzene bonds with

http://openmopac.net
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high-electronegative chlorine atoms, which can have more polarity with the surrounding
functional groups, so the color distribution is denser.

The increase in the distribution range of other colors and blue areas shows that the
biphenyl morphology with an increasing guest molecular size forms more and stronger dis-
persive interactions than a single benzene ring structure [50]. One aromatic ring of biphenyl
and decachlorobiphenyl locating near the adsorbent is wrapped in yellow, blue–green.
Biphenyl has a weaker interaction with β-cyclodextrin compared with decachlorobiphenyl
and obvious differences are performed especially between the chlorine atoms of decachloro-
biphenyl and the hydrogen atoms of β-cyclodextrin. The inner cavity of β-cyclodextrin
due to the shielding effect of the C-H bond forms host–guest inclusion complexes for these
aromatic congeners through dominant hydrophobic, Van der Waals interactions [51–53].

In addition, Figure 1A,C show that there are hardly non-covalent interactions cov-
ered at the center of C-doping; otherwise, the abundance of delocalized π-electrons in
the C-doped site of h-BN make a large area of dark blue demonstrated together with
decachlorobiphenyl from Figure 1B. A previous study indicated the high adsorption of
polychlorinated biphenyls [54]. Therefore, it can be inferred that the graphene-like structure
is favorable for the adsorption of decachlorobiphenyl via stronger π-π stacking [55,56]. In
addition, there are Van der Waals, π-π interactions and the Lewis acid-base interactions
between BN-based materials and adsorbate [57,58].
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Figure 1. Non-covalent interaction between (A) hexachlorobenzene (cb), (B) decachlorobiphenyl
(pcb), (C) benzene (b), and (D) biphenyl (bp) and carbon-doped hexagonal boron nitride (h-BN-CC2)
decorated with beta-cyclodextrin (BCD).

3.2. Equilibrium Structure and Reaction Enthalpy

Hexachlorobenzene and decachlorobiphenyl are all Cl substitution; however, the car-
bon on benzene ring structure lacks the attractiveness of the electrons and the chlorine
atoms themselves are not easy to assume σ-hole state to form halogen bonds. After the
addition and modification of β-cyclodextrin, a large number of hydroxyl groups help
the adsorption function. Hydrogen bonds which would keep ring-shaped-like geomet-
ric complexes stabilized are shown as the figure; because of the characteristics of high
electronegativity, the chlorine atoms of hexachlorobenzene and decachlorobiphenyl play
important hydrogen bond acceptors [59]. There are four hydrogen bonds formed between
hexachlorobenzene and β-cyclodextrin with their average bond length of 2.94 Å, and there
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are as many as six hydrogen bonds on decachlorobiphenyl where the average bond length
is about 2.96 Å.

CC_BN2 adsorbing β-cyclodextrin release the most adsorption energy, followed by
h-BN_CC2, which can form stable structures. From the adsorption status of CC_BN_BCD,
it can be seen that the adsorption energy for hexachlorobenzene and decachlorobiphenyl is
more than the other two pollutants that it is found to be correlated with the hydrophobicity
of the pollutants [60]. When CC_BN1_BCD is converted to CC_BN2_BCD, the adsorption
energy of chlorine-containing compounds is reduced, whereas benzene and biphenyl show
an increase. Although the adsorption capacity of the latter two is improved, they are still
inferior to hexachlorobenzene and decachlorobiphenyl, which are related to the electro-
static potential of the partial charge of the chlorine atoms and the BN-doped site. As for
h-BN_CC_BCD, the one with the largest adsorption energy is decachlorobiphenyl, and ben-
zene is the smallest. In particular, decachlorobiphenyl is immobilized by h-BN_CC2_BCD
the most in Table 1 through the strategy of adsorption.

Table 1. Reaction enthalpy (∆Hf in kcal/mol) of hexachlorobenzene (cb), decachlorobiphenyl (pcb),
benzene (b), and biphenyl (bp) adsorbed by the nano-systems of BN-doped graphene (CC-BN1 and
CC-BN2) and carbon-doped hexagonal boron nitride (h-BN-CC1 and h-BN-CC2) decorated with
beta-cyclodextrin (BCD).

Reaction Enthalpy (∆Hf)
(kcal/mol)

CC_BN1 +BCD →CC_BN1_BCD −72.1674
CC_BN2 +BCD →CC_BN2_BCD −92.0323

h-BN_CC1 +BCD →h-BN_CC1_BCD −76.3327
h-BN_CC2 +BCD →h-BN_CC2_BCD −77.2604

CC_BN1_BCD +cb →CC_BN1_BCD_cb −60.9593
CC_BN1_BCD +pcb →CC_BN1_BCD_pcb −94.6094
CC_BN1_BCD +b →CC_BN1_BCD_b −24.2197
CC_BN1_BCD +bp →CC_BN1_BCD_bp −22.9383
CC_BN2_BCD +cb →CC_BN2_BCD_cb −52.5011
CC_BN2_BCD +pcb →CC_BN2_BCD_pcb −88.8037
CC_BN2_BCD +b →CC_BN2_BCD_b −28.7710
CC_BN2_BCD +bp →CC_BN2_BCD_bp −41.4766

h-BN_CC1_BCD +cb →h-BN_CC1_BCD_cb −50.0348
h-BN_CC1_BCD +pcb →h-BN_CC1_BCD_pcb −97.4077
h-BN_CC1_BCD +b →h-BN_CC1_BCD_b −31.9365
h-BN_CC1_BCD +bp →h-BN_CC1_BCD_bp −46.1465
h-BN_CC2_BCD +cb →h-BN_CC2_BCD_cb −45.7307
h-BN_CC2_BCD +pcb →h-BN_CC2_BCD_pcb −110.203
h-BN_CC2_BCD +b →h-BN_CC2_BCD_b −14.9105
h-BN_CC2_BCD +bp →h-BN_CC2_BCD_bp −55.5254

As the number of C-doping increases, it is conducive to the adsorption capacity of biphenyl
derivatives, while benzene and hexachlorobenzene weaken. Moreover, when h-BN_CC2_BCD
adsorbs these four pollutants, the magnitude of the adsorption energy coincides with the
color distribution in Figure 1, indicating that the non-covalent interaction is the key to this
spontaneous and physical adsorption. Regardless of the adsorbent, the reaction enthalpy
produced by decachlorobiphenyl is much greater than that of hexachlorobenzene. According to
Figure 2, the difference in the energy comes from the number of hydrogen bonds. In the same
way, it can be proved that benzene and biphenyl are not easy to form hydrogen bonds with
β-cyclodextrin; thus, the adsorption value is generally low.
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cyclodextrin (BCD).

3.3. Molecular Electrostatic Potential

On hexachlorobenzene and decachlorobiphenyl, the inside of the benzene ring is light
yellow, because the benzene ring is connected to a chlorine atom and the chlorine atom with
a high electronegativity will attract electrons (Figure 3A,B). The color of the electrostatic
potential map on benzene is red, yellow, and green from the inside to the outside. The
outside of the benzene ring is mainly neutral, while the hydrogen atom is light blue with a
weak positive charge. The color of the electrostatic potential on biphenyl is similar to the
benzene ring, but only yellow in the benzene ring (Figure 3C,D).
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The adsorption site of h-BN is mainly orange and negatively charged. The entire
cyclodextrin is mainly green, which means that most of it is electrically neutral, and the
electrostatic force is evenly distributed, which also means that the polarity is not obvious.
The adsorption is relatively less affected by the electrostatic force, and the charge difference
of each part is not large and tends to be neutral. However, on the oxygen, it is orange–red
with a negative charge, while the outer hydrogen atom is light blue with a positive charge,
which is consistent with the hydrophobicity of the inner side of the cyclodextrin and the
hydrophilicity of the outer side in the literature. What is more special is the chlorine
atom. According to its electronegativity, the chlorine atom has a strong attraction to the
electrons and should appear reddish-yellow. However, due to the influence of its atomic
radius, the electrostatic potential of the entire atom is not obvious and it still belongs to the
electron-rich region.

3.4. Frontier Molecular Orbital Electrophilic Susceptibility

The results of the frontier molecular orbital for the h-BN nanosheet (excluding C-
doped zone) are very similar, and nitrogen prefers to attract electrons than boron; red
electrophilic positions are concentrated on the upper nanosheet moieties and located at N
and the N-B bond. The molecular size of β-cyclodextrin is the same as that of the C-doped
region, whose adsorption site is mainly yellow–green with a little red sprinkling, and the
scope of the molecular orbital is expanded to carbon atoms and carbon–carbon bonds.
Dark blue performed on the center near the pollutants means the most susceptibility to an
electrophile attack.
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Figure 4A,C,D represent the co-adsorption of hexachlorobenzene, benzene, biphenyl
with β-cyclodextrin, respectively, and each of them exhibits an identical appearance. Only
the aromatic ring of decachlorobiphenyl closed to h-BN_CC2 is densely covered with red
(Figure 4B), which forms a strong electron donor-acceptor with the green orbital on a
graphene-like island. It is better than the other compounds in terms of the efficiency of the
electron transfer.
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Figure 4. Frontier molecular orbital electrophilic susceptibility of (A) hexachlorobenzene (cb), (B) de-
cachlorobiphenyl (pcb), (C) benzene (b), and (D) biphenyl (bp) adsorbed on carbon-doped hexagonal
boron nitride (h-BN-CC2) decorated with beta-cyclodextrin (BCD).

3.5. Hard–Soft Acid-Base (HSAB) Reactivity Descriptor

All the descriptors in Table 2 are obtained from the calculations of the HOMO (the
highest occupied molecular orbital) and LUMO (the lowest unoccupied molecular orbital)
for every molecule. In terms of doping, the change in the ionization energy caused by
C-doping is larger than that of BN-doping. As the number of C-doping increases, the ion-
ization energy of the h-BN nanosheet decreases more significantly, and it also happens for
decorated h-BN_CC by β-cyclodextrin. When β-cyclodextrin is adsorbed on the nanosheet,
the ionization energy of CC_BN becomes larger, and that of h-BN_CC instead decreases.

According to Table 2, the electron affinity and electronegativity of h-BN_CC and
h-BN_CC_BCD are less than CC_BN and CC_BN_BCD whether the substrate is decorated
or not, especially as h-BN_CC2 all exhibits the lowest value of electronegativity with and
without decoration, indicating that β-cyclodextrin helps h-BN to further reduce the attrac-
tion to electrons. The electronegativity of chlorine-containing compounds is indeed greater
than that of benzene and biphenyl, especially decachlorobiphenyl with the largest value.
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Table 2. The HSAB reactivity descriptors in the present study.

GAP
(eV)

I
(eV)

A
(eV)

χ

(eV)
η

(eV)
µ

(eV)
S

(eV−1)
ω

(eV)

CC_BN1 2.796 6.418 3.622 5.020 1.398 −5.020 0.358 9.013
CC_BN2 2.736 6.343 3.607 4.975 1.368 −4.975 0.365 9.046

h-BN_CC1 5.477 7.396 1.919 4.658 2.739 −4.658 0.183 3.961
h-BN_CC2 4.957 6.964 2.007 4.486 2.479 −4.486 0.202 4.059

BCD 11.113 10.177 −0.936 4.621 5.557 −4.621 0.090 1.921
CC_BN1_BCD 2.788 6.463 3.675 5.069 1.394 −5.069 0.359 9.216
CC_BN2_BCD 2.727 6.388 3.661 5.025 1.364 −5.025 0.367 9.258

h-BN_CC1_BCD 5.351 7.320 1.969 4.645 2.676 −4.645 0.187 4.031
h-BN_CC2_BCD 4.842 6.890 2.048 4.469 2.421 −4.469 0.207 4.125

cb 8.542 10.180 1.638 5.909 4.271 −5.909 0.117 4.088
pcb 8.358 10.117 1.759 5.938 4.179 −5.938 0.120 4.219

b 10.060 9.824 −0.236 4.794 5.030 −4.794 0.099 2.285
bp 9.134 9.292 0.158 4.725 4.567 −4.725 0.109 2.444

CC_BN1_BCD_cb 2.792 6.478 3.686 5.082 1.396 −5.082 0.358 9.250
CC_BN1_BCD_pcb 2.741 6.441 3.700 5.071 1.371 −5.071 0.365 9.380

CC_BN1_BCD_b 2.789 6.467 3.678 5.073 1.395 −5.073 0.359 9.226
CC_BN1_BCD_bp 2.794 6.462 3.668 5.065 1.397 −5.065 0.358 9.182
CC_BN2_BCD_cb 2.720 6.390 3.670 5.030 1.360 −5.030 0.368 9.302

CC_BN2_BCD_pcb 2.805 6.407 3.602 5.005 1.403 −5.005 0.357 8.929
CC_BN2_BCD_b 2.743 6.387 3.644 5.016 1.372 −5.016 0.365 9.171

CC_BN2_BCD_bp 2.738 6.384 3.646 5.015 1.369 −5.015 0.365 9.186
h-BN_CC1_BCD_cb 5.365 7.345 1.980 4.663 2.683 −4.663 0.186 4.052

h-BN_CC1_BCD_pcb 5.428 7.409 1.981 4.695 2.714 −4.695 0.184 4.061
h-BN_CC1_BCD_b 5.375 7.343 1.968 4.656 2.688 −4.656 0.186 4.032

h-BN_CC1_BCD_bp 5.378 7.350 1.972 4.661 2.689 −4.661 0.186 4.040
h-BN_CC2_BCD_cb 4.833 6.911 2.078 4.495 2.417 −4.495 0.207 4.180

h-BN_CC2_BCD_pcb 4.949 7.001 2.052 4.527 2.475 −4.527 0.202 4.140
h-BN_CC2_BCD_b 4.810 6.871 2.061 4.466 2.405 −4.466 0.208 4.147

h-BN_CC2_BCD_bp 4.887 6.946 2.059 4.503 2.444 −4.503 0.205 4.148

µ is the chemical potential, which is described by electronegativity with an opposite
sign. The greater the value of µ, the more likely it is to provide electrons to those with
a lower chemical potential. Before the adsorption of β-cyclodextrin, once the number
of dopes increases, the chemical potential can raise, and C-doping has a deeper impact
on hexagonal boron nitride. As β-cyclodextrin is attached to the material, it continues
to make the value of the chemical potential larger compared with the pristine h-BN_CC,
but CC_BN has a consequence contrary to expectation. Combining the above description
and Table 2, the µ value of h-BN_CC2_BCD reaches −4.469 eV, the maximum of all the
materials. In view of the high chemical potential of h-BN_CC2_BCD, it drives to enhance
the electron flow to pollutants, especially decachlorobiphenyl, as the difference in the
chemical potential is quite large. Thereby, from the comparison of the chemical potential
between h-BN_CC2/β-cyclodextrin and pollutants, the electron flow direction is exactly in
line with Figure 4.

η is the chemical hardness. The greater the chemical hardness, the less likely to be
polarized and the molecular structure is stable. S is the chemical softness, and its physical
and chemical properties reflect opposite data and trends. Because the hydroxyl groups form
intramolecular hydrogen bonds with each other, β-cyclodextrin has the highest stability.
Although the decoration of β-cyclodextrin and doping cause a decrease in the chemical
hardness, h-BN_CC is still more suitable to be a stable material than CC_BN. Next, lower
polar h-BN_CC2_BCD is combined with decachlorobiphenyl, which possesses the least
η value due to the steric-hindrance effect, resulting in high reaction enthalpy. As far as
chemical hardness is concerned, decachlorobiphenyl adsorbed by h-BN_CC2_BCD to be
the most stable complex provides a perfect support.
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ω is the electrophilic index, which can be used as a basis for the degree of accepting
electrons. CC_BN is far easier to accept electrons than h-BN_CC, which displays the
potential of an electron transfer. The decoration of β-cyclodextrin makes the electrophilic
index increase slightly, and the negligible change in the latter is merely less than 0.1 eV.
Decachlorobiphenyl has the largest electrophilic index, which confirms the phenomenon of
the benzene ring structure covered by the red molecular orbital function as in Figure 4.

The band gap is regarding the electron transition; if the addition of a molecule makes
the change in the gap between orbitals enormous enough, the fabrication of the sensors is
promising. For GAP in Table 2, the factor of the number of C-doping makes it decrease
more than 0.5 eV, showing that the efficiency of the improvement in the conductivity is more
excellent than that of BN-doping. Whether a nanosheet is combined with β-cyclodextrin,
CC_BN has a better conductivity than h-BN_CC owing to the graphene as the base. However,
it is undeniable that β-cyclodextrin is conducive to the reduction in the original GAP, and even
the effect on h-BN_CC is more distinct (decrease by at least 0.1 eV). In fact, analyzing the GAP
variation, these four nanomaterials have a good sensing ability of decachlorobiphenyl and the
most extraordinary exhibition of h-BN_CC2_BCD is as high as 0.107 eV. If h-BN_CC2_BCD is
utilized alone nowadays, the detection of biphenyl is great as well.

β-cyclodextrin-functionalized nanosheet composites show excellent electrochemical
sensing, which is attributed to the synergistic effects that can simultaneously combine
the properties of the individual constituent materials (the electrocatalytic properties from
the carbon-doped site and supramolecular recognition from β-CD) [61,62]. By the way,
previous study has presented that non-covalent functionalization by β-cyclodextrin has
the potential to improve the graphene dispersibility in the solvent [63], that it is a kind of
material which is easy to handle and cost-saving. To sum up, C-doping and β-cyclodextrin
have successfully enhanced the conductivity of the h-BN_CC nanosheet to 4.842 eV herein.
Furthermore, the performances of the adsorption mechanism and acceleration of the
electron transfer are sufficient to prove that h-BN_CC2_BCD has a high sensitivity to
decachlorobiphenyl through the method of adsorption in the environment and has a place
in separating neutral decachlorobiphenyl from polluted water.

4. Conclusions

The degree of doping and modification of β-cyclodextrin has a significant impact
on the electronic structure of 2D nanomaterials. This study found that C-doping is more
effective than BN-doping in enhancing the conductivity. The β-cyclodextrin-modified
C-doped h-BN forms a hydrophobic cavity, which provides a larger adsorption area for
aromatic organic pollutants. Meanwhile, the hydrogen bonding between β-cyclodextrin
and chlorine-substituted compounds can strengthen the non-covalent interaction. There-
fore, h-BN_CC2_BCD has the highest adsorption capacity and sensitivity for the removal
and detection of decachlorobiphenyl.
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