Thickness Study of Ga2O3 Barrier Layer in p-Si/n-MgZnO:Er/Ga2O3/ZnO:In Diode
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kandpal, K.; Gupta, N.; Singh, J.; Shekhar, C. Study of ZnO/BST interface for thin-film transistor (TFT) applications. Surfaces Interfaces 2021, 23, 100996. [Google Scholar] [CrossRef]
- Mazandarani, H.R.; Ghafary, B.; Alam, S.N. Optimization of UVB photodiode based on ZnO nanorod arrays grown via the hydrothermal process. Opt. Mater. 2022, 126, 112047. [Google Scholar] [CrossRef]
- Ali, A.T.; Maryam, W.; Huang, Y.W.; Hsu, H.C.; Ahmed, N.M.; Zainal, N.; Hassan, H.A.; Dheyab, M.A. UV random laser in aluminum-doped ZnO nanorods. J. Opt. Soc. Am. B 2021, 38, C69–C77. [Google Scholar] [CrossRef]
- Chen, S.; Zhan, T.; Pan, X.; He, H.; Huang, J.; Lu, B.; Ye, Z. UV electroluminescence emissions from high-quality ZnO/ZnMgO multiple quantum well active layer light-emitting diodes. RSC Adv. 2021, 11, 38949–38955. [Google Scholar] [CrossRef] [PubMed]
- Iwan, S.; Bambang, S.; Zhao, J.L.; Tan, S.T.; Fan, H.M.; Sun, L.; Zhang, S.; Ryu, H.H.; Sun, X.W. Green electroluminescence from an n-ZnO: Er/p-Si heterostructured light-emitting diode. Physics B 2012, 407, 2721–2724. [Google Scholar] [CrossRef]
- Chen, C.A.; Hsu, Y.T.; Lan, W.H.; Huang, K.F.; Chang, K.J.; Wang, M.C.; Huang, C.J. On the Nitrogen Doping in Erbium and Nitrogen Codoped Magnesium Zinc Oxide Diode by Spray Pyrolysis. Crystals 2020, 10, 34. [Google Scholar] [CrossRef]
- Zubia, J.; Arrue, J. Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications. Opt. Fiber Technol. 2001, 7, 101–140. [Google Scholar] [CrossRef]
- Kuo, Y.K.; Wang, T.H.; Chang, J.Y.; Chen, J.D. Slightly-Doped Step-Like Electron-Blocking Layer in InGaN Light-Emitting Diodes. IEEE Photonics Technol. Lett. 2012, 24, 1506–1508. [Google Scholar] [CrossRef]
- Hadouchi, W.; Rousset, J.; Tondelier, D.; Geffroy, B.; Bonnassieux, Y. Zinc oxide as a hole blocking layer for perovskite solar cells deposited in atmospheric conditions. RSC Adv. 2016, 6, 67715. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, W.; Gao, Y.; Yang, D.; Ma, X. Electroluminescence from light-emitting devices based on erbium-doped ZnO/n-Si heterostructures: Enhancement effect of fluorine co-doping. Opt. Express 2019, 27, 30919. [Google Scholar] [CrossRef]
- You, J.B.; Zhang, X.W.; Zhang, S.G.; Wang, J.X.; Yin, Z.G.; Tan, H.R.; Zhang, W.J.; Chu, P.K.; Cui, B.; Wowchak, A.M.; et al. Improved electroluminescence from n-ZnO/AlN/p-GaN heterojunction light-emitting diodes. Appl. Phys. Lett. 2010, 96, 201102. [Google Scholar] [CrossRef]
- Nakahara, K.; Akasaka, S.; Yuji, H.; Tamura, K.; Fujii, T.; Nishimoto, Y.; Takamizu, D.; Sasaki, A.; Tanabe, T.; Takasu, H.; et al. Nitrogen doped MgxZn1−xO/ZnO single heterostructure ultraviolet light-emitting diodes on ZnO substrates. Appl. Phys. Lett. 2010, 97, 013501. [Google Scholar] [CrossRef]
- Liu, Y.; Liang, H.; Xia, X.; Shen, R.; Liu, Y.; Bian, J.; Du, G. Introducing Ga2O3 thin films as novel electron blocking layer to ZnO/p-GaN heterojunction LED. Appl. Phys. B 2012, 109, 605–609. [Google Scholar] [CrossRef]
- Zhang, J.; Shi, J.; Qi, D.C.; Chen, L.; Zhang, K.H.L. Recent progress on the electronic structure, defect, and doping properties of Ga2O3. APL Mater. 2020, 8, 020906. [Google Scholar] [CrossRef]
- Choi, Y.S.; Kang, J.W.; Kim, B.H.; Na, D.K.; Lee, S.J.; Park, S.J. Improved electroluminescence from ZnO light-emitting diodes by p-type MgZnO electron blocking layer. Opt. Express 2013, 21, 11698–11704. [Google Scholar] [CrossRef]
- Hsu, Y.T.; Lee, C.C.; Lan, W.H.; Huang, K.F.; Chang, K.J.; Lin, J.C.; Lee, S.Y.; Lin, W.J.; Wang, M.C.; Huang, C.J. Thickness Study of Er-Doped Magnesium Zinc Oxide Diode by Spray Pyrolysis. Crystals 2018, 8, 454. [Google Scholar] [CrossRef]
- Li, X.; Liu, D.; Mo, X.; Li, K. Nanorod β-Ga2O3 semiconductor modified activated carbon as catalyst for improving power generation of microbial fuel cell. J. Solid State Electrochem. 2019, 23, 2843–2852. [Google Scholar] [CrossRef]
- Huang, C.; Mu, W.; Zhou, H.; Zhu, Y.; Xu, X.; Jia, Z.; Zheng, L.; Tao, X. Effect of OH on chemical mechanical polishing of β-Ga2O3 (100) substrate using an alkaline slurry. RSC Adv. 2018, 8, 6544–6550. [Google Scholar] [CrossRef]
- Jiao, S.; Lu, H.; Wang, X.; Nie, Y.; Wang, D.; Gao, S.; Wang, J. The Structural and Photoelectrical Properties of Gallium Oxide Thin Film Grown by Radio Frequency Magnetron Sputtering. J. Solid State Sci. Technol. 2019, 8, Q3086–Q3090. [Google Scholar] [CrossRef]
- Girija, K.; Thirumalairajan, S.; Mastelaro, V.R.; Mangalaraj, D. Photocatalytic degradation of organic pollutants by shape selective synthesis of β-Ga2O3 microspheres constituted by nanospheres for environmental remediation. J. Mater. Chem. A 2014, 3, 2617–2627. [Google Scholar] [CrossRef]
- Rodriguez, C.I.M.; Alvarez, M.A.L.; Rivera, J.d.J.F.; Arizaga, G.G.C.; Michel, C.R. α-Ga2O3 as a Photocatalyst in the Degradation of Malachite Green. ECS J. Solid State Sci. Technol. 2019, 8, Q3180–Q3186. [Google Scholar] [CrossRef]
- Hinkle, C.L.; Milojevic, M.; Brennan, B.; Sonnet, A.M.; Aguirre-Tostado, F.S.; Hughes, G.J.; Vogel, E.M.; Wallace, R.M. Detection of Ga suboxides and their impact on III-V passivation and Fermilevel pinning. Appl. Phys. Lett. 2009, 94, 162101. [Google Scholar] [CrossRef]
- Usseinov, A.; Koishybayeva, Z.; Platonenko, A.; Pankratov, V.; Suchikova, Y.; Akilbekov, A.; Zdorovets, M.; Purans, J.; Popov, A.I. Vacancy Defects in Ga2O3: First-Principles Calculations of Electronic Structure. Materials 2021, 14, 7384. [Google Scholar] [CrossRef] [PubMed]
- Swallow, J.E.N.; Vorwerk, C.; Mazzolini, P.; Vogt, P.; Bierwagen, O.; Karg, A.; Eickhoff, M.; Schörmann, J.; Wagner, M.R.; Roberts, J.W.; et al. Influence of Polymorphism on the Electronic Structure of Ga2O3. Chem. Mater. 2020, 32, 8460. [Google Scholar] [CrossRef]
- Tian, R.; Pan, M.; Sai, Q.; Zhang, L.; Qi, H.; Mohamed, H.F. Crucial Role of Oxygen Vacancies in Scintillation and Optical Properties of Undoped and Al-Doped-Ga2O3 Single Crystals. Crystals 2022, 12, 429. [Google Scholar] [CrossRef]
- Lee, B.J.; Jo, S.I.; Jeong, G.H. Synthesis of ZnO Nanomaterials Using Low-Cost Compressed Air as Microwave Plasma Gas at Atmospheric Pressure. Nanomaterials 2019, 9, 942. [Google Scholar] [CrossRef]
- Hsu, H.C.; Hsieh, W.F. Excitonic polaron and phonon assisted photoluminescence of ZnO nanowires. Solid State Commun. 2004, 131, 371–375. [Google Scholar] [CrossRef]
- He, H.; Wang, Y.; Wang, J.; Ye, Z. Extraction of the surface trap level from photoluminescence: A case study of ZnO nanostructures. Phys. Chem. Chem. Phys. 2011, 13, 14902. [Google Scholar] [CrossRef] [PubMed]
- Hang, D.R.; Islam, S.E.; Sharma, K.H.; Kuo, S.W.; Zhang, C.Z.; Wang, J.J. Annealing effects on the optical and morphological properties of ZnO nanorods on AZO substrate by using aqueous solution method at low temperature. Nanoscale Res. Lett. 2014, 9, 632. [Google Scholar] [CrossRef]
- Bandopadhyay, K.; Mitra, J. Zn interstitials and O vacancies responsible for ntype ZnO: What do the emission spectra reveal? RSC Adv. 2015, 5, 23540. [Google Scholar] [CrossRef]
- Willander, M.; Nur, O.; Sadaf, J.R.; Qadir, M.I.; Zaman, S.; Zainelabdin, A.; Bano, N.; Hussain, I. Luminescence from Zinc Oxide Nanostructures and Polymers and their Hybrid Devices. Materials 2010, 3, 2643. [Google Scholar] [CrossRef]
- Anjum, A.; Ahmed, R.; Umar, Z.A.; Azzam, S.; Hussain, T.; Sarwar, M.N.; Baig, M.A. Structure and defects-related optical properties of highly (002)-oriented zinc oxide thin films. Physica B 2022, 644, 414195. [Google Scholar] [CrossRef]
- Vempati, S.; Mitra, J.; Dawson, P. One-step synthesis of ZnO nanosheets: A blue-white fluorophore. Nanoscale Res. Lett. 2012, 7, 470. Available online: https://www.nanoscalereslett.com/content/7/1/470 (accessed on 21 November 2022). [CrossRef] [PubMed]
- Shan, F.K.; Kim, B.I.; Liu, G.X.; Liu, Z.F.; Sohn, J.Y.; Lee, W.J.; Shin, B.C.; Yu, Y.S. Blueshift of near band edge emission in Mg doped ZnO thin films and aging. J. Appl. Phys. 2004, 95, 4772–4776. [Google Scholar] [CrossRef]
- Naik, S.S.; Reddy, V.R. Temperature dependency and current transport mechanisms of Pd/V/n-type InP schottky rectifiers. Adv. Mat. Lett. 2012, 3, 188–196. [Google Scholar] [CrossRef]
- Breitenstein, O.; Altermatt, P.; Ramspeck, K.; Green, M.A.; Zhao, J.; Schenk, A. Interpretation of the Commonly Observed I-V Characteristics of C-SI Cells Having Ideality Factor Larger than Two. In Proceedings of the 2006 IEEE 4th World Conference on Photovoltaic Energy Conference, Waikoloa, HI, USA, 7–12 May 2006; pp. 879–884. [Google Scholar] [CrossRef]
- Pollnau, M.; Gamelin, D.R.; Luthi, S.R.; Gudel, H.U.; Hehlen, M.P. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346. [Google Scholar] [CrossRef]
- Brandão-Silva, A.C.; Gomes, M.A.; Novais, S.M.V.; Macedo, Z.S.; Avila, J.F.M.; Rodrigues, J.J.; Alencar, M.A.R.C. Size influence on temperature sensing of erbium-doped yttrium oxide nanocrystals exploiting thermally coupled and uncoupled levels’ pairs. J. Alloys Compd. 2018, 731, 478–488. [Google Scholar] [CrossRef]
- Zhang, W.; Tang, N. Comparative study of ZnMgO/GaAs and ZnMgO/Si solar cells. Mater. Res. Express 2020, 7, 105903. [Google Scholar] [CrossRef]
Sample | η | Rs (Ω) |
---|---|---|
AT0 | 6.4 | 22.4 |
AT1 | 6.3 | 44.2 |
AT3 | 6.9 | 50.6 |
AT7 | 7.0 | 60.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ying, S.-W.; Chao, S.-Y.; Shih, M.-C.; Huang, C.-J.; Lan, W.-H. Thickness Study of Ga2O3 Barrier Layer in p-Si/n-MgZnO:Er/Ga2O3/ZnO:In Diode. Crystals 2023, 13, 275. https://doi.org/10.3390/cryst13020275
Ying S-W, Chao S-Y, Shih M-C, Huang C-J, Lan W-H. Thickness Study of Ga2O3 Barrier Layer in p-Si/n-MgZnO:Er/Ga2O3/ZnO:In Diode. Crystals. 2023; 13(2):275. https://doi.org/10.3390/cryst13020275
Chicago/Turabian StyleYing, Shih-Wei, Shou-Yen Chao, Ming-Chang Shih, Chien-Jung Huang, and Wen-How Lan. 2023. "Thickness Study of Ga2O3 Barrier Layer in p-Si/n-MgZnO:Er/Ga2O3/ZnO:In Diode" Crystals 13, no. 2: 275. https://doi.org/10.3390/cryst13020275
APA StyleYing, S. -W., Chao, S. -Y., Shih, M. -C., Huang, C. -J., & Lan, W. -H. (2023). Thickness Study of Ga2O3 Barrier Layer in p-Si/n-MgZnO:Er/Ga2O3/ZnO:In Diode. Crystals, 13(2), 275. https://doi.org/10.3390/cryst13020275