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Abstract: Active metasurfaces provide promising tunabilities to artificial meta−atoms with unnatu-
ral optical properties and have found important applications in dynamic cloaking, reconfigurable
intelligent surfaces, etc. As the development of semiconductor technologies, electrically controlled
metasurfaces with semiconductor materials and devices have become the most promising candi-
date for the dynamic and programmable applications due to the large modulation range, compact
footprint, pixel−control capability, and small switching time. Here, a technical review of active and
programmable metasurfaces is given in terms of semiconductors, which consists of metasurfaces
with diodes, transistors, and newly rising semiconductor materials. Physical models, equivalent
circuits, recent advances, and development trends are discussed collectively and critically. This
review represents a broad introduction for readers just entering this interesting field and provides
perspective and depth for those well−established.

Keywords: metasurface; active modulation; programmable metasurface; semiconductor materials;
diodes; transistors

1. Introduction

Metasurfaces are two−dimensional metamaterials with strongly scattering subwave-
length atoms, which can manipulate the properties of electromagnetic waves unnaturally
and have unlocked many important applications [1–9], including clocking, flat lens, per-
fect absorption, optical computing, biosensing, etc. Typically, the optical properties of
metasurfaces are set in stone post design due to their fixed spatial structures and material
properties, which is referred to as “passive”. Recently, various approaches have been
frequently investigated to tune these passive metasurfaces. Mechanical means, such as
deformable mirrors and elastic materials [10], can reconfigure the metasurface properties,
however, which is typically limited by the system complexity and size as well as mechanical
actuation accuracy. Alternatively, tunable metasurfaces can be achieved by integrating
active components with pixelated metasurface architectures, which are well−known as
active metasurfaces [4–6].

In recent years, active metasurfaces have gained concentrated interest from microwave
to optical frequencies, enabling many promising applications, such as reconfigurable in-
telligent surfaces (RIS) in communication [11,12], tunable flat lenses in optics [13], and
non−reciprocal devices in physics [14,15]. The active stimuli manipulate the amplitude,
frequency, phase, and polarization states of electromagnetic waves dynamically, which
typically requires electrical bias control [5,6]. In this regard, semiconductor−based con-
trol approaches are the most important candidate for active metasurfaces, particularly
programmable and coding ones. With the development of semiconductor materials and
fabrication technologies [2], semiconductor devices provide pixel−control capability due
to their small footprint and friendly circuit integration and achieve small switching times
down to several picoseconds due to the high electron mobility and high−speed struc-
tures. In addition, new semiconductors with high electron mobility and large−modulation
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range, have high−frequency applications. While several review papers have discussed
the developments and advances of active metasurfaces and metamaterials [4–6,10], this
work approaches this hot topic from a distinct aspect of semiconductors, including the
conventional devices, such as diodes and transistors, and newly rising materials with low
dimensions. The diodes and transistors have been widely applied in active microwave
circuits for decades [16], and were demonstrated as a beneficial method for digital coding
and programmable metamaterials in the last few years [4,11,12]. On the other hand, new
semiconductor materials bring in many interesting advances, such as high modulation
speed and nonvolatility, and enable promising applications in new spectra, such as ter-
ahertz [17]. However, their material uniformity and bias control methods remain to be
explored.

In this paper, we give a comprehensive review of the physical mechanisms of semi-
conductor materials and devices, design strategies combing both passive and active com-
ponents, practical implementations, and emerging applications. First, microwave diodes
including varactor, positive−intrinsic−negative (PIN), and Schottky diodes are discussed,
whose equivalent circuit models are clear to experienced microwave engineers. Commer-
cial packaged diodes bloom many exciting works at microwave frequencies and meet a
significant frequency limit due to their dispersive electromagnetic properties and parasitic
reactance. Next, transistors with two sets of control voltages are investigated, which can
easily work at terahertz frequencies due to the advanced semiconductor materials and
sophisticated foundry fabrication, such as high−electron−mobility transistors (HEMTs).
However, the gate bias enhances the complexity of DC control networks. In addition, we
present two−dimensional (2D) materials and phase change materials for active metasur-
faces, which show little spectral threshold and provide good modulation capability from
microwave to optical frequencies. Despite the current limits on material uniformity and
pixel−control methods, these low−dimensional materials are promising candidates for
future applications of active metasurfaces. We expect this review provides an interesting
introduction for beginners and shows depth and perspective to the researchers in this realm
from a different aspect.

2. Metasurfaces with Diodes

A diode is a two−terminal electronic device with asymmetric electrical conduction in
different directions between two electrodes, which was founded by F. Braun in 1874 [18].
Typically, most diodes are made of silicon, but other semiconductors including III–V and
the third generation semiconductors are also used. As the simplest electronic device, the
diode has been applied to control microwave circuits for many decades, such as the varactor
diode, PIN diode, and Schottky diode. Their typical structures and equivalent circuits are
well−studied in the community of microwaves, as illustrated in Figure 1. With the benefit
of commercial packages with high reliability, diodes are one of the most sophisticated and
stable technologies for active and programmable metamaterials and RIS at microwave
frequencies [6]. In addition, their simple electrode structures and bias networks are suitable
for large arrays with complicated bias control.

2.1. Varactor Diodes

The varactor diode is a kind of positive–negative (p−n) diode that works under
reverse bias voltage, as illustrated in Figure 1a, the p−n junction capacitance of which
sweeps as the applied voltage changes [18]. Under a reverse bias, the built−in electric
fields in the depletion region formed by the diffusion motion of the majority carriers are in
the same direction as the applied electric fields. As the bias increases, the diffusion of the
majority carriers becomes more difficult, the thickness of the depletion zone increases, and
thus, the junction capacitance of the varactor diode decreases. Thus, its equivalent circuit is
a voltage−controlled capacitor at microwave frequencies, as shown in Figure 1a, where
parasitic inductor and resistor may need to be considered for precise simulation [11]. The
commercially available varactor diodes packaged in Macom, Skyworks, etc., typically have
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a large package size in millimeter scales and a working frequency lower than 60 GHz [16].
In this case, they have been widely used in tunable and reconfigurable metamaterials at
microwave frequencies, enabling many important applications of radar, communication,
sensing, and imaging systems [3,19–22].
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At the beginning of the twenty−first century, varactor diodes have been investi-
gated to tune high−impedance surfaces for dynamic beam steering [23,24]. Later, a tun-
able metamaterial absorber was reported with varactor diodes and lumped resistors in
2007 [25]. The following works aim to achieve a large absorption rate and wide spectral
tuning range, including electric−field coupled−LC (ELC) resonators [19], fishnet−like
resonators [26], dual ELC resonators [27], spoof plasmonics [6], etc. In the last two
years, varactor−controlled frequency selective surface (FSS) and electromagnetically in-
duced transparency (EIT) structures have been reported with wideband frequency mod-
ulation [28,29], as shown in Figure 2a,b. The diodes are launched right on the effective
coupling capacitor of the resonant structures. Several early reviews focus on active electro-
magnetic absorbers [30,31]. The readers may refer to them if they are interested. In addition
to amplitude and frequency modulation, phase modulation of metasurfaces can be also
achieved with varactor diodes [32].

Phase modulation function enables the well−known RIS. In 2014, the first digital and
programmable metamaterials were proposed by T. J. Cui and his colleagues, whose unit cells
possess either 0 (0 state) or π (1 state) phase responses with digitally controlled diodes [33].
The coding sequence for 0 or 1 state can be programmed by field−programmable gate
array (FPGA) hardware, and different sequences achieve various far−field reflection pat-
terns on a single active metasurface. In 2015, Y. Li et al. reported a transmission−type
programmable metasurface with varactor diodes in a two−layer binary coding unit. The
rows and columns of the metasurface can be controlled simultaneously with binary cod-
ing [34]. A reprogrammable hologram was realized by switching the phase states of coding
metasurface with varactor diodes in 2017 [35]. The resonant metasurfaces show abrupt
phase change at the resonant frequency, and large−phase modulation can be obtained by a
sweeping frequency. The beam pattern of a whole metasurface can be digitally coded as
the following equation

f (θ, ϕ) = ∑N
q=1 ∑M

p=1 Epq(θ, ϕ)exp
{

j
2π

λc

[
(p− 1)dx sin θ cos ϕ + (q− 1)dy sin θ sin ϕ

]}
, (1)

where Epq (θ, ϕ) is the far−field pattern pertaining to the (p, q)th coding element computed
at the resonant frequency fc, θ and ϕ are the elevation and azimuth angles, respectively, dx
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and dy are the element periods along the X− and Y−directions, respectively, and λc is the
wavelength of the central frequency [36]. In 2020, an optically driven digital metasurface
was reported to avoid the complex electric bias networks, as illustrated in Figure 2c, where
a large−phase modulation from 0 to 180◦ is obtained on two hollow metal patches bridged
with a varactor diode [11]. In 2020, the dynamic vortex beam has been generated digitally
by using varactor−based metasurfaces through FPGA control [12].
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Figure 2. Active and programmable metasurfaces with varactor diodes. Frequency modulation of 
(a) FSS [28] and (b) EIT structures [29]. The varactor diodes change the coupling capacitance of the 
metasurfaces. (c) Hollow patch RIS with varactor diodes [11]. The diode actively modulates the re-
flection phase by sweeping the resonant frequency, where the metasurface shows abrupt phase 
change. Copyright Nature, 2020. (d) Terahertz metasurface modulated with MSM varactors [37]. 
The high−frequency MSM structure is a combination of two Schottky capacitors on the top of Al-
GaAs/InGaAs/GaAs double heterostructure. 

Figure 2. Active and programmable metasurfaces with varactor diodes. Frequency modulation of
(a) FSS [28] and (b) EIT structures [29]. The varactor diodes change the coupling capacitance of the
metasurfaces. (c) Hollow patch RIS with varactor diodes [11]. The diode actively modulates the
reflection phase by sweeping the resonant frequency, where the metasurface shows abrupt phase
change. Copyright Nature, 2020. (d) Terahertz metasurface modulated with MSM varactors [37].
The high−frequency MSM structure is a combination of two Schottky capacitors on the top of
AlGaAs/InGaAs/GaAs double heterostructure.

In sum, varactor diodes are beneficial for the frequency and phase modulation of
metasurfaces and enable resonant−type RIS by tuning its resonant frequency. However, the
commercially available varactor diodes with large package sizes cannot work at terahertz
frequencies, i.e., above 100 GHz. Metal–semiconductor–metal (MSM) device with varactor
functionalities was demonstrated to modulate the resonant frequency of SRR metasurfaces
from 0.52 to 0.56 THz [37]. This device is similar to two Schottky diodes joined together,
whose capacitance is determined by the depletion region of the Schottky junction, as
shown in Figure 2d. Its shortcoming is the more complicated and expensive semiconductor
fabrication.
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2.2. PIN Diodes

The PIN diode is composed of a layer of p−type semiconductor, a layer of intrinsic
semiconductor with low doping, and a layer of n−type semiconductor, as illustrated in
Figure 1b. Figure 1b also illustrates the equivalent circuit model of a PIN diode for on/off
switching. The resistivity of the intrinsic area is low when a forward bias is applied, which
is the on the state. The diode resistance decreases as the forward bias increases. With
reverse bias, it shows high resistance, which corresponds to the off state [38]. In contrast
to the varactor diodes, the PIN diodes are voltage−controlled resistors with parasitic
capacitors (typically for the off−state) and inductors. Currently, commercially available
PIN diodes have similar millimeter−scale package sizes as the varactor diodes and typically
operate below 100 GHz [16]. Before active metasurfaces, they have been widely used in
circuit switches, digital phase−shift circuits, and phased array antennas at microwave
frequencies [16,39–41].

Using PIN diode to tune FSS structures can be found in the early 1990s [42,43], which
is even before the concept of metamaterials was proposed. Firstly, switching between
transmitting and reflecting states with PIN diode−based FSS structures has been reported
in many papers in the antenna community [44–46]. Later, research interest diverged into
incident angle tuning [47], reflection modulation [48], and bandpass shaping [49]. The
equivalent circuit model of active FSS with PIN diodes was well discussed in [50]. In 2011,
A. R. Katko et al. reported a radio frequency (RF) limiter metamaterial with a maximum
isolation of 9.3 dB and a broad bandwidth of 18% by using PIN diodes [51]. In 2017, EIT
structures were significantly modulated by using PIN diodes, which locate in the gap of
the wire pair for continuous control of wave transmission [52], as shown in Figure 3a.
Today, active metasurfaces modulated with PIN diodes have still gained considerable
attention, such as nearly perfect reflection and transmission [53,54] ultra−wideband ab-
sorption [55,56], see Figure 3b, and ultra−wideband polarization conversion [57]. The
fantastic function of switching between transmitting and absorbing states shows great
potential in electromagnetic stealth and electromagnetic compatibility (EMC), inspiring
many interesting applications of the active or reconfigurable antenna and radome [55,58,59].
In addition, wearable antenna with PIN−controlled metasurfaces has been investigated for
medical applications on flexible substrates [60].
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Figure 3. Active and programmable metasurfaces with PIN diodes. (a) Amplitude modulation of
EIT with PIN diode [52]. (b) Ultra−wideband absorber achieving continuous amplitude modulation
with PIN diodes [56]. (c) Space−time−coded metasurfaces with PIN diodes [36]. The diode can
sweep the reflection phase between on and off states and implements the harmonic beam steering.
(d) Machine−learning reprogrammable metasurface imager with PIN diodes [39].

Currently, the PIN diode is also one of the most mature and stable technologies for RIS
applications. Similar to varactor diodes, PIN diodes can be integrated into each metasurface
pixel with subwavelength scales. Combined with the multi−layer−printed circuit board
(PCB) power supply networks, each pixel can be coded individually and digitally in quan-
tized phase states and programmed to constitute RIS with complex functions [28,33]. In
2018, L. Zhang et al. expanded the space−coded RIS configuration to space−time−coded
RIS configuration with PIN diodes, which manipulate microwaves in both space and
frequency domains [36]. Figure 3c illustrates the space−time−coded digital metasurface
and its harmonic beam steering at optimized space−time coding sequences. In 2019, a
reprogrammable metasurface imager was demonstrated by using multiple PIN diodes to
produce phase differences [39], as shown in Figure 3d. Real−time imaging was obtained
with machine−learning technologies. Later, PIN diode−based metasurface have been
proposed to transmit digital information directly in 2021, which is a completely new archi-
tecture for wireless communications without using complicated digital–analog convertor
and a series of active/passive microwave devices [40]. Frequency division/space division
multiplexing wireless communication was demonstrated with PIN diodes by using digital
coding to control the active phase states, realizing signal transmission at different access
terminals at the same time with a transmission rate of 2.5 Mbps at 9.5 GHz [12]. The
above−mentioned coding and programmable metasurfaces only achieve half−space mod-
ulation, i.e., reflection−type modulation. In 2021, full−space control of the programmable
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metasurface was reported by L. Bao and his colleagues, in which reflection and transmission
share the same metasurface aperture [61]. The unit pixel of the full−space metasurfaces is
controlled by using three PIN diodes with different bias sequences.

However, the working frequency of the active metasurfaces modulated with PIN
diodes is limited by the highest operating frequency of the PIN diode itself. For the
commercial−packaged PIN diodes, their switching performance is affected by the parasitic
reactance dispersedly, so they usually operate below terahertz frequencies [16]. Recent
research shows that the diode performance may be improved by designing compensation
structures or using new materials. In 2020, A. Singh et al. reported that the highest working
frequency of a PIN single−pole–single−throw (SPST) switch can be doubled from 6 GHz
(the limit frequency that the manufacturer states) to 10.55 GHz with an isolation range
of 40.9 dB [62]. This method may be used to reduce the influence of parasitic reactance
at millimeter wave frequencies. On the other hand, L. Liu and her colleagues designed a
heterojunction AIGaAs/GaAs PIN diode at the Ka−band, which shows good potential in
the applications of terahertz switches [63].

2.3. Schottky Diodes

Differing from the classical p−n or PIN diode, the Schottky diode is formed by a
metal–semiconductor junction, which typically has a low forward voltage drop and a
very high switching speed [64]. Typically, the n−type semiconductor has a much higher
electron concentration than the metal, so electrons move from semiconductor to metal by
diffusion. When the diffusion and drift motion of electrons reach a balance, a Schottky
barrier is formed [65]. Since Schottky diodes only use electrons as carriers without any
accumulation of minority carriers, they have a small loss and switching time and can
operate at high frequencies, including the terahertz range. Figure 1c illustrates a typical
Schottky diode and its equivalent circuit at microwave frequencies. Similarly, a Schottky
diode or Schottky junction can be described as a voltage−controlled resistor with smaller
reactance with respect to the PIN diode. In addition, Schottky diodes have been widely
used as high−frequency detectors and mixers in the front−end transmitters and receivers
at millimeter−wave and terahertz frequencies [66–70].

In 2006, H.−T. Chen and his colleagues proposed active terahertz metamaterial devices
with ELC resonators and Schottky diodes on an n−type GaAs substrate [71]. Distinguishing
from the aforementioned varactor and PIN diodes, the Schottky contact is shared by
both RF electrodes, and another ohmic electrode provides a DC bias for junction control,
which means that only the Schottky junction contributes to the active modulation. Then,
people demonstrated an SRR−based phase modulator with a similar diode configuration
at 1 THz [72]. Later, extraordinary transmission (EOT) through subwavelength metal holes
was electronically modulated with GaAs Schottky junctions [73]. In 2021, X. Liu and his
colleagues reported ultra−broadband terahertz modulation with periodic metal lines and
Schottky junctions, whose modulation speed is around 100 kHz [74]. In addition to the
III−V semiconductors with high electron mobility, Y. Zhang et al. designed active surface
plasmon polariton (SPP) metamaterials with In−Ga−Zn−O (IGZO) Schottky junctions at
millimeter−wave frequencies in 2019, which shows significant modulation depth [75], as
shown in Figure 4a. IGZO is an amorphous oxide semiconductor with a typical electron
mobility was less than 50 cm2/(V·s), which is suitable for flexible and wearable electronics.
Later, multi−frequency, multi−bit control of SRRs has been demonstrated with IGZO
Schottky structures [76]. In 2021, active THz metamaterials with IGZO Schottky junctions
was demonstrated at 400 GHz, which is approximately 100 times higher than the on/off
speeds of the IGZO Schottky diode [77], see Figure 4b. This junction configuration addresses
good high−frequency capabilities without considering the electron transfer between the
cathode and anode of the diodes.

As a high−speed rectifying diode, the Schottky diode also can be directly used to
control metamaterials with a similar configuration as the PIN diode. In 2020, R. Phon and
S. Lim reported a power−level modulated metamaterial with the Schottky diode, which is
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mounted on the central slit of the device [78]. The metamaterial functions as a bandpass
filter or a reflector at low and high power levels, respectively, as shown in Figure 4c. In 2021,
air−bridged Schottky diodes were integrated into a metamaterial circuit for phase shifting
at millimeter wave frequencies [79]. A maximum phase shift of 195◦ can be achieved at
around 41.5 GHz. In 2020, Y. Zhou et al. reported a bidirectional Fano resonance switch
in plasma metamaterials by switching the Schottky diode under forward and reverse bias
voltages [80], as illustrated in Figure 4d.
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The working frequency of Schottky diodes is continuously improved as the devel-
opment of semiconductor materials and fabrication technologies [66–70,81–83]. Schottky
diode mixer on GaAs substrate was reported at 1.098 THz in 2019 [69], and phosphating
steel Schottky diode with T−shape contact achieved a cut−off frequency of up to 9 THz
in 2022 [70]. These exciting works make Schottky diodes promising for terahertz applica-
tions, although the working frequency of the aforementioned metasurfaces with Schottky
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diodes is lower than the intrinsic cut−off frequency of the Schottky diode itself. One
disadvantage of advanced Schottky diodes is the fabrication difficulties and high cost due
to nanometer−scale metal air bridges [64]. We expect more works on Schottky−functioned
active and programmable metasurfaces in the next few years.

3. Transistor Based Metasurfaces

The transistors are a kind of three−terminal solid semiconductor devices with many
important functions [84], such as amplification [85], switching [86], and signal modula-
tion [87], which typically include bipolar junction transistors (BJTs) and field−effect transis-
tors (FETs) at high frequencies. To actively modulate metasurfaces, the transistors typically
functioned as a switch controlled by the gate bias [16,84]. Figure 5a illustrates a typical
configuration of a HEMT and its equivalent circuit model, where the two−dimensional
electron gas (2DEG) channel can be switched between on and off states. It can be seen
that the circuit model of a transistor is more complicated than the diodes. The key circuit
element of the channel is a voltage−controlled resistor with parasitic reactance.

Due to the short channel length, transistors have been seldom applied for active meta-
surfaces at microwave frequencies. In 2017, A. Li et al. reported a tunable high−power
surface wave absorber on a multilayer PCB substrate with soldered transistors at 2.4 GHz,
achieving a sharp absorption response [88]. The gate bias provides an additional degree
of freedom for absorption control at a cost of an additional circuit layer. In contrast, semi-
conductor FETs (particularly HEMTs) have gained considerable attention in the terahertz
realm. In 2011, D. Shrekenhamer and his colleagues designed a terahertz modulator based
on metamaterials and HEMTs on GaAs substrate, whose modulation speed is as high
as 10 MHz due to the high mobility of 2DEG [87]. Later, gallium nitride (GaN) HEMT
pushes the modulation speed up to a GHz range on a composite metamaterial with a
double−channel heterostructure [89,90], as illustrated in Figure 5b. In 2021, W. Pan and his
colleagues reported active metasurfaces on silicon carbide (SiC) substrates with HEMTs
at 0.22 and 0.34 THz [91]. The resonances at different frequencies can be independently
modulated by using two HEMTs in each metasurface pixel. In addition to the GaAs or
GaN HEMTs, other semiconductors and transistors have also been investigated for this
application. In 2015, F. Ren and her colleagues proposed a hybrid metamaterial based on
the IGZO thin−film transistor (TFT) array, whose resonant mode is modulated at 0.76 THz
by changing the conductivity of the transparent oxide layer [92]. Later, W. Xu et al. de-
signed an active metamaterial device with amorphous−IGZO TFTs at 0.75 THz [93]. Its
absolute modulation range is less than one percent with a bias voltage up to 24 V, as shown
in Figure 5c. Silicon is another promising choice due to the sophisticated fabrication tech-
nologies and multilayer circuits. In 2017, a terahertz absorber with CMOS transistors was
reported in [94]. In 2021, active SRRs fabricated with CMOS technologies were reported
with frequency modulation capabilities [95].
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model. (b) Terahertz metasurfaces modulated with HEMTs on GaN substrate [89]. Its modulation
speed is up to 1 GHz. Copyright American Chemical Society, 2015. (c) IGZO TFT−based metasurfaces
at 0.75 THz [93].

Differing from the diodes, transistors are more suitable for terahertz metasurfaces due
to the mature semiconductor fabrication technologies with high precision and compact
integration. Among the above semiconductors, GaAs and GaN address advances in high
frequency and high speed, silicon may be suitable for RIS applications due to the multilayer
circuits in CMOS fabrication, and oxide semiconductor shows good flexibility and low cost.
However, their gate electrode makes the design of the bias network more complex, which
may also induce mutual coupling in the subwavelength scales.

4. Active Metasurfaces with Two−Dimensional Materials

In addition to the relatively bulky semiconductors, 2D materials have gained a great
interest in active metasurfaces recently due to their promising electric, optical, thermal,
and mechanical properties [96–98]. Two−dimensional materials consisting of a single layer
of atoms, such as graphene [99–101], HBN [102], MoS2 [103], WS2 [104], etc., may achieve
high carrier mobility and tunable band gap and thus show great modulation capability
from microwave to optical frequencies. The topic of 2D materials is too broad to cover in
limited pages. To focus our scope on active metamaterials, we will mainly discuss graphene
in this section, which to our knowledge is the most widely used two−dimensional material
for active metamaterials. Regarding the other kinds of 2D materials, please refer to [17,105]
for your interest.

Graphene, a crystalline allotrope of carbon atoms in a 2D honeycomb lattice, is the
first kind of 2D material, the strongest material known, and a superb conductor of both
heat and electricity [106]. In addition, graphene is a promising candidate for flexible
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applications [107–110]. The conductivity of graphene is theoretically determined by the
Kubo formula as

σ(ω, Γ, µc, T) = σintra(ω, Γ, µc, T) + σinter(ω, Γ, µc, T)

σintra(ω, Γ, µc, T) = −je2kBT
π}2(ω−j2Γ)

[
µc

kBT + 2ln
(

exp
(

µc
2kBT

)
+ 1
)]

,

σg,inter(ω, Γ, µc, T) = −je2

4π} ln
(

2|µc |−(ω−j2Γ)}
2|µc |+(ω−j2Γ)}

)
,

(2)

where ω, e, Γ, µc, T, kB, and h̄ are the angular frequency, the charge of the electron, dispersion
rate, chemical potential, temperature, Boltzmann’s constant, and reduced Plank’s constant,
respectively [105]. It can be seen that the complex conductivity of graphene is tuned by
the chemical potential, which can be controlled by the applied gate bias, as shown in
Figure 6a. The interband term dominates in the visible and near−infrared range, and the
intraband term dominates at far−infrared frequencies and below. In an ideal case, graphene
conductivity shows a larger modulation range at microwave and terahertz frequencies than
at optical frequencies. Figure 6b illustrates the typical gate configurations for sweeping
the chemical potential, i.e., top gate, bottom gate, and electric double−layer capacitor
(EDLC) [97]. Top gate and bottom gate configurations are commonly used for TFTs, which
is similar to the gate configuration in Figure 5a. Due to the chemical doping, the Dirac point
of graphene is typically not right at 0 V. In this case, the gate dielectric should be as thin as
possible to reduce the applied gate voltage. In contrast, ion gel or liquid forms an EDLC
for gating graphene, which is more adaptive than the top and bottom gates. However,
the graphene modulation speed is limited by the moving speed of ions in EDLC, and the
dielectric constant of ion gel and liquid needs to be considered for the accurate design of
metasurfaces. To improve the modulation capability, another graphene layer can be used
to replace the ground electrode in EDLC, as shown in Figure 6c. The modulation response
time is around 0.3 s [111].
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Since graphene was founded in 2004 [110], it has been investigated for modulation
devices from microwave to visible frequencies based on its sweeping conductivity [111,112].
In 2011, L. Ju et al. reported graphene plasmonic metamaterials with micro−ribbon arrays,
which can be tuned over a broad terahertz range by changing the chemical potential [113].
In 2012, a metal−graphene hybrid metasurface was demonstrated with amplitude and
phase modulation at terahertz frequencies [114]. The characterized modulation speed is
100 kHz. Later, graphene metasurfaces and metal–graphene hybrid metasurfaces gained
considerable attention. Many adaptive absorbers with graphene have been reported, reveal-
ing a high absorption rate and broad bandwidth [115–119]. In 2021, J. Zhang et al. proposed
a graphene−based optically transparent and flexible metasurface, whose absorption rate
is up to 90% from 7 to 18 GHz [98], as shown in Figure 7a. Frequency modulation of
graphene−based hybrid metamaterials and all−dielectric metamaterials was reported
in [120–123]. In 2022, M. Feng et al. reported active hybrid surface plasmon polaritons,
whose cut−off frequency and slow−wave phase are significantly modulated by using
graphene grooves [123], as illustrated in Figure 7b. Modulation speed is another big con-
cern for graphene modulation. In 2015, hybrid SRRs with graphene surface plasmons
achieved a modulation depth of 60% and a modulation speed of 40 MHz [124]. Later, Hy-
brid graphene metasurfaces for mid−infrared light modulation were reported by B. Zeng
and his colleagues [96], as shown in Figure 7c. The characterized modulation depth is as
large as 90%, and the modulation speed exceeds 1 GHz. In 2021, G. Choi et al. reported a
graphene−based active metasurface with a modulation speed of up to 500 GHz [125].

Furthermore, active metasurfaces with graphene have been investigated for various
wireless applications. The hybrid metasurfaces in Figure 7c have been used for single−pixel
imaging in the mid−infrared range in 2018 [96]. In addition to imaging, graphene metamate-
rials can be used to improve the performance of antennas and reconfigure antenna properties,
such as radiation patterns, polarization states, and beam steering angles [126–129]. In addition,
graphene metasurfaces have been proposed for binary coding. In 2021, Y. Gong and his
colleagues simulated metal–graphene metasurfaces with two resonances at 0.85 and 1.14 THz
modulated individually [130], which enables 00, 01, 10, and 11 coding, as shown in Figure 7d.
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Although graphene−based metasurfaces address high modulation speeds up to
1.83 ps and are a good promise in wireless systems [125–129], material uniformity is a
big problem to solve, which is fatal for microwave metasurfaces with large dimensions.
Various transfer technologies have been developed to improve the graphene quality, such
as paraffin−assisted transfer [131]. Another concern is how to control the pixel of graphene
metasurfaces independently, which inhibits the applications of programmable metasurfaces
and RIS.

5. Phase Change Materials Metasurfaces

Phase change materials (PCMs) are a kind of substance that release and absorb heat
energy when their phase changes, which is typically called the latent heat of the phase transi-
tion [132]. The electronic and optical properties of PCMs, such as germanium−antimony−
tellurium (GST) [133], vanadium dioxide (VO2) [134], and gallium (Ga) [135], change dras-
tically under an amorphous−crystalline phase transition, which enables unity−scale index
changes for active metamaterials. Therefore, PCMs have been considered a promising
candidate to develop reconfigurable metasurfaces [10,136]. Their phase transition character-
istics can be controlled quickly with temperature, current, and light, and their modulation
may be non−volatile [136–138].

5.1. Vanadium Dioxide

VO2 is a kind of PCM widely used in the terahertz realm, whose phase transition
temperature is typically around 68 ◦C [136]. It has a monoclinic crystal structure below this
temperature and a tetragonal structure above this temperature, which corresponds to an
insulator−to−metal phase transition at the phase transition temperature [139], as illustrated
in Figure 8a. During the phase transition, the conductivity of VO2 may vary several orders
of magnitude under thermal heating, electrical biasing, and optical excitation. Typically,
the thickness of VO2 films is less than 200 nm, i.e., much smaller than the wavelength, so
these films are somewhat transparent even in the metallic state [140].
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Due to the large conductivity variation, VO2 has been applied in the applications
of active metasurfaces in the microwave, terahertz, and infrared regions [10,136]. The
most fundamental phase−transition mechanism is thermal heating, which is typically
stable and simple, but neither fast nor precise. Early in 2010, M. Seo et al. reported
active terahertz nanoantennas with VO2, achieving an ultra−broad bandwidth and a huge
extinction ratio of over 10,000 [140]. Later, EOT in λ/100,000 nanogaps was modulated with
VO2 film [141], and an ultrathin quarter−wave plate controlled with VO2 was reported
in [142]. In 2018, S. Wang et al. reported a chiral metamaterial with periodic circular
holes and VO2 film, which controls the circular dichroism or polarization rotation of
terahertz waves [143], as shown in Figure 8b. In addition to thermal heating, electrical
bias is another convenient choice with fast switching speed down to nanoseconds. In 2011,
Y.−G. Jeong et al. represented the slot antenna array fabricated on a thin VO2 film with a
98% modulation range for the wave transmission [144]. Later, scattering−based modulation
has been demonstrated in the bowtie antenna array connected with the wire grid [145], as
depicted in Figure 8c. Optical excitation can switch the phase states of VO2 in ultrafast
response time without using any bias lines [146], see Figure 8d. However, due to the small
film thickness, plasmonic structures may be desired to enhance the optical pump [136].
Regarding the modulation functions, amplitude modulation of transmission and reflection
have been reported in [137,138,147–150], and frequency and phase modulation have been
investigated in [150–157] in the past three years.
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Figure 8. Dynamic metasurfaces with VO2. (a) A rewritable canvas with laser−controlled metasur-
faces [139]. The resistance of VO2 sweeps as the temperature changes. Copyright John Wiley and
Sons, 2018. (b) Thermally controlled chiral metasurfaces [143]. (c) Electrically controlled nanoantenna
arrays with wire grid [145]. (d) Optically controlled metasurfaces for amplitude and frequency
manipulation [146]. (e) Active SRR metasurfaces integrated with VO2 for holography imaging [153].
Copyright John Wiley and Sons, 2019.

Active metasurfaces with VO2 have found many important applications, such as
holography and beamforming. Programmable metasurfaces have been demonstrated for
independent manipulation of dual−polarized terahertz waves with VO2 microwires [158],
beam scattering patterns with VO2 cut−wires [159], and wavefront and polarization state
with C−shaped metal−VO2 hybrid resonators [160]. In 2019, holographic imaging has
been demonstrated by using VO2−based metasurfaces with temperature control [153], as
illustrated in Figure 8e.

5.2. Chalcogenides

Telluride−based chalcogenide materials show non−volatile and reversible phase
change between crystalline and amorphous states, such as germanium tellurium (GT)
and germanium antimony tellurium (GST), which have been widely investigated for
active metasurfaces at microwave and infrared frequencies [10,136]. The crystalline and
amorphous states address significant differences in electrical and optical properties, such as
conductivity and permittivity. The temperature−dependent resistivities of GT, Ge2Sb2Te5,
Ge2Sb2Se2Te3, and Ge2Sb2Se4Te1 are reported in [161,162], respectively, as illustrated in
Figure 9a,b. The amorphous state transfers to the crystalline state at the crystallization
temperature, and the crystalline state gets disordered at the melting temperature [163]. This
unique phenomenon enables the commercial application of non−volatile electronic data
storage, such as Intel’s OptaneTM memories. In addition, optical memories can function in
a similar way by using optical pulses [136].

Active metasurfaces with chalcogenide materials have gained considerable interest
in recent years. In 2015, Q. Wang et al. reported phase−change canvas, lens, and mul-
tiplexing devices with Ge2Sb2Te5 [164], and C. H. Kodama et al. demonstrated tunable
SRRs using GT [165]. Nonvolatile switchable metamaterials operating in the ultraviolet
to the high−energy visible spectral range were reported for the first time in 2019 [166].
In the same year, P. Pitchappa et al. proposed a Ge2Sb2Te5−integrated terahertz meta-
material switching with spatial and temporal selectivity [167], as shown in Figure 9d.
A reconfigurable all−dielectric metalens was reported with a large phase modulation
range of 2π and diffraction−limited performance in [13], achieving tunable focal length,
see Figure 9c. In 2022, thermally switchable bi−functional metasurfaces with Ge2Sb2Te5
achieve broadband polarization conversion and absorption [168], as illustrated in Figure 9e.
The polarization conversion ratio is larger than 90% from 0.6 to 1.15 THz. Figure 9f shows
conjugated bilayer chiral metamaterials integrated with Ge2Sb2Te5, revealing an ellipticity
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modulation of ~36◦ and a polarization plane rotation of ~32◦ at 0.73 THz [169]. Coding and
programmable metasurfaces with GT materials have been reported with reconfigurable
capabilities for beam control in 2022 [161], as shown in Figure 9a. More related works on
active metasurfaces with chalcogenides can be found in [170–172].
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Figure 9. Chalcogenides and active metasurfaces with chalcogenides. (a) Programmable metasur-
faces with GT [161]. The phase transition temperature is ~185◦. Copyright John Wiley and Sons,
2022. (b) Reconfigurable optical resonator switch with Ge2Sb2Se4Te1 and temperature dependence of
resistivity of Ge2Sb2Te5, Ge2Sb2Se2Te3, and Ge2Sb2Se4Te1 [162]. (c) Reconfigurable all−dielectric met-
alens with diffraction−limited performance controlled by Ge2Sb2Se4Te1 [13]. (d) Active metasurfaces
with Ge2Sb2Te5 at terahertz frequencies [167]. Copyright John Wiley and Sons, 2019. (e) Broadband
polarization converter with cut−wire metamaterials and Ge2Sb2Te5 [168]. (f) Nonvolatile chiral
metasurface switches with Ge2Sb2Te5 [169].

As a kind of newly rising PCMs, chalcogenides meet many problems to be solved. Tak-
ing the well−studied Ge2Sb2Te5 for instance, the optical constants and amorphous phase
properties show considerable differences between different papers and various preparation
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methods [163]. In addition, intermediate states comprising mixtures of amorphous and
crystalline phases may be formed sensitively depending on the treatment conditions, which
results in inconstant electrical and optical properties. The filamentation phenomenon may
hamper uniform crystallization in the electrical bias method [173].

6. Conclusions and Prospects

This review represents a comprehensive summary of active and programmable meta-
surfaces from the aspect of semiconductor devices and materials, discusses the physi-
cal mechanisms, electrical circuits, device configurations, and recent developments, and
shows the pros and cons of various approaches as well as their applications. Currently,
state−of−the−art works have been done in multiple control devices with different stimuli,
3−D structures, non−reciprocal physics, low−dimensional active materials, and digital
devices, which have found promising applications in RIS [5], holography [7], cloaking [10],
and optical computing [9]. Active and programmable metasurfaces should be important
technologies for the rising 6G communication, augmented reality, and artificial intelligence
in the near future. It is beyond our capacity to cover all important works reported and
foresee every new trend in the limited pages so that we will concentrate our prospects on
the aforementioned contents in this review.

Currently, varactor and PIN diodes encounter significant frequency limits, which may
be overcome by using new semiconductor materials with high mobility, small devices with
a short electron transfer length, as well as new structures for similar functionalities, such as
the MSM varactor with dual Schottky junctions [37]. Schottky diodes naturally have high
working frequencies up to the terahertz range. However, the advanced Schottky diodes
have considerable fabrication difficulties and, thus, may be too expensive for large array ap-
plications. Transistors including HEMTs and TFTs address high−frequency capabilities and
high controllability. However, the additional gate electrode induces extra complexity for the
design of metasurfaces and biasing networks. In addition, these high−frequency transistors
are expensive for large metasurface arrays. Notably, most programmable metasurfaces
with semiconductor devices are based on PCBs, which can provide multilayer circuits for
the metasurfaces and bias networks. However, most of the PCB materials and commercial
fabrication technologies cannot support terahertz applications due to the high−loss tan-
gent and large manufacturing resolutions [174,175]. In this regard, PCB−compatible oxide
semiconductors, such as IGZO [75–77], may find important applications in high−frequency
programmable metasurfaces.

On the other hand, material uniformity, repeatability, and modulation consistency are
important challenges for the newly rising semiconductor materials. Mechanically exfoliated
graphene may exhibit a high electron mobility up to 200,000 cm2/(V·s) [176,177]; however,
the dimensions of which are typically less than tens of micrometers. Chemical vapor depo-
sition (CVD) graphene has a large area with wrinkles, defects, and double−layer overlaps,
whose electrical and optical properties are not as uniform as the exfoliated graphene. PCMs
may achieve nanosecond modulation speed with electrical biasing. However, the crystal-
lization in phase transition may be not uniform, and filamentation needs to be avoid in
practical applications [162]. In addition, the bias networks for graphene and PCMs are not
as powerful as that of the diode−based programmable metasurfaces, which significantly
limits their RIS applications. Even so, graphene and PCMs are promising for the future
active and programmable metasurfaces. We hope that more work will be reported to find
good solutions in the near future.
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