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Abstract: The compatibility of memristor materials with advanced complementary metal-oxide-
semiconductor (CMOS) technology is a key factor for microelectronics element base manufacturing.
Therefore, we continued studying previously fabricated CMOS-compatible Ni/Si3N4/SiO2/p+-Si
samples. We approximated volt-ampere characteristics (VAC) at different temperatures using the
general form of the spatial charge-limiting current (SCLC) equation assuming exponential and
Gaussian trap distribution within the band gap of Si3N4. Our approximation demonstrated better
experimental data matching compared to previous work, where the approximation was based on
the uniform trap distribution law. Further, we performed another additional sample measurement
set of the samples to evaluate the parameters of the low-resistance state (LRS) variations at different
temperatures. Analysis of these measurements allowed us to estimate the temperatures at which the
samples will retain LRS for 10 years.

Keywords: memristor; silicon nitride; trap distribution; retention

1. Introduction

Modern and widely used computing devices are based on von Neumann architectures.
They have a fundamental rate limitation for data transfer between dynamic random-access
memory (DRAM) and the central processing unit (CPU) or its coprocessors. The CPU and
memory are mostly fabricated using the CMOS process, which is the basis of the entire
microelectronics industry. To eliminate this limitation related to external DRAM, new
approaches propose to relocate computations from the entire CPU directly into the memory
array in order to eliminate extra data pass. The most advanced of them are in-memory
computing architectures, where input data are loaded, transformed, and stored in the same
memory array. Such architectures use a non-volatile ultra-high-speed element base built
on new principles—ReRAM (Resistive RAM), FRAM (Ferroelectric RAM), PCRAM (Phase
change RAM), and others [1,2].

The memristor is considered one of the most efficient devices for in-memory com-
puting. It was predicted by Leon Chua in 1971 [3] and was first implemented by Hewlett
Packard in 2008 [4]. It typically consists of top and bottom electrodes separated by a dielec-
tric. In a modern interpretation [5,6], the memristive effect refers to cyclic and reversible
transitions between a high-resistance state (HRS) and a LRS. Such transitions occur under
the influence of both a short voltage pulse and a smooth voltage change from one range
boundary to another.

Limitations of memristors are caused by the complexity of simultaneously obtaining
minimum acceptable values for all consumer parameters, including stability of the resistive
state in time (retention), the durability of the number of switches (endurance), bit depth,
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and accuracy of their setting (plasticity), and parameters of pulse duration and amplitude
during reading/writing [7,8].

Various physical effects can explain retention in memristors. When an electric field is
applied to a dielectric, positive and negative charges shift. One of the mechanisms for the
accumulation of such charges is various impurities. Depending on the dielectric material,
its band gap may contain a set of energy levels where the charge carriers are trapped. Such
trapping is due to the presence of impurities in a particular dielectric material. The further
from the bottom of the conduction level the trapped carriers are, the higher activation
energy is necessary for their release. Traps with energy levels located more than 1 eV below
the bottom of the conduction zone are considered deep traps [9].

Therefore, impurities with deep energy levels significantly affect the concentration
of trapped charge carriers, hence the operational characteristics of the memristor. These
include the VAC and the HRS or LRS retention times. Determining the parameters of
captured charge carriers’ distribution of energy levels allows for estimating their actual con-
centration. Thus, the characterization of impurities with deep energy levels is a necessary
technological task.

Since the beginning of the 20th century, scientists have been developing and studying
various models of the charge transfer mechanism for dielectrics, and then for memris-
tors [5,10–14]. Some of the prominent models are the Frenkel model, the Schottky model,
the Hill–Adachi model, the Makram–Ebeid and Lanno models, the Nasyrov–Gritsenko
model, the SCLC model, and others.

In our work, we further studied the behavior of a sandwich structure with Ni as
the top electrode and a bilayer dielectric of Si3N4 and SiO2 placed on a p-type silicon
substrate. This structure was designed as a part of the study [13]. In [15], co-authors of this
paper investigated the endurance of such structures and estimated it to be in the range of
5000–7000 resistive switching.

We noticed that in [13] some of the structural parameters obtained from the electrical
response model are inconsistent. Therefore, we reviewed the electrical response model
considering different trap distribution laws in the band gap. Then, we evaluated the
stability of the resistive state over time. We reviewed the previously described electrical
response model for Ni/Si3N4/SiO2/p+-Si structure and proposed a new approximation
model using the SCLC equation with the Gaussian distribution of traps.

The contributions of this work are as follows:

• We reviewed the previously described electrical response model for Ni/Si3N4/SiO2/p+-Si
structure and proposed a new approximation model using the SCLC equation with a
Gaussian distribution of trap states;

• Using the mean absolute percentage error (MAPE) algorithm, we showed that the new
approximation model provides a better experimental data fit;

• We calculated and analyzed the Gaussian distribution of trap states at different tem-
peratures for the LRS and HRS of the studied structure;

• We measured memristor resistance over time at different elevated operating tempera-
tures and evaluated conditions for 10-year LRS retention.

The paper content is organized as below. The Section 2 briefly provides the related
research on the SCLC model, laws of distribution of trap states, and operation-specific
memristors. The Section 3 includes a brief description of the fabricated structure. Then,
the parameters of the SCLC model and expressions for the exponential and Gaussian
law of trap distribution in the band gap were provided. To estimate the retention time
of the LRS, Arrhenius’s law was chosen, and the temperature-dependent LRS resistance
variation with time was determined. The Section 4 includes the approximation of VAC with
consideration of the exponential and Gaussian law of trap distribution in the LRS and HRS
of the memristor. An estimation of temperature conditions for LRS retention over 10 years
was conducted as well. Finally, the Section 5 summarizes our research and includes an idea
for further investigation.
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2. Related Work

Its state retention capability makes the memristor an important element in hardware
computing. On the one hand, a memristor can function as a memory cell. In this case, HRS
and LRS are interpreted as logical 0 and 1. The transition processes from HRS to LRS and
vice versa (SET and RESET) are called resistive switching.

On the other hand, the memristor limits the current flowing through it. In this case,
the memristor serves as the electrical counterpart of the synaptic weight in calculating
the output of the artificial neural network. Preserving the resistive state allows applying
memristors in crossbars to simulate synaptic weights. After weighing the input voltage at
the memristor, the current is summed with similar ones from parallel circuits in a crossbar
column. By Ohm’s and Kirchhoff’s laws, a matrix multiplication may be performed directly
in the neural network [16–18].

In order to build a model that predicts memristor behavior we examined the electrical
characteristics of fabricated memristive structures and tried to match them with mathemat-
ical descriptions. Such mathematical models are applied to analyze the performance of a
memristor. If the memristor meets the requirements, this mathematical model is used in
computer-aided design (CAD) software for circuit development.

However, before analyzing the memristor function mathematically, it is necessary to
determine the physical principles of its operation. There are currently two main hypotheses
about mechanisms responsible for resistive switching in memristors. The diffusion of active
electrode ions or oxygen vacancies in the dielectric explains the filamentary mechanism in
the LRS state. During the transition to HRS, the filament is reversibly destroyed by thermal
effects. In the non-filament mechanism, the conductive channel is implemented through
localized states in the dielectric. One version of this mechanism is the filling (trapping) and
emptying (detrapping) of trap centers (Figure 1) [19,20].
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Figure 1. A simplified diagram to explain electron trapping. Ec—the bottom of the conduction band;
Et—activation energy of deep traps; EF—Fermi level; EV—the top of the valence band. VS is the
voltage applied to the electrodes of the structure. The energy range between EC and EV is called the
band gap (Eg). The energy levels for shallow traps as well as hole trapping are not shown.

Traps are impurities and structural defects that capture charge carriers during charge
transfer [21]. The charge carriers are electrons and holes. Figure 1 shows a combined and
simplified representation of the energy diagram and structure of an electrode-dielectric-
electrode memristor. Electrons provide the electric current when voltage is applied to the
memristor. Their energy level is equal to the conduction energy EC, which we take as the
zero point of reference.

Traps in a dielectric can be located at different energy levels. The so-called activation
energy is the minimum required to release a carrier from the trap into the conduction zone.
Traps are considered deep traps if the activation energy is greater than 1 eV; otherwise, they



Crystals 2023, 13, 323 4 of 13

are called shallow traps. Since the traps are located at several adjacent energy levels, the
distribution of the traps over the levels can be described by the known distribution laws.

For example, the shallow traps may be mostly located near the Ec level, with their
number at each successive energy level decreasing according to an exponential distribution
law. Therefore, both the capture and release of charge carriers by such traps require less
energy than in the case of deep traps. Deep trap levels can be distributed across energy
levels around the central value of Et according to a Gaussian law or an exponential law [19].
Releasing charge carriers from deep traps requires more activation energy than releasing
them from shallow traps. Therefore, to improve the retention of resistive states, materials
with the highest concentration of deep traps should be selected.

Dielectric materials contain very few free charge carriers. The conductivity of such
materials is managed by the injection of free carriers. Excess charge carriers create a space
charge that affects the current flow through the dielectric. This current is called the space
charge limited current (SCLC). Mott and Gurney were the first to derive the SCLC model
for trap-free dielectrics. Later, various authors enhanced the SCLC model to account for
traps present in dielectric materials. When traps are occupied with the injected carriers, as
expected, the current density is lower than in the trap-free case. The shape of VAC varies
depending on the trap state distribution in the band gap [22,23].

The CMOS process is the basis of modern microelectronic manufacturing [24]. There-
fore, it is important to use compatible materials in memristor development [25,26]. Silicon
oxide SiO2 and silicon nitride Si3N4 are dielectrics widely used in this technology [9].

The electronic structure of these dielectrics has similar well-studied memristive prop-
erties that allow the materials to be applied as memristive functional layers. Silicon oxide
has a low trap concentration, whereas silicon nitride has a high level of electron and hole
trap concentration (≈1019 cm−3) [17]. The trap energy in Si3N4 is concentrated in the range
of 1 . . . 1.5 eV and is shifted to the conduction zone [9]. Deep traps in the dielectric layer
of Si3N4-based memristors provide an information storage time of about 10 years at a
temperature of 358,15 K (85 ◦C) [17].

Numerous papers [18,27–29] describe various applications of SiO2, Si3N4, and non-
stoichiometric SiNx for memristor fabrication. In some cases, SiO2 was not used, and
silicon nitride thicknesses ranged from about 30 nm in thick films up to about 5 nm in thin
film samples. To achieve resistive switching in thick film devices, it is necessary to use
bipolar voltage with an amplitude of about±20 V. Such voltage is not applicable in practice;
however, the obtained results are easily scalable to the case of thin films. In addition,
the performance of memristors depending on different top electrode materials has been
extensively investigated [5,13,27,30].

The analysis of memristive devices allows us to distinguish the following states [6]:
the virgin (pristine) state, LRS, and HRS after fabrication. In some cases, an intermediate
state between LRS and HRS was also observed [5,6]. With the application of voltage, the
state of the memristor changes. The irreversible transition from the virgin (pristine) state to
LRS or HRS is called the electroforming or forming process. VAC is used to represent these
processes [15,31], using the decimal logarithm of the absolute value of the current.

There are three basic types of resistive switching [1]: unipolar, bipolar, and threshold.
In the case of unipolar switching, the VAC is symmetrical concerning the polarity of the
applied voltage, so set and reset can occur at the same polarity. The forming voltage is
usually higher than the LRS and HRS junction voltages. After forming, the memristor
switches to the LRS state. The threshold switching memristor also has a symmetrical VAC,
but the LRS is only maintained when the bias voltage is applied. In bipolar switching
memristors, the waveform is asymmetrical to the applied voltage, so a bipolar voltage is
required. After forming, a bipolar switching memristor can switch to either LRS or HRS [6].
The maximum device current is limited to prevent irreversible dielectric breakdown.

Memristors made in the form of metal-insulator-metal (MIM) structures can be in-
tegrated directly into the multilayer metallization system, such as HfO2-based memris-
tors [32]. Memristors can be built on metal-insulator-semiconductor (MIS) structures as
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well. The implementation of a monocrystalline semiconductor layer in a multilayer metal-
lization structure of an integrated circuit is unlikely. Therefore, memristors of this type are
fabricated on semiconductor substrates. Arrays of such memristors can either be fabricated
as a part of the processor itself or formed on a silicon interposer for 2.5D integration or on a
separate silicon substrate for subsequent 3D integration. [33].

3. Materials and Methods
3.1. Fabrication of the Ni/Si3N4/SiO2/p+-Si Structure

The Ni/Si3N4/SiO2/p+-Si structure considered in this paper was presented earlier in
the article [13] (Figure 2). With the consent of all authors, we used their data for further
analysis and samples for additional measurements. Below is the summary of the structure
fabrication process.
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A silicon p-type substrate with a resistivity of 0.005 Ohm·cm was used. Then, a 2 nm
thick SiO2 layer was formed by thermal oxidation. Next, a 4 nm thick Si3N4 film was formed
by low-pressure chemical vapor deposition (LPCVD) with a mixture of dichlorosilane
(SiH2Cl2) and ammonia (NH3) in a ratio of 1:3 and at 700 ◦C.

A highly doped p+-type layer was formed in a silicon substrate. First, ion implantation
with heavy boron difluoride BF2

+ ions with an energy of 40 keV and a dose of 8 × 1014

cm−2 through the previously obtained dielectric layers was performed. Then, the impurity
was activated by rapid thermal anneal performed at 1030 ◦C. Finally, the top Ni electrodes
were deposited using a thermal evaporator through a shadow mask.

3.2. The SCLC Model and Laws of Trap Distribution for the VAC Approximation

In [13], one of the co-authors of this paper used the Cascade Summit 12000B-AP probe
station (Cascade Microtech, Beaverton, OR, USA) and Agilent B1500A semiconductor
analyzer (Keysight Technologies, Santa Rosa, CA, USA) and then obtained the following
results for the investigated structure:

• The absence of the need for a forming operation;
• Reproducible bipolar switching (Figure 3a);
• VACs measurement at temperatures of 298.15 K, 348.15 K, and 398.15 K (Figure 3b);
• VAC approximation using the SCLC model with uniform distribution of traps [10]

described by following Equations (1)–(4);
• Structure parameters obtained from the approximation, including the effective radius

of 100 µm in HRS and 46 nm in LRS.

IUni = IOhm + ISCLC = Seµn
U
d
+ S

9
8

µεε0θ
U2

d3 , (1)

n =
2Nd

1 +
√

1 + 4gNd
Nc

exp
(

Ea
kT

) , (2)
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Nc = 2
(

2πm∗kT
h2

)3/2
, (3)

θ =
1

1 + Nt
Nc

exp
(

Wt
kT

) , (4)

where IOhm is the ohmic current, ISCLC is the SCLC current, S is the area involved in charge
transfer, e is the charge of an electron, µ is the electron mobility, U is the applied voltage, d
is the dielectric thickness, ε is the static dielectric constant, ε0 is the vacuum permittivity,
n is the free electron concentration inside the dielectric layer, Nd is the concentration of
donors, g is the degeneracy coefficient, Ea is the donor activation energy, k is Boltzmann’s
constant, T is temperature, m∗ is the effective mass of the electron, h is Planck’s constant, θ
is the free charge carrier fraction of all injected carriers (free and trapped), Nt is the trap
concentration, Nc is the effective density of states, and Wt is the trap energy.
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Figure 3. VACs of memristors: (a) VAC of one of the switching cycles at room temperature; (b) VACs
at three temperatures for HRS and LRS.

The current is determined by current density multiplied by the effective area in charge
transfer S. The effective area of a circular shape is characterized by its effective radius.
Reducing the effective radius leads to a resistance increase. The effective radius in the HRS
must be smaller than in the LRS. The results in [13] are not consistent with this statement.
Therefore, we had to refine the approximation model by considering the exponential and
Gaussian distribution of traps for the SCLC model [14,34].

We multiplied the area involved in the charge transfer by the current density from [22]
to obtain the current value (5). It is possible to obtain the distribution parameters for the
exponential and Gaussian laws after calculating the parameter l using Formulas (6) and (7).

IGau,Exp = Se(1−l)µNc

(
2l + 1
l + 1

)l+1( lεε0

(l + 1)Nt

)l U(l+1)

d(2l+1)
, (5)

lExp =
Tc

T
, (6)

lGau =

√
2π

16
σt

kT
, (7)

where l—is the parameter that is equal to lExp in the case of exponential distribution and
lGau in the case of Gaussian distribution, Tc—is a temperature parameter that characterizes
the exponential trap distribution, the so-called “Characteristic Temperature of Trap Distri-
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bution”, and σt—is the standard deviation of the Gaussian distribution. This Equation (5)
at l = 1 looks like ISCLC in (1) for the uniform law, but uses the multiplier Nc/Nt instead
of θ.

In [5], it is determined that in the case of high voltages for HRS and the exponential
law of the trap distribution, the current I is presented by the sum of Equations (1) and (5).
At that, Nc is applied instead of Nt in the denominator of Equation (5).

In Section 4.1, we approximated the VAC branches in Figure 3b using expression (5)
by adjusting the effective radius and the parameter l, which determines the slope angle of
the approximated VAC. Then, using MAPE, we selected the more accurate version of the
approximation from those calculated by expression (1) and expression (5).

3.3. Determining the State Retention Time for LRS

There are various methods for estimating the storage time of the resistive states that
do not require significant time expenditure. A common and well-proven method [35] uses
the Arrhenius Equation (8), which involves testing the sample at elevated temperatures.

t ∝ exp
(

Ea

kT

)
(8)

Here, the time t is proportional to the exponent of the activation energy Ea of the
processes in the resistive-switching memory devices, k is the Boltzmann constant, and T is
the device temperature.

A common way to assess retention is to heat the structure to a high temperature (up to
730 K, for example), which it can withstand, for example, for a day or more [36]. Resistance
is measured for the duration of high-temperature exposure until the point of structural
failure. The next sample is then tested at a temperature that was changed by a certain
amount. The result is a family of resistance versus time plots, each plot at a particular
constant temperature.

We performed similar measurements at 563.15 K, 543.15 K, and 532.15 K (Figure 4).
However, instead of waiting for the sample to fail, we noted time points at which the
resistance of the sample increased by 5% and 10% of the readings at the initial moment. In
Figure 4, the initial and increased resistance values R0 are shown by the green dashed lines.
The six points of intersection of the resistance vs. time plots with these lines are marked by
squares indicating the corresponding time. In Section 4.2, we used the six points in Figure 4
and Arrhenius equation to assess the LRS retention over 10 years.
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4. Results and Discussion
4.1. Approximation of the VACs with the SCLC Model in the Case of Exponential and Gaussian
Laws of Trap Distributions

Let us consider applying expression (5) to approximate the VAC in the case of a circular
section S = πr2, where r is the effective radius of the conductive zone between the top
and bottom electrodes. The rest of the parameters for the calculation are taken from [13]:
d = 4 nm; ε = 7; m∗ = 0.5·me, where me is electron mass; µHRS = 2.5·10−4 cm2/(V·s);
µLRS = 1·10−4 cm2/(V·s); EaHRS = 1.456·10−19 J; EaLRS = 0.064·10−19 J; Wt = 0.8·10−19 J;
g = 2; NdHRS = 1·1025 m−3; NdLRS = 7·1025 m−3; Nt = 5·1024 m−3.

We used the simplex search method [37] to obtain the closest fit of the VAC to the
experimental data. In [5], it was stated that the VAC can be approximated by the sum of
expressions (1) and (5). We performed such calculations. For HRS the obtained three terms
have orders of 10−31, 10−13, and 10−6, respectively. The first two terms are negligible and
may be omitted. For the LRS, the approximation function with the three terms does not fit
the experimental VAC. In this case, even at l = 0, the graph does not rotate by an angle
sufficient to fit the VAC. Therefore, we used expression (5) without taking into account
expression (1) to approximate the VAC.

Using the MAPE algorithm [38], we calculated the errors of our approximation for
expression (5) MAPEGau,Exp and the approximation from [13] for expression (1) MAPEUni
(Table 1). For all six VACs, the approximation error of MAPEGau,Exp is at least 53 % less
than MAPEUni, and therefore our approximation is more accurate.

Table 1. Values of calculated parameters for IGau,Exp and comparison of approximation accuracy
with IUni.

Resistance State HRS LRS
T, K 298.15 348.15 398.15 298.15 348.15 398.15

parameter l 0.1996 0.4587 0.2837 0.4652 0.3158 0.2485
effective radius r nm 0.15 0.40 1.54 58.09 63.34 63.24
MAPEGau,Exp, ×104 54 56 41 61 63 59

MAPEUni, ×104 115 220 101 341 257 248
Improvement of MAPEGau,Exp

compared to MAPEUni, % 53 75 59 82 75 76

Note that in HRS the effective radius r at different temperatures is around 1 nm, while
in LRS the parameter r is about 60 nm. As noted above, the effective radius for HRS must
be smaller than the LRS. From this point of view, our values are adequate. Our value of the
effective radius for LRS is in agreement with the value from [13]. The effective radius value
of 100 µm obtained in [13] for HRS should be replaced by our value of 1 nm.

Further calculation of the distribution law parameters can be performed using expres-
sions (9) and (10) [39,40] calculated as Tc and σt (Table 1).

DtGau(E) =
Nt√
2πσt

exp

[
− [E− (Ec − Et)]

2

2σ2
t

]
, (9)

DtExp(E) =
Nt

kTc
exp
[
− (Ec − E)

kTc

]
, (10)

where DtGau, DtExp are the Gaussian and exponential distributions of trap states, E is the
considered energy, Ec is the energy of the conduction band, and Et is the center of trap
distribution.

Figure 5 shows the Gaussian distribution of trap states at different temperatures for
LRS and HRS according to (9). With increasing temperature, the parameter reflecting the
slope of the VAC decreases (Table 1). Thus, according to Ohm’s law, the resistance of
our structure decreases with increasing temperature. Consequently, the maximum of the



Crystals 2023, 13, 323 9 of 13

Gaussian distribution of trap states grows (Figure 5a), and trap states tend to occupy energy
levels as close to the level as possible.
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Figure 5. Gaussian distribution of trap states at different temperatures for LRS and HRS. For LRS,
an increase in temperature leads to an increase in the maximum of the probability density function
(a). For HRS, this temperature dependence is expected but not present. The black plot maximum for
298.15 K exceeds the yellow plot maximum for 348.15 K. Examining the approximation plot (black)
and the experimental plot (red dots), we see the need to rotate the VAC clockwise (b). Excluding the
first 10 experimental data points in the low-voltage region gives green plots in (b,a) with l = 0.4514.
Excluding the first 15 experimental data points gives l = 0.5760. This results in a reduction in the
distribution maximum to the acceptable value (blue plots in (a,b)). The reason for this effect is
explained in the text.

Therefore, as the temperature increases, the maximum of the Gaussian distribution of
trap states in the HRS state should also increase similarly to the LRS. Figure 5a shows that
this dependence holds for temperatures 348.15 K and 398.15 K. The maximum for 298.15 K
should have a smaller value than the maximum for 348.15 K, but it is almost two times
greater than expected.

To find the cause, we considered the approximation plot (Figure 5b). Red circles
represent the experimental data; a solid black curve represents the approximation with
l = 0.1996 (Table 1). Increasing the slope of the approximation VAC will reduce the
discrepancy with the experimental data. Comparing the red and black curves, we can
assume that the slope of the approximated VAR is smaller than the slope of the experimental
VAC in the range −1.5 . . . −1.0 V. Obviously, the limiting factor is the experimental data
points in the low voltage region.

The exclusion of 15 experimental points gives l = 0.5760 and increases the slope of
the VAC for 298.15 K. Thus, the maximum for this temperature (blue curve in Figure 5a) is
now smaller than the maximum for 348.15 K. The plot shows the growth of the maxima for
HRS with increasing temperature, which is consistent with the similar dependence for LRS.
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The need to exclude the low voltage experimental data points at 298.15 K is justified
as follows. Of all the six branches of the VAC (Figure 3b), this branch belongs to the region
of highest resistance, especially in the low voltage range of 0 . . . −0.5 V. The discrepancy
between the experimental values and the approximation could be interpreted by the
presence of transient resistance at low voltage levels and low (room) temperature for HRS.
The resistance in LRS is significantly lower (difference in effective conductor area radius
0.15 and ~60 nm) than in HRS, so the effect of transient resistance at the same temperature
and voltage does not affect the final VAC.

The exclusion of points from the low voltage range of the experimental VAC for HRS
at 298.15 K allowed us to obtain refined parameters of the sample: VAC slope parameter
l = 0.5760, effective radius r = 0.11. These updated values should be used instead of those
given above for HRS at 298.15 K in Table 1.

Figure 5a shows the probability density distribution in the case of the exponential law
for six cases according to Table 2. It follows from the expression (10) that the maximum of
the distribution function is at the energy level of the conduction band Ec. This means that
in our case the exponential law applies to shallow traps.

Table 2. Parameters for the Gaussian and exponential laws.

Resistance State HRS LRS
T, K 298.15 348.15 398.15 298.15 348.15 398.15

Distribution maximum DtGau(E), ×1025 1.298 1.346 1.601 1.444 1.622 1.710
σt for the Gaussian law 0.0236 0.0220 0.0155 0.0191 0.0151 0.0136

Distribution maximum DtExp(E), ×1030 9.964 9.265 6.554 8.048 6.380 5.741
Tc for the exponential law 171.73 159.68 112.95 138.71 109.95 98.94

However, as mentioned in the Section 2 of this paper, the trap energy in Si3N4 is
concentrated in the 1 . . . 1.5 eV energy range and is shifted towards the conduction band.
Therefore, in our case, the distribution of deep traps is described by a Gaussian law, as
shown in Figure 5b.

4.2. Estimation of Temperature Conditions That Allow 10-Year Retention of LRS

In Section 3.3 we obtained six data points from the resistance vs. time plot, where the
resistance of a room temperature memristor increases by 5% or 10% when the sample is
heated to 563.15 K, 543.15 K, and 532.15 K. Applying a natural logarithm to the Arrhenius
Equation (5), these points are plotted on the ln(t) vs. 1/kT plot (Figure 6). Further, we used
linear regression to extrapolate two dependencies for R0 + 5 % and R0 + 10 % and obtain
the values of temperature corresponding to t = 10 years. The linear regression parameters
are as follows:

• A slope factor of 0.8197 with an offset of −7.3716 (approximation reliability value
R2 = 0.9995) for a 5 % change in resistance;

• A slope factor of 0.7845 with an offset of −7.1326 (approximation reliability value
R2 = 0.9735) for 10% change.

The regressions yield two temperature values, 373.15 K and 386.15 K. These are the
temperatures at which it will take 10 years for the resistance to change by 5% and 10%.
The 5% and 10% variation in resistance does not affect the ability to distinguish between
memristor resistance states. Therefore, we estimated the retention of the memristor to be at
least 10 years if it operates at temperatures that do not exceed 386.15 K. These results are
consistent with retention parameters of similar Si3N4-based structures [17].
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5. Conclusions

Studying our fabricated memristor samples with Ni/Si3N4/SiO2/p+-Si structure, we
determined that using the Gaussian distribution of trap states in the SCLC model provides
a better experimental data fit and adequate structure parameters. We refined our earlier
results and demonstrated up to 53% better MAPE results for VAC current approximation.
The approximation results allowed us to establish the effective conductive radius at different
temperatures at 1 and 60 nm for HRS and LRS correspondingly. Further, we took additional
measurements and studied the change in LRS with time at high temperatures in the
523.15 . . . 563.15 K range. We estimate that in 10 years the resistance in LRS would change
by 5% at 373.15 K (100 ◦C) and by 10% at 386.15 K (113 ◦C).

As mentioned in related work, preserving the resistive state allows applying mem-
ristors in crossbars to simulate synaptic weights. The retention value of memristors we
studied is comparable to the life cycle of a processor. The endurance is 5000–7000 resistive
switching times, which is suitable for applications with a limited number of synaptic weight
changes during the life cycle. Such memristors can be used in a simple processor to detect
an activation phrase in speech because this phrase is not usually changing. Further work
may lie in finding ways of integrating the memristors into the crossbar and interfacing with
the CMOS control circuitry.
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