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Abstract: In the present work, a new heterogeneous catalyst Pd-NHC@Eu-BCI was synthesized
by introducing N-heterocyclic carbene–palladium active sites into a 2D coordination polymer
[Eu(BCI)(NO3)2H2O]n (Eu-BCI) based on a 1,3-bis(carboxymethyl)imidazolium (HBCI) ligand. The
catalyst was characterized by various analytical techniques such as X-ray photoelectron spectroscopy
(XPS), inductively coupled plasma atomic emission spectroscopy (ICP-AES), energy-dispersive X-ray
spectroscopy (EDS), scanning electron microscopy (SEM), transmission electron microscopy (TEM),
powder X-ray diffraction (PXRD), infrared spectroscopy (IR) and thermogravimetric analysis (TGA).
Catalytic activity of Pd-NHC@Eu-BCI was tested for the Suzuki–Miyaura cross-coupling reaction.
The catalyst from the reaction mixture was easily recovered by filtration and still exhibited good
catalytic activity and maintained its original structure after five cycles.

Keywords: N-heterocyclic carbene–palladium; coordination polymer; heterogeneous catalyst;
Suzuki–Miyaura reaction

1. Introduction

Palladium-containing coordination polymers, used in the C-C cross-coupling reactions,
have been intensively explored owing to their versatile protocol for useful reaction products
and important role in industrial processes [1–11]. N-heterocyclic carbene (NHC)–metal
complexes possessing strong metal–carbene bonds open up a new way in organometallic
catalysis [12–14], and have been applied to speed up various organic reactions, such as
C-N bond formation [15,16], cycloaddition of CO2 to epoxides [17,18], olefin metathe-
sis [19,20], hydrogenation [21] and C-C cross-coupling reactions [22,23]. In particular, the
use of transition-metal-catalyzed cross-coupling reactions for the formation of biaryl C-C
bonds is attracting significant attention. The N-heterocyclic carbene–palladium (NHC-Pd)
complexes, including PEPPSI-Pd-NHC [24,25], CNC-type Pd pincer [26,27], Pd(IPr)2Cl [28],
palladium-NHC-pyridine [29] and Pd-NHC-MOF [30], showed excellent activities in the
Suzuki–Miyaura reactions. Nevertheless, the most important disadvantage of homoge-
neous catalysts is that they are not recyclable and can contaminate the reaction products [31].
In this case, the organometallic catalyst fixed in a filterable support is a suitable method
to prevent metal contamination of the products [32]. Many supported catalysts have been
prepared, but only a few examples are used in industrial applications [33,34]. To overcome
the problematic issues in the homogeneous phase, the heterogeneous catalysts with all
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homogeneous catalyst features, such as efficiency, reproducible synthesis and easy and full
chemical characterization, are still of concern to chemists [35,36].

The NHC-Pd functionalized coordination polymers (CPs) can easily be realized by
the post-synthetic modification (PSM) of a stable CP containing the imidazolium ligand;
Here we assumed a two-step method to construct a new heterogeneous catalyst, which
makes the palladium-containing catalyst recoverable and reusable [37,38]. Therefore, in
continuing our previous works [1,39–44], we report herein the synthesis, characterization
and catalytic activity of the Pd-NHC@Eu-BCI, which was a NHC-Pd functionalized Eu-BCI
{Eu-BCI = [Eu(BCI)(NO3)2H2O]n} based on a 1,3-bis(carboxymethyl) imidazolium (HBCI)
ligand. The catalyst has good stability and shows excellent catalytic performance and
recyclability in the Suzuki–Miyaura cross-coupling reaction.

2. Materials and Methods

All chemicals were purchased from commercial sources and were used without
further purification.

2.1. Synthesis of Eu-BCI

Eu-BCI was synthesized according to a previous report [45]. HBCI (0.2 mmol) and
Eu(NO3)3 (0.1 mmol) were added to a 23 mL Teflon-lined autoclave with a mixture of
ethanol and H2O. The reaction mixture was kept at 110 ◦C for three days. The product was
obtained and washed with absolute ethanol.

2.2. Synthesis of Pd-NHC@Eu-BCI

Eu-BCI (0.54 g, 1.0 mmol) and Pd(OAc)2 (0.314 g, 1.4 mmol) were stirred in 100 mL
tetrahydrofuran (THF) solution for 12 h under an argon atmosphere. Then the reaction
mixture was heated to 70 °C and reflowed for 24 h under an argon atmosphere. Light
grey powder was collected by filtration, washed with THF (3 × 5 mL), MeOH (2 × 5 mL)
and Et2O (2 × 5 mL), and dried in vacuum (Scheme 1). The ICP-AES measurement of
Pd-NHC@Eu-BCI indicated that the palladium content was 1.15 wt. %.
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2.3. Characterization

Powder X-ray diffraction (PXRD) was performed with a Rigaku smartLab 9k diffrac-
tometer. Infrared spectroscopy (IR) spectra were recorded on a Nicolet IR-470 spectrometer
using KBr pellets. Thermogravimetric analyses (TGA) were carried out on a NETZSCH
STA449F5 instrument under Ar gas flow at a uniform heating rate of 10 °C min−1 in
the range of 27–800 °C. Scanning electron microscopy (SEM) was performed on Quanta
FEG450. X-ray photoelectron spectroscopy (XPS) measurements were performed on an ES-
CALAB250 X-ray photoelectron spectroscopy, using Mg Kα X-ray as the excitation source.
Inductively coupled plasma atomic emission spectroscopy (ICP-AES) was completed on
Thermo IRIS Advantage. 1H NMR spectra were recorded on a Bruker BioSpin GmbH
AVANCE III 500 MHz spectrometer. Gas chromatography (GC) analyses were performed
on an Agilent Technologies 7890A gas chromatograph.



Crystals 2023, 13, 341 3 of 10

2.4. Catalytic Activity Tests

Aryl halide (1.0 mmol), phenylboronic acid (1.2 mmol), base (2.0 mmol) and Pd-
NHC@Eu-BCI were added to a 35 mL Schlenk tube. Then 5.0 mL of solvent was added,
and the mixture was stirred in air at the appropriate temperature for the certain time. The
solution obtained after the reaction was extracted with ethyl acetate (20 mL). The product
yield was determined by GC analysis using hexadecane as the internal standard. The
catalyst was separated by centrifugation, and finally washed with absolute ethanol, dried
under vacuum and then used in the next catalytic experiment.

3. Results and Discussions
3.1. Catalyst Characterization

Infrared spectroscopy (IR) spectra of Eu-BCI and Pd-NHC@Eu-BCI are shown in
Figures S1 and S2. The Eu-BCI showed an absorption peak around 3352 cm−1, which
was attributed to the O–H stretching vibration of the coordinated water. The absorption
peaks at 3159 cm−1, 3111 cm−1, 1654 cm−1 and 1416 cm−1 were assigned to characteristic
peaks of the imidazolium ring. The asymmetric and symmetric stretching vibrations of
the carboxylate, found at 1589 cm−1 and 1311 cm−1, indicate that the HBCI ligands were
completely deprotonated when coordinating to the Eu ions. The Pd-NHC@Eu-BCI showed
a similar pattern with Eu-BCI, indicating the structure was maintained after PSM.

The 2D Eu-BCI was synthesized according to the method in the literature (Figure S3) [45].
Powder X-ray diffraction (PXRD) was used to confirm the phase purity of the crystalline
framework and the resulting diffractograms are presented in Figure 1. A good phase purity
and homogeneity of the Eu-BCI was confirmed since the PXRD patterns are in good agree-
ment with the calculated ones obtained from the single-crystal structure data. Furthermore,
the skeleton was maintained after PSM, as shown in the same PXRD patterns of the synthe-
sized Eu-BCI and Pd-NHC@Eu-BCI. Therefore, the structure of the synthesized Eu-BCI can
tolerate such modified conditions without the collapse of the framework.
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In addition, thermogravimetric analyses (TGA) of Eu-BCI and Pd-NHC@Eu-BCI were
carried out under N2 atmosphere (Figure 2). The Eu-BCI initial total weight loss of 3.8%
corresponding to the loss of the coordinated water molecule (calculated value: 3.7%)
occurred at a temperature range of 150–250 ◦C. Above 300 ◦C, the framework structure
began to collapse. Compared with Eu-BCI, the catalyst Pd-NHC@Eu-BCI had less weight
loss. The reason for this phenomenon is that the lattice water molecules were partially
removed during the PSM process. The TGA curves of Pd-NHC@Eu-BCI and the as-
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synthesized Eu-BCI were almost the same, indicating that the modified 2D coordination
polymer and catalyst had better stability.
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The elemental composition of the catalyst was also analyzed by energy-dispersive
X-ray spectroscopy (EDS). The EDS results confirmed the presence of C, N, O, Eu and Pd
elements in the Pd-NHC@Eu-BCI (Figure S4). A scanning electron microscopy (SEM) image
shows that the catalyst was composed of irregular blocks with a size of about 2–20 µm
(Figure 3a). As observed in the transmission electron microscope (TEM) image, there were
no Pd nanoparticles (Figure S5). Furthermore, the elemental mapping images show a
homogeneous dispersion of Pd, Eu, O, and N elements, which also illustrate the successful
synthesis of Pd-NHC@Eu-BCI (Figure 3b–e).
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The successful preparation of Pd-NHC@Eu-BCI was also confirmed by X-ray photo-
electron spectroscopy (XPS), as shown in Figure 4. The XPS spectra revealed that all Pd
species within the catalyst were in the divalent oxidation state [46,47], corresponding to
the binding energies of 337.6 and 342.1 eV of Pd 3d5/2 and 3d3/2, respectively (Figure 4b),
which are also consistent with the values reported for Pd(II)-NHC complexes [48,49]. No
peaks around 335 and 340 eV of the 3d5/2 and 3d3/2 levels of Pd(0) were observed [50,51],
which confirms that there were no traces of Pd nanoparticles in the catalyst. On the other
hand, no peaks of the binding energy of Pd(OAc)2 were identified [52]. The N1s XPS of
Pd-NHC@Eu-BCI and Eu-BCI were measured. As shown in Figure 4c,d, the N1s 398.2
eV binding energy peak of Eu-BCI was reduced, and the new peak of Pd-NHC@Eu-BCI
N1s formed near 400.2 eV, which is consistent with the peak of carbene-based compounds
reported in the literature [53,54].
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3.2. Catalytic Activity

The C-C cross-coupling reaction of bromobenzene with phenyboronic acid was chosen
as a model for the optimization of reaction conditions. The effect of different reaction
parameters such as solvent, base, reaction time, catalyst amount and temperature were
evaluated. First, different solvents such as DMF, toluene, H2O and C2H5OH were used
to find the best reaction media, in which the C2H5OH was the best solvent (Table 1,
Entries 1–4). Several bases were applied and K2CO3 was the best choice (Table 1, Entry
4). When Cs2CO3, Et3N or t-BuONa were used as alternative bases (Table 1, Entries 5–7),
the yields decreased significantly. Next, we examined the catalyst amount (15 mg, 20 mg
and 25 mg) and the results showed that 25 mg was the best amount. (Table 1, Entries
4, 11–12). Moreover, the reaction temperature of 80 ◦C was found to be optimal for the
reactions (Table 1, Entries 4, 8–10). Thus, the optimum conditions selected were: K2CO3
as the base, C2H5OH as the solvent, 25 mg Pd-NHC@Eu-BCI at 80 ◦C with the yield
99%, corresponding to a turnover number (TON) of 374 and turnover frequency (TOF) of
62.3 h−1. When Pd(OAC)2 was used under the optimization of the reaction conditions, the
yield of biphenyl was 87%. No significant catalytic activity was found when HBCI, Eu-BCI
and Eu(NO3)3 were used in the couplings (Table S1).

To investigate the generality of Pd-NHC@Eu-BCI, substrates with various substituents
were applied for the Suzuki–Miyaura coupling reaction under optimized reaction con-
ditions (Table 2). Bromine and iodine derivatives could be reacted with phenylboronic
acid to obtain good yields (Table 2, Entries 1–3). However, the yield was very low when
chloride derivatives were used as substrates (Table 2, Entry 6). In addition, the electron-
donating substituent (4-Me) substituted phenylboronic acid (Table 2, Entry 5) and the
electron-withdrawing substituent (4-COMe) (Table 2, Entry 4) were studied. The experi-
mental results showed that the yield of the former (4-Me, >99%) was higher than that of the
latter (4-COMe, 92%), indicating that the catalyst was more inclined to catalyze the reaction
of phenylboronic acid with an electron-donating substituent.
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Table 1. Optimization of the reaction conditions for Suzuki–Miyaura coupling of bromobenzene with
phenylboronic acid catalyzed by Pd-NHC@Eu-BCI.
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Entry Solvent Base Time (h) Catalyst (mg) Temperature (◦C) Yield (%)

1 DMF K2CO3 6 25 80 36
2 Toluene K2CO3 6 25 80 21
3 H2O K2CO3 6 25 80 76
4 EtOH K2CO3 6 25 80 >99
5 EtOH Cs2CO3 6 25 80 64
6 EtOH Et3N 6 25 80 71
7 EtOH t-BuONa 6 25 80 59
8 EtOH K2CO3 6 25 70 72
9 EtOH K2CO3 6 25 60 40

10 EtOH K2CO3 6 25 50 21
11 EtOH K2CO3 6 20 80 82
12 EtOH K2CO3 6 15 80 63

Reaction conditions: bromobenzene (1.0 mmol), phenylboronic acid (1.2 mmol), base (2.0 mmol), solvent (5.0 mL).

Table 2. Suzuki–Miyaura coupling reactions of aryl halides and arylboronic acids catalyzed by
Pd-NHC@Eu-BCI.
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Entry Halide (R1/X) Arylboronic Acid (R2) Yield (%)

1 H/I H 99
2 CH3/Br H 99
3 COCH3/Br H 91
4 H/Br COCH3 92
5 H/Br CH3 99
6 COCH3/Cl H 31

Reaction conditions: aryl halide (1.0 mmol), arylboronic acid (1.2 mmol), K2CO3 (2.0 mmol), EtOH (5 mL), catalyst
(25 mg), temperature (80 ◦C), time (6 h).

The proposed reaction mechanism of the Suzuki–Miyaura coupling reaction catalyzed
by Pd-NHC@Eu-BCI is shown in Figure S6. First, the palladium catalytic cycle involves
the oxidative addition of Pd(0) to the aryl halide to form an aryl palladium(II) complex.
Then the aryl palladium(II) undergoes transmetalation with the arylboronic acid after
complexation with the base. Finally, the biaryl product and re-establishment of the Pd(0)
complex are generated in the reductive elimination step.

The heterogeneous nature of the catalyst was verified by the hot filtration test [55],
which was carried out in the Suzuki–Miyaura cross-coupling reaction of bromobenzene
with phenylboronic acid. The yield was 52% when Pd-NHC@Eu-BCI was removed by
filtration after 3 h. No further conversion took place in the additional standing for 6 h of
the filtrate (Figure 5), indicating the absence of a catalyst in the filtrate. On the other hand,
the Pd and Eu contents in the biphenyl were tested by the ICP-AES after the reaction of
bromobenzene with phenylboronic acid, which showed that no Pd or Eu was found in the
coupling product.

As shown in Figure S7, Pd-NHC@Eu-BCI exhibited good reusability in the Suzuki–
Miyaura reaction. The recovered catalyst was used for further reactions and showed
consistent activity for at least four consecutive cycles (Figure 6), and the yield was signif-
icantly reduced in the fifth cycle. The morphology of the catalyst was maintained after
being utilized in the Suzuki–Miyaura reaction by the SEM result. In addition, the PXRD
(Figure 1) and XPS data (Figure S8) of the cycled Pd-NHC@Eu-BCI confirmed that the
catalyst structure was essentially preserved during the reaction.
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Figure 5. Time-dependent yields of the Suzuki–Miyaura cross-coupling reaction of bromobenzene
with phenylboronic acid in the presence of Pd-NHC@Eu-BCI (solid line) or removal of Pd-NHC@Eu-
BCI by filtration after 3 h reaction time (dashed line).
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Figure 6. Recycling of Pd-NHC@Eu-BCI for Suzuki–Miyaura coupling reactions. Reaction conditions:
bromobenzene (1.0 mmol), phenylboronic acid (1.2 mmol), K2CO3 (2.0 mmol), ethanol (5 mL),
temperature (80 ◦C).

4. Conclusions

In summary, a two-step method was employed to construct a novel N-heterocyclic
carbene–palladium heterogeneous catalyst Pd-NHC@Eu-BCI via a simple PSM process,
by using the 2D coordination polymer Eu-BCI as the scaffold. The catalyst exhibits higher
catalytic activity for the Suzuki–Miyaura coupling reaction. Moreover, Pd-NHC@Eu-BCI
can be recycled and reused four times without a significant decrease in catalytic activity.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/cryst13020341/s1, Figure S1. The IR spectrum of Eu-BCI; Figure S2.
The IR spectrum of Pd-NHC@Eu-BCI; Figure S3. (a) Coordination environment of Eu(III) in Eu-BCI.
(b) View of 2D layer of Eu-BCI; Figure S4. EDS spectrum of Pd-NHC@Eu-BCI; Figure S5. TEM of
Pd-NHC@Eu-BCI; Figure S6. The proposed reaction mechanism of Suzuki-Miyaura cross-coupling
catalyzed by Pd-NHC@Eu-BCI; Figure S7. The SEM of Pd-NHC@Eu-BCI after five cycles; Figure S8.
The Pd 3d XPS spectra of Eu-BCI- Pd after five cycles. Table S1. Suzuki-Miyaura coupling of
bromobenzene with phenylboronic acid catalyzed by different samples.
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