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Abstract: The creep behavior of a binary Mg-15 wt.% Gd alloy was investigated over the temperature
range from 523 K to 743 K, i.e., in both the single-phase region (the hexagonal close-packed solid
solution of Gd in Mg) and the two-phase region (the solid solution plus Mg5Gd precipitates). The
alloy was prepared by the squeeze casting technique. In the higher temperature range, at 723 and
743 K, the specimens were solution treated by in situ annealing prior to testing. At the temperature of
673 K and below, the alloy was tested in the cast state. In the higher temperature range, the behavior
was interpreted in terms of the viscous glide, where the dislocation motion was constrained by the
presence of solute atmospheres. The dislocation motion was controlled by the rate of the cross slip
from the basal to the prismatic planes. At the temperatures of 623 K and 673 K, the creep behavior
was rationalized by introducing the threshold stress concept. At the temperatures of 523 K and 573 K,
the stresses required to achieve experimentally measurable creep rates were such that dislocations
broke away from the atmospheres of foreign atoms. Comparison with a series of magnesium alloys
prepared by squeeze casting and creep-tested by the same technique showed that gadolinium can be
a favorable creep-resistance enhancing element.

Keywords: creep; magnesium alloy; gadolinium; squeeze casting; threshold stress

1. Introduction

Lightweight Mg-based alloys are attractive structural materials for a wide range of
applications in modern industry. In many cases, it is necessary to improve their mechanical,
corrosion, and physical properties by alloying. Suitable additives are rare earth (RE) metals.
Their addition can significantly improve the high-temperature strength and creep resistance.
The effect on the drop in the transition temperature between brittle and ductile behavior
is also not negligible. As a result, RE additions are primarily intended to improve the
performance and safety in the most demanding situations. Such situations occur in space,
aerospace, and ground transportation. Examples of various applications for aircraft and
missile components are given in Ref. [1]. The alloying by the RE elements for possible
biomedical applications is discussed in Ref. [2].

Increasing the creep resistance of magnesium alloys is an extremely important task
in terms of the potential of these alloys in a number of applications [3,4]. The addition of
cerium (as a major component of mischmetal) to Mg-Al-based alloys enabled the develop-
ment of AE series commercial alloys followed by the combination of rare earths and zinc
(ZE series), silver (QE series), and yttrium (YE series) [1]. The progress in the commercial
production of rare earth metals and thus the easier availability of other elements from
this group has contributed to the expansion of the spectrum of alloying additives, such as
neodymium [5,6], erbium [7], dysprosium [8] or ytterbium [9]. In terms of their application
at elevated temperatures, the creep of squeeze-cast magnesium–scandium binary alloys
was studied [10]. High-pressure die-cast Mg-Al-La alloys were developed with a similar
intention [11]. Abnormal stress exponents in the creep of high-pressure die-cast Mg-Al-RE
alloys were rationalized by simultaneously introducing a threshold stress and an internal
stress [12].

In recent years, increased attention has been paid to alloys with gadolinium [13,14].
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Gadolinium is an effective solid solution strengthener of magnesium due to the misfit atom
size and the valence factor [15]. Ultra-high strength was achieved in a simple binary Mg-13Gd
alloy by hot extrusion with low plastic deformation and subsequent aging [16]. A high-strength
Mg–11Gd–2Ag alloy sheet with extra-low anisotropy was prepared by a combination of rolling
and aging [17]. The use of Mg-Gd-based alloys in many medical applications is very promising
due to their good biocompatibility and biodegradability [18–20]. For potential application at
elevated temperatures, magnesium alloys with gadolinium contents greater than 8–10% (weight
percent is given throughout) have been supplemented with yttrium (to reduce the toughness
and cost problems), zinc and/or calcium (to enhance the age hardening response and the creep
strength), and zirconium (to refine the grain size) [21–29].

For binary alloys with a gadolinium content of more than 10%, there are several
pioneering reports in the literature that also presented the results of creep tests, in some
cases up to the temperature of 623 K [30–32]. The purpose of these reports was to provide
a rough classification of such alloys in terms of creep resistance, rather than to identify
deformation controlling processes. An important deformation parameter, the strain rate
sensitivity index, was estimated up to the temperature of 573 K for the dilute Mg-Gd
alloy [33]. Works studying the creep of magnesium alloys with gadolinium over a wider
range of stress or temperature have only recently been published [34–37]. However, even
in these recent works, temperatures above 573 K were not studied.

To fully exploit the potential of magnesium alloys with gadolinium additions, it is
necessary to have detailed knowledge of the mechanisms by which creep deformation takes
place under the widest possible range of conditions. The purpose of the present paper is to
investigate the creep behavior of the squeeze-cast binary alloy Mg-15Gd at temperatures
above the temperature of the usual T6 peak-aging treatment up to the temperatures of the
existence of the single-phase solid solution.

2. Materials and Methods
2.1. Experimental Alloy

The binary Mg-15Gd alloy used in this study was supplied by the Materials Science and
Engineering Werkstoffzentrum Clausthal GmbH, Clausthal-Zellerfeld, Germany, in the form
of a cast block of dimensions 10 * 10 * 6 cm3. The alloy was produced by squeeze casting under
a protective gas atmosphere (Ar + 1% SF6). The melting temperature was 1023 K, and the die
temperature was 473 K. The actual gadolinium concentration was 14.6 wt.% (2.57 at.%), as
determined by atomic absorption spectroscopy with an accuracy of 0.1%.

2.2. Microscopic Observations

To analyze the microstructure, the specimens were mechanically ground up to 2500 SiC
paper, mechanically polished (3 µm and 1 µm diamond paste, 5 min each step), and finished
with oxide polishing suspension (OPS) (Struers, Ballerup, Denmark). An inverted optical
microscope Olympus GX51 (Olympus Corporation, Shinjuku, Japan) was used for the
characterization of the micrographs.

The microstructure of the present alloy was described in detail in a previous paper [38].
The microstructure has features typical of cast materials. It consists of primary solidified
dendrites and an interdendritic eutectic enriched in gadolinium. According to the transmis-
sion electron observations, stable β phase particles (Mg5Gd, face centered cubic) gradually
precipitate from the supersaturated solid solution through the metastable phases β” (D019)
and β’ (c-base centered orthorhombic) [38]. The cast microstructure is retained even after
creep for 1060 h at 523 K, see Figure 1.
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Figure 1. Optical micrograph showing the microstructure after creep at 523 K for 1060 h.

2.3. Creep Tests

Creep tests were performed in uniaxial compression on specimens with a gauge length
of 12 mm and a diameter of 8 mm. The specimens were prepared by traveling wire electro-
discharge machining and the fine grinding of contact surfaces. The tests were performed
on a dead-weight creep machine that was constructed in-house in a protective atmosphere
of dry purified argon [39]. The compressive testing allows studying the creep deformation
not affected by the onset of fracture processes. The technique was described in more detail
in our previous paper [40]. Examples of the time dependence of the true compressive strain
are given in Figure 2.

It follows from the Mg-Gd binary phase diagram [41] that in the studied temperature
range (i.e., from 523 K to 743 K) the alloy extended into two phase fields: above the
temperature of 713 K, a single phase solid solution existed, whereas at temperatures below
713 K the alloy in equilibrium consisted of a solid solution matrix and Mg5Gd precipitates.
In view of these two different situations, different test regimes were chosen. (i) At 723 K and
743 K, the specimens were held in the creep apparatus at the test temperature for 24 h prior
to loading to ensure that the alloy was indeed in a single phase state. The temperatures
were chosen so that the tests were carried out with sufficient certainty in this region and so
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the sample was not threatened by an overshoot above the eutectic temperature when heated
to the test temperature. (ii) In the two-phase region, the test temperatures were above
the T6 peak-aging temperature up to a temperature that was still safely in this region and
with a division of 50 K. The specimens were kept at the test temperature only for the time
necessary to stabilize the temperature. Therefore, the specimens were intentionally tested
in the as-cast condition. This best corresponds to a situation where die castings are used in
conditions of elevated temperatures. For comparison, some specimens at the temperature
of 673 K were tested after initial in situ annealing for 24 h at the test temperature, as in the
single phase range (i) described above. The differences between the test results with and
without the initial annealing were negligible.
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2.4. Creep Data Analysis

The dependence of the creep rate on the applied stress σ at a given absolute tempera-
ture T was analyzed using the combination of power law and the Arrhenius equation [42]

.
ε = Aσnexp

(
−Q
RT

)
, (1)
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where A is a material constant, n is the stress exponent, Q is the apparent activation energy
of creep, and R is the universal gas constant. The values of n and Q can be found as partial
derivatives of this equation

n =

(
∂ ln

.
ε

∂ ln σ

)
T

, (2)

Q = −
(

∂ ln
.
ε

∂ 1
RT

)
σ

. (3)

3. Results

The creep rates
.
ε measured at different temperatures T were plotted against the

applied stress σ in double logarithmic coordinates, as shown in Figure 3. The creep rate
increased with both stress and temperature. At high temperatures, i.e., in the region where
the existence of a solid solution can be assumed in accordance with the binary phase
diagram, the values of n and Q were determined by multiple linear regression: n = 3.17,
Q = 164 kJ/mol. At lower temperatures, i.e., in the two-phase region, the stress exponent n
was determined separately for each temperature. The stress exponent n corresponded to
the slope of the dependences at a constant temperature. From the results shown in Figure 4,
it is clear that n was temperature dependent in this region. The activation energy was
proportional to the distance between the individual temperatures in Figure 3 at the same
stress. The estimated approximate values increased with the increasing applied stress to
a value of about 370 kJ/mol at 50 MPa and then decreased with the increasing stress, see
Figure 5. The values were significantly higher than any enthalpy of lattice diffusion that
could be considered for this alloy. However, it should be emphasized that this was the
apparent activation energy. The effective values of the activation energy are discussed in
the next section.

Crystals 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

1 10 100

STRESS   (MPa)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

C
R

E
E

P
 R

A
T

E
  
.
  
(s

-1
)

Squeeze cast

673 K

623 K

573 K

523 K

Annealed

743 K

723 K

673 K

 

 

Figure 3. Dependence of the creep rate on the applied stress at different temperatures. 

 

Figure 4. Variation of the stress exponent of the creep rate with temperature. 

500 600 700 800

TEMPERATURE  T  (K)

0

2

4

6

8

S
T

R
E

S
S

 E
X

P
O

N
E

N
T

  
 n

  
(-

)

Annealed

Squeeze cast

250 300 350 400 450 500

TEMPERATURE (°C)

Figure 3. Dependence of the creep rate on the applied stress at different temperatures.



Crystals 2023, 13, 374 6 of 13

Crystals 2023, 13, x FOR PEER REVIEW 6 of 14 
 

 

1 10 100

STRESS   (MPa)

10
-10

10
-9

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

C
R

E
E

P
 R

A
T

E
  
.
  
(s

-1
)

Squeeze cast

673 K

623 K

573 K

523 K

Annealed

743 K

723 K

673 K

 

 

Figure 3. Dependence of the creep rate on the applied stress at different temperatures. 

 

Figure 4. Variation of the stress exponent of the creep rate with temperature. 

500 600 700 800

TEMPERATURE  T  (K)

0

2

4

6

8

S
T

R
E

S
S

 E
X

P
O

N
E

N
T

  
 n

  
(-

)

Annealed

Squeeze cast

250 300 350 400 450 500

TEMPERATURE (°C)

Figure 4. Variation of the stress exponent of the creep rate with temperature.
Crystals 2023, 13, x FOR PEER REVIEW 7 of 14 
 

 

 

Figure 5. The values of the apparent activation energy estimated for various applied stresses. 

4. Discussion 

4.1. Single Phase Region 

The deformation mechanism characterized by a similar value of the stress exponent, 

i.e., n = 3, is usually described as the viscous motion of dislocations [42]. In this mecha-

nism, the deformation is governed by the glide of the dislocations, which drag the atmos-

phere of solute atoms. Another characteristic feature of the creep controlled by the viscous 

motion of the dislocations should be the proximity of the activation energy of the creep 

and the activation enthalpy of the diffusion of the solute atoms. The diffusion coefficient 

can be taken as that of the chemical interdiffusivity suggested either by Darken [43] or by 

Fuentes-Samaniego et al. [44,45] and given by a combination of the tracer diffusion coef-

ficients for the solvent and solute atoms in the alloy. The activation enthalpy of the diffu-

sion of Gd in magnesium was recently determined to be 128.4 kJ/mol [46]. The tradition-

ally accepted value of the activation enthalpy of the lattice diffusion of magnesium, 135 

kJ/mol [47], was close to the value of 138.44 kJ/mol used by Zhong et al. [46]. In this range, 

i.e., between 128 and 138 kJ/mol, the activation enthalpy of the chemical interdiffusion in 

the studied alloy can also be expected. 

Good agreement between the activation energy of the steady-state creep rate and that 

of the self-diffusion has been shown for a number of materials. One exception is the creep 

of hexagonal metals at high homologous temperatures with anomalously high activation 

energy [48]. We illustrate this phenomenon by means of the activation energies reported 

by Vagarali and Langdon for pure Mg [49] and a Mg-Al solid solution [50]. The detected 

creep activation energy clearly corresponded well to the values found by Vagarali and 

Langdon for pure magnesium (Figure 6). It should be noted that Vagarali and Langdon 

used a slightly different method to determine the activation energy of the creep, which 

included the temperature dependence of the modulus of elasticity, G = (1.92 * 104 − 8.6 * 

T) MPa, 

Figure 5. The values of the apparent activation energy estimated for various applied stresses.

4. Discussion
4.1. Single Phase Region

The deformation mechanism characterized by a similar value of the stress exponent,
i.e., n = 3, is usually described as the viscous motion of dislocations [42]. In this mechanism,
the deformation is governed by the glide of the dislocations, which drag the atmosphere of
solute atoms. Another characteristic feature of the creep controlled by the viscous motion
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of the dislocations should be the proximity of the activation energy of the creep and the
activation enthalpy of the diffusion of the solute atoms. The diffusion coefficient can be
taken as that of the chemical interdiffusivity suggested either by Darken [43] or by Fuentes-
Samaniego et al. [44,45] and given by a combination of the tracer diffusion coefficients for
the solvent and solute atoms in the alloy. The activation enthalpy of the diffusion of Gd in
magnesium was recently determined to be 128.4 kJ/mol [46]. The traditionally accepted
value of the activation enthalpy of the lattice diffusion of magnesium, 135 kJ/mol [47], was
close to the value of 138.44 kJ/mol used by Zhong et al. [46]. In this range, i.e., between 128
and 138 kJ/mol, the activation enthalpy of the chemical interdiffusion in the studied alloy
can also be expected.

Good agreement between the activation energy of the steady-state creep rate and that
of the self-diffusion has been shown for a number of materials. One exception is the creep
of hexagonal metals at high homologous temperatures with anomalously high activation
energy [48]. We illustrate this phenomenon by means of the activation energies reported
by Vagarali and Langdon for pure Mg [49] and a Mg-Al solid solution [50]. The detected
creep activation energy clearly corresponded well to the values found by Vagarali and
Langdon for pure magnesium (Figure 6). It should be noted that Vagarali and Langdon used
a slightly different method to determine the activation energy of the creep, which included
the temperature dependence of the modulus of elasticity, G = (1.92 * 104 − 8.6 * T) MPa,

Q = −
∂ ln
( .
εGn−1T

)
∂
(

1
RT

) . (4)
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Figure 6. Comparison of the activation energies of the creep at high temperatures in pure magne-
sium [49], Mg-0.8% Al [50], and in the present alloy.

The difference between the results of the two methods was minimal; our procedure
gave a value approximately 0.4 kJ/mol higher. The similarity of the presented values of the
stress exponent and the activation energy with the values found by Vagarali and Langdon
allows us to consider the same deformation mechanism, controlled by the rate of cross-slip
from the basal to the prismatic planes even in the case of the Mg-Gd solid solution.

4.2. Two Phase Region

In accordance with the phase diagram, particles of the secondary phase Mg5Gd
precipitated in the studied alloy at temperatures below T = 713 K [41]. Their presence
impeded the movement of the dislocations, and the creep rate was then proportional to



Crystals 2023, 13, 374 8 of 13

the effective stress, which is given by the difference between the applied stress σ and the
threshold stress σ0 delineating a lower limiting stress for any measurable flow [51]

.
ε ∝ (σ − σ0)

n. (5)

If the effective stress is close to the stresses occurring during the creep in the region
of the solid solution, the power n should have a similar value, i.e., n = 3. The value of the
threshold stress σ0 can be determined by plotting

.
ε

1/3 against the applied stress on the
linear axes and extrapolating linearly to a zero creep rate. The procedure is illustrated in
Figure 7. The resulting threshold stress was temperature dependent: at 673 K, it was equal
to 1.87 MPa, and at 623 K, it was 7.27 MPa. The activation energy of the creep must be
determined in this temperature range at a constant effective stress, (σ − σ0), see Figure 8.
The resulting value was 133.8 kJ/mol; the value determined by the abovementioned
Vagarali and Langdon [49] method was approximately 0.8 kJ/mol higher. In this interval
of reduced temperatures, the cross slip of the dislocations to the prismatic planes no longer
took place, and the activation energy of the creep was close to the activation enthalpy of
the interdiffusion. Given the values of the effective stress power and activation energy, it is
reasonable to conclude that the creep was controlled by the viscous glide of the dislocations.
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From the experimental data at temperatures of 573 K and 523 K, it was difficult to
evaluate an acceptable threshold stress. This situation can be caused by a change in the
mechanism of the dislocation motion. At increased stress, dislocations break away from
the cloud of foreign atoms and their motion is characterized by higher stress sensitivity.
The critical break stress is given by [52]

σB =

(
1

2π

)2(1 + ν

1 − ν

)2 MG2c∆V2

10b3kT
, (6)

where ν is the Poisson ratio, M = 3.06 is the Taylor factor, c is the concentration of the
solute atoms, ∆V = 9.85 * 10−30 m3 is the difference in volume between the solute and
solvent atoms, and b = 3.2 * 10−10 m is the length of Burgers vector. The hatched area
in Figure 9 represents the values of the break stress calculated using Equation (6). For
the left-hand boundary, the gadolinium concentrations in solid solution according to the
equilibrium phase diagram were used. The right-hand limit corresponded to the maximum
concentration of gadolinium in the alloy studied, i.e., 2.57 at.%. For the equilibrium
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concentrations, i.e., c = 0.0053 at 523 K and c = 0.0088 at 573 K [41], we obtained the break
stress of 14.8 MPa and 21.3 MPa at the respective temperatures. Thus, when compared
with the results of the creep tests, it was clear that at 523 K, the creep would take place
completely above the break stress and at 573 K for the most part. On the other hand,
at a temperature of 623 K and the corresponding equilibrium gadolinium concentration
of 0.0137, the break stress was 28.5 MPa. The extrapolation to zero creep rate in the
determination of the threshold stress (see Figure 7) was not affected by any change in the
deformation mechanism at this temperature and was therefore justified.
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solute atoms, ∆V = 9.85 * 10−30 m3 is the difference in volume between the solute and solvent 
atoms, and b = 3.2 * 10−10 m is the length of Burgers vector. The hatched area in Figure 9 
represents the values of the break stress calculated using Equation (6). For the left-hand 
boundary, the gadolinium concentrations in solid solution according to the equilibrium 
phase diagram were used. The right-hand limit corresponded to the maximum concen-
tration of gadolinium in the alloy studied, i.e., 2.57 at.%. For the equilibrium concentra-
tions, i.e., c = 0.0053 at 523 K and c = 0.0088 at 573 K [41], we obtained the break stress of 
14.8 MPa and 21.3 MPa at the respective temperatures. Thus, when compared with the 
results of the creep tests, it was clear that at 523 K, the creep would take place completely 
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stress was 28.5 MPa. The extrapolation to zero creep rate in the determination of the 
threshold stress (see Figure 7) was not affected by any change in the deformation mecha-
nism at this temperature and was therefore justified. 
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4.3. Comparison with Cast Pure Magnesium and Squeeze-Cast Magnesium Alloys

In the next part, we attempt to compare our binary alloy with various magnesium
alloys produced by the same technology, i.e., squeeze casting, and previously tested in the
same way in the same creep laboratory. In addition to alloys where aluminum alloying
was combined with zinc, silicon, or strontium, rare earth-alloyed alloys were also included
in this rather random selection. These alloys were: AS21 (2.2 Al, 1.0 Si, 0.1 Mn), AZ91
(9.0 Al, 0.7 Zn, 0.3 Mn), QE22 (2.2 Ag, 2.1 Dy), ZE41 (4.2 Zn, 1.2 RE, 0.7 Zr) [53], and AJ62
(6 Al, 2 Sr) [54]. The results are summarized in Figure 10. For completeness, the results
of the compressive creep tests of the cast pure magnesium are also given [53]. It is clear
that the creep resistance of the present simple binary alloy was superior to that of the other
tested squeeze-cast magnesium alloys. From the above results, it can be concluded that
gadolinium can be a favorable creep-resistance enhancing element, especially in the two-
phase region, where the dislocation motion is impeded by the presence of the intermetallic
phase Mg5Gd.
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AJ62 alloy [54] and some squeeze-cast magnesium alloys [53] tested in uniaxial compression.

5. Conclusions

In this work, compressive creep tests were conducted on a binary Mg-Gd alloy with
15 wt.% gadolinium prepared by the squeeze casting technique. Creep tests were per-
formed in the temperature range from 523 K to 743 K. The mechanisms of the plastic
deformation were identified, probably for the first time, over the entire temperature range.
This is important both from the point of view of determining the creep resistance and for
optimizing the technological processes during formation at elevated temperatures. The
results are summarized as follows:
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• In the higher temperature range, the activation energy of the creep was 164 kJ/mol,
and the stress exponent was n = 3.17. The behavior was interpreted in terms of the
viscous glide, where the dislocation motion was constrained by the presence of the
solute atmospheres. The dislocation motion was controlled by the rate of cross-slip
from the basal to the prismatic planes.

• The fact that the activation energy was higher than the activation enthalpy of diffu-
sion must be considered when predicting heat resistance, which is usually based on
experiments at higher temperatures due to time constraints.

• At temperatures of 623 K and 673K, the creep behavior was rationalized by introducing
the threshold stress concept. The value of the stress exponent found in the single-phase
region was used to determine the threshold stress in the two-phase region. To the best
of the authors’ knowledge, this procedure has not been used in the creep analysis of
magnesium alloys. The dislocation velocity was still limited by the solute atoms, but
the cross slip to the prismatic planes no longer played a significant role due to the
reduced temperature.

• At temperatures of 523 K and 573 K, the stresses required to achieve experimen-
tally measurable creep rates were so large that the dislocations broke away from the
atmospheres of the foreign atoms.

• At temperatures lower than those studied in this work, it would be interesting to
study the critical stress for the dislocation detachment from the solute atmospheres
in a material that has undergone hardening annealing. This study may lead to the
optimization of the heat treatment.

• Comparison with a series of magnesium alloys prepared by squeeze casting and tested
by the same technique showed that gadolinium can be a favorable creep-resistance
enhancing element.
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