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Abstract: As the most potent ice recrystallization inhibitors, antifreeze glycoproteins (AFGPs) have
been extensively studied since their discovery. However, the molecular mechanism of how they
inhibit ice growth remains controversial—notably, which group directly contributes to the binding
of AFGPs to ice is hotly debated. Here, we use molecular dynamics simulations to investigate the
atomistic details of the binding of AFGP8 to ice. We show that the binding of AFGP8 to ice can
be divided into three cases: backbone dominant binding (BDB), disaccharide dominant binding
(DDB) and weak binding (WB). Hydrogen-bonding and hydrophobic groups contribute equally to
the binding of AFGP8 to ice and synergistically promote the binding. The –CH3 groups promote
the contacting of AFGP8 to ice via hydrophobic effect, and the hydrogen-bonding groups anchor
AFGP8 to ice surfaces through direct hydrogen bonding with ice. Specially, we verify that the -CONH-
groups anchor the backbone of AFGP8 to ice by forming hydrogen bonds with ice surfaces while
the –OH groups not only anchor the disaccharide to ice but also slow down the dynamics of the
surrounding water. In addition, we reveal that both the backbone and the disaccharide can bind
to ice surfaces while the latter is more flexible, which also perturbs the hydrogen bond network of
potential ice-like water molecules by swaying in the solution to further enhance its antifreeze activity.
This work provides the atomistic details of the ice growth inhibition mechanism of AFGP8, which is
helpful for the design of high-efficacy cryoprotectants.
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1. Introduction

Antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) allow organisms
to survive in subzero habitats [1–5]. These natural proteins, as well as synthetic mimics,
are of enormous interest for their use in biomedicine [6–11], the food industry [12–14] and
engineering deicing [15–18]. Antifreeze glycoproteins have three macroscopic antifreeze
properties resulting from their ice interactions: ice recrystallization inhibition (IRI) [19,20],
thermal hysteresis (TH) [1,21] and dynamic ice shaping (DIS) [22–24]. The former (IRI) is
of particular interest because this property is easier to mimic and central to application in
cryopreservation [25–31]. This property is generally explained by an adsorption-inhibition
mechanism in which the proteins recognize and bind to specific ice surfaces, thereby pre-
venting macroscopic ice growth [32,33]. Antifreeze glycoproteins, composed with tripeptide
repeats of alanine-alanine-threonine (Ala-Ala-Thr) in which the hydroxyl group of the Thr
is glycosylated with β-D-galactosyl-(1,3)-α-N-acetyl-D-galactosamine (Figure 1a) [34–36],
are the most potent IRI agents [37]. Antifreeze glycoproteins are classified as AFGP1 to
AFGP8 based on the number of Ala-Ala-Thr repeat units, and some of Ala in the smaller
AFGPs (AFGP7-8) may be substituted by Pro [36]. A series of experiments have indicated
that AFGPs are preferentially adsorbed at the prismatic and pyramidal surfaces of ice to
inhibit ice growth [37–41]. Despite the previous studies having reached a consensus that
poly-L-proline type II (PPII) helix conformations (as shown in Figure 1b) play a crucial role
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in the binding of AFGPs to ice [42–47], the molecular details of how AFGPs bind to ice
remain largely elusive due to its high flexibility and complex components [9,48–50].
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PPII helix conformation of AFGP8, and the key groups, are heighted with the balls: methyl groups 
(green balls), amide groups (bule balls) and hydroxyl groups (red balls). (c) Distribution of the ra-
dius of gyration Rg of AFGP8 in solution at 268 K (solid blue line) and 300 K (dashed red line). 
Ramachandran plots of AFGP8 at 268 K (d) and 300 K (e). Darker colors represent the higher specific 
gravity of the secondary structures. The populations of PPII helix integrated inside the region 
heighted with a blue square are also shown. 

Several scenarios have been proposed for the binding of AFGPs to ice. One is based 
on the direct interaction of the hydrogen-bonding groups of AFGPs to ice. Some experi-
ments have substituted certain disaccharide moieties and illustrated that the disaccharide 
plays a significant role in the anti-freezing of AFGPs [37,51–54]. A 2D infrared spectros-
copy study by Giubertoni et al. [47] indicated that AFGPs bind to ice through their disac-
charide chains. Knight et al. [40] proposed a model where the hydrogen bonds formed 
between AFGP8 and the ice is vital for the irreversible binding of AFGP8. Moreover, a 
delicate experiment by Sun et al. [50] confirmed that all the hydroxyl (–OH) groups on the 
disaccharides are necessary for the unique antifreeze activity of AFGP8. A recent simula-
tion study by Zhang et al. [55] showed that –OH groups can form hydrogen bonds with 
ice and promote the binding of AFGP8 to ice. In the study of other IRI agents, such as poly 
(vinyl)alcohol (PVA) [56–58] and nanogold modified with small molecules [59], hydrogen 
bonding has also been proved to be the dominant driving force for the binding of 

Figure 1. The Structure of AFGP8. (a) Sequence of AFGP8 is Ala-Ala-T*-Ala-Ala-T*-Pro-Ala-T*-
Ala-Ala-T*-Pro-Ala, where T* denotes the glycosylated Thr. (b) The three-dimensional structure
with PPII helix conformation of AFGP8, and the key groups, are heighted with the balls: methyl
groups (green balls), amide groups (bule balls) and hydroxyl groups (red balls). (c) Distribution
of the radius of gyration Rg of AFGP8 in solution at 268 K (solid blue line) and 300 K (dashed red
line). Ramachandran plots of AFGP8 at 268 K (d) and 300 K (e). Darker colors represent the higher
specific gravity of the secondary structures. The populations of PPII helix integrated inside the region
heighted with a blue square are also shown.

Several scenarios have been proposed for the binding of AFGPs to ice. One is based on
the direct interaction of the hydrogen-bonding groups of AFGPs to ice. Some experiments
have substituted certain disaccharide moieties and illustrated that the disaccharide plays a
significant role in the anti-freezing of AFGPs [37,51–54]. A 2D infrared spectroscopy study
by Giubertoni et al. [47] indicated that AFGPs bind to ice through their disaccharide chains.
Knight et al. [40] proposed a model where the hydrogen bonds formed between AFGP8
and the ice is vital for the irreversible binding of AFGP8. Moreover, a delicate experiment
by Sun et al. [50] confirmed that all the hydroxyl (–OH) groups on the disaccharides are
necessary for the unique antifreeze activity of AFGP8. A recent simulation study by
Zhang et al. [55] showed that –OH groups can form hydrogen bonds with ice and promote
the binding of AFGP8 to ice. In the study of other IRI agents, such as poly (vinyl)alcohol
(PVA) [56–58] and nanogold modified with small molecules [59], hydrogen bonding has
also been proved to be the dominant driving force for the binding of antifreeze agents to
ice. Therefore, it is believed that hydrogen bonding is directly involved in the binding of
AFGPs to ice.
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This view, however, has been challenged since it is almost impossible to directly
observe which part of AFGP binds to ice in experiments. Harding et al. [35] pointed out
that the hydrogen bonding may not be as prevalent as hydrophobic effects for AF(G)Ps
and the latter may dominate the binding of AFGPs to ice, but they did not prove it directly.
Based on MD simulations, Mochizuki and Molinero [45] reported that AFGPs bind to ice via
hydrophobic groups rather than the –OH groups of the disaccharides. The substitutional
experiments by Tachibana et al. [60] have also shown that the methyl group of threonine
is important for the unique antifreeze activity of AFGP8. Therefore, a systematical study
of the specific roles of hydrogen-bonding and hydrophobic groups in the IRI activity of
AFGP8 is still very necessary.

Here, we performed molecular dynamic (MD) simulations to elucidate the ice growth
inhibition mechanism of AFGP8 (the smallest AFGP) by systematically investigating the
roles of –CH3, –CONH– and –OH groups of AFGP8 in the binding of AFGP8 to ice and
the water dynamics of AFGP8 solutions. We find that the hydrogen-bonding (–CONH– or
–OH) and hydrophobic (–CH3) groups synergistically promote the binding of AFGP8 to ice.
Specifically, the –CH3 groups promote the contacting of AFGP8 to ice via hydrophobic effect,
while the -CONH- groups anchor the backbone of AFGP8 to ice by forming hydrogen bonds
with ice surfaces and the –OH groups anchor the disaccharide to ice through hydrogen
bonding. In contrast to the backbone, which adsorbs on ice surfaces more easily due to its
rigidity, the disaccharides exhibit dual roles due to their hydrophilicity and flexibility. Some
of the disaccharides anchor to ice while the others destroy the hydrogen bond network
of potential ice-like water molecules by swaying in the solution. Our results provide an
important molecular guidance for the design of more efficient antifreeze agents that could
be used for tissue cryopreservation and in other fields.

2. Methods
2.1. Molecular Dynamics Simulations

All the MD simulations and free energy calculations are carried out by GROMACS
2019.5 packages [61,62] using the all-atomistic OPLS-AA [63] force field and the TIP4P/Ice
water model [64]. The melting temperature of ice Ih in this water model is 270 K [65], in very
good agreement with the experimental value of 273.15 K. The Lennard-Jones, bond and
angle parameters of C, H and O of CH3CH3, CH3CONH2 and CH3OH for the free energy
calculations are identical to corresponding groups of AFGP8, without partial charges. The
Lennard-Jones parameters for cross-interactions are obtained through the combination
rules: εij = (εiiεjj)1/2 and σij = (σiiσjj)1/2. The cutoffs for the van der Waals and coulombic
interactions are set to 1.2 nm. The long-range Coulombic interactions are evaluated with
the particle-mesh Ewald algorithm. Equations of motion are integrated using leapfrog with
a time step of 2 fs. The temperature T and pressure P for production runs are controlled
with the Nosé–Hoover thermostat [66,67] and Parrinello–Rahman barostat [68], with time
constants of 0.2 and 1.0 ps, respectively. Periodic boundary conditions are applied in three
directions. The pressure is set to 1 atm in all NPT-MD simulations.

To investigate the impact of AFGP8 on ice growth when exposed to an advancing ice
front on the prism surface of ice Ih, we build the ice slab system, which contains one AFGP8
molecule, and then solvated by ~10000 water molecules, as experiments have reported
that AFGP8 exhibits TH activity even at concentrations below 20 mM [69]. The simulation
box is set to 6.35 × 6.64 × 10.00 nm3. Two layers of ice Ih (1008 molecules) constrained
by a harmonic potential with force constant of 1000 kJ mol-1 nm-2 are generated by the
Genice program [70] with the density of 0.909 g cm−3. The center of mass of AFGP8 is
initially placed approximately 1.1 nm above the ice surfaces. We perform more than a dozen
independent simulations with different backbone orientations parallel to the ice surface.
First, the energy minimization is conducted using the steepest descent method with the
force tolerance of 1000 kJ mol−1 nm−1. Then, a 500 ps NVT-MD simulation is performed for
equilibration. Finally, a 1000 ns production NVT-MD run at 268 K is performed to monitor
the IRI activity. We employ the CHILL+ algorithm [71] to identify one water molecule in ice



Crystals 2023, 13, 405 4 of 16

or liquid phase. Moreover, the water molecules with the distance less than 3.5 Å away from
the ice molecules determined by the CHILL+ algorithm are also considered as ice molecules
(~350 ice molecules in each frame), which has a better description for the advancing ice
front. To estimate the interaction between the groups and ice, the –CH3 group is treated
as binding to ice surface if there are two ice molecules within 5.5 Å (first solvation shell)
of it. The hydrogen bonds are identified with donor-acceptor distance less than 3.5 Å and
hydrogen-donor-acceptor angle less than 30◦ [72].

2.2. Conformation Analysis

We perform the replica exchange molecular dynamic (REMD) simulations [73] to
enhance the conformational sampling for AFGP8 in solution. We put an AFGP8 with
the arbitrary initial conformation into a box with ~4500 water molecules. The system
is energy-minimized and equilibrated for 1 ns in NPT ensembles for each replica. We
execute REMD simulation in NPT ensemble for 400 ns in which 48 replicas are prepared
by REMD-temperature-generator [74] in the temperature range of 268−398 K (i.e., 268.00,
270.39, 272.80, 275.24, 277.69, 280.15, 282.63, 285.12, 287.63, 290.16, 292.70, 295.26, 297.80,
300.00, 303.00, 305.69, 308.33, 311.00, 313.68, 316.37, 319.09, 321.83, 324.58, 327.35, 330.15,
332.96, 335.78, 338.63, 341.49, 344.38, 347.28, 350.21, 353.16, 356.12, 359.10, 362.10, 365.13,
368.17, 371.23, 374.31, 377.41, 380.53, 383.68, 386.84, 390.03, 393.24, 396.46, 398.00 K). The
replicas are exchanged every 10 ps and the average exchange ratio between nearest neighbor
temperatures is 26.6 ± 6.0%. The radius of gyration (Rg) and the Ramachandran plots are
computed from REMD trajectories.

2.3. Free Energies

The umbrella sampling approach [75,76] is adopted to compute the binding free
energies (i.e., potential of mean force (PMF)) of CH3CH3, CH3CONH2 and CH3OH to ice
prism surface, respectively. We first build the ice slab system, which contains one layer of
ice molecules (60 molecules) with dimensions 2.27 nm × 2.22 nm × 10.0 nm. Then, about
900 water molecules and 1 solute molecule are added to the systems. The temperature
is set to 280 K to avoid freezing. The initial ice molecules are harmonically restrained at
their original positions with a force constant of 3000 kJ mol−1 nm−2 to avoid the melting
of ice surface. The center of mass distance along the Z-axis between the gas molecule
and ice surface is considered as the reaction coordinate (RC) and the Z distance along
the RC (~2.0 nm) is divided into windows every 0.02 nm. A harmonic umbrella potential
with a force constant of 1000 kJ mol−1 nm−2 is applied along the Z-axis. In each umbrella
window, a 500 ps equilibration simulation followed by a 20 ns production run is performed
under the NVT ensemble. The PMFs are constructed by the weighted histogram analysis
method [77] and plotted as a function of the distance from ice surface. We set the average
PMF at distances from 1.4 to 1.8 nm as the reference point since the water molecules in this
region can be considered as bulk water.

2.4. Adsorption Energies

The adsorption energies of CH3CH3, CH3CONH2 and CH3OH on ice prism surface are
calculated using the Vienna Ab-initio Simulation Package (VASP) code [78,79], where the
core electrons are treated with the projector augmented-wave (PAW) method [80,81]. The
valence electrons for all systems are described using the generalized gradient approximation
(GGA) with the Perdew–Burke–Ernzerhof (PBE) function [82]. The DFT-D3 correction
method of Grimme et al. [83]. is employed to describe the van der Waals interactions. The
Brillouin-zone sampling is restricted to the Γ-point [84] because of the large supercell size
used in the calculations. The energy cutoff for the plane wave basis sets is set to 600 eV
and the electron smearing is described by the Gaussian smearing method [85] with a width
of 0.05 eV. Each calculation is considered converged when the total energy changed is
less than 10−5 eV and the forces on each atom are smaller than 0.05 eV/Å. The whole
simulation box is set to 18.2 × 14.8 × 23.1 Å3 containing a vacuum of ∼18 Å and two layers
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of 2 × 2 ice Ih. The top layer of the ice is allowed to move freely, and the bottom layer of the
ice is fixed to describe the bulk ice. Several representative adsorption sites are calculated
and we present the most stable one. The adsorption energies of CH3CH3, CH3CONH2 and
CH3OH molecules on the ice prism surface are calculated as

Eads = (EA + EB)− EAB (1)

where EA and EB are the total energy of molecules in the gas phase and the relaxed ice
prism surface system, respectively. EAB is the energy of the adsorption system. Larger
adsorption energy represents a more stable adsorption.

2.5. Water Dynamics and Flexibility Analyses

In order to compare the dynamics and flexibility of each part of AFGP8 in solution,
an AFGP8 is put into a cubic box and then solvated by ~2900 water molecules. Each
system is firstly subjected to a steepest-descent energy minimization with a tolerance of
1000 kJ mol−1 nm−1, followed by a 500 ps equilibration NPT-MD simulation at 268 and
300 K. Finally, 60 ns production NPT-MD run is evolved at 268 and 300 K. The intermittent
hydrogen bond autocorrelation function [86,87] is calculated as

CHB(t) =
< h(0)h(t) >
< h(0)h(0) >

(2)

where the value of h(t) equals 1 if a tagged pair of different molecules are hydrogen bonded
at the time origin and still exists at time t and 0 if the hydrogen bond is absent. The average
is taken over different time origins and all possible pairs.

To represent the relative mobility of different groups and the flexibility of AFGP8,
we calculate the mean-squared displacement (MSD) and the B factors [88]. The former is
calculated as

MSD =<
∣∣∣⇀r i(t)−

⇀
r i(0)

∣∣∣2 >i∈A (3)

where the average is taken over different time origins and all particles of type A. The B
factor is gained as follows

RMSFi =

√
∑t

t0
[ri(t′)− ri]

2

t− t0
(4)

RMSF =
∑i RMSFi·mi

∑i mi
(5)

B = RMSF2·8
3

π2 (6)

where ri and mi represent the position and the mass of atom i in conceded residue, respectively.

3. Results and Discussion
3.1. PPII Helix Conformations Are the Dominant Structures of AFGP8

To rationalize the conformations of AFGP8 in solution, we performed REMD simu-
lations. Figure 1c shows the distribution of the radius of gyration (Rg) for AFGP8 at 268
and 300 K. Consistent with a previous nuclear magnetic resonance (NMR) spectroscopy
study [89], it shows an obvious pick at 1.1–1.2 nm for both temperatures, suggesting that
the structure of AFGP8 is adequately extended in solution. Further statistics of dihedral
angles between amino acids (the Ramachandran plots) of AFGP8 shown in Figure 1d,e
depict that the PPII helix is the dominant conformation of AFGP8 in solution for both
temperatures, which is consistent with previous reports [42,45,47,90,91] and corresponds
to the peak of the distribution of Rg. In addition, the PPII helix becomes more pronounced
at a lower temperature, indicating that AFGP8 mainly adopts the extended conformation
with high population of the PPII helix at subzero temperature (268 K).
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3.2. Both Hydrogen-Bonding and Hydrophobic Groups Synergistically Contribute to the IRI
Activity of AFGP8

In the MD modeling of antifreeze material, such as PVA and AF(G)Ps, the initial
structure has a vital influence on its IRI activity [45,56]. Aiming to systematically investigate
its IRI activity, we set up a series of MD simulations at 268 K of AFGP8 with the PPII helix,
in which different groups are contacting with ice prism surface. All the simulations are
performed for at least 1000 ns to monitor the IRI activity. The dependence of IRI activities
on the binding strength of AFGP8 to ice is represented in Figure 2. In about 70% of our
simulations, we observe that AFGP8 obviously slows down the growth rate of ice compared
to the case of pure water but is still pushed along with the growing ice front (Figure 3a),
which is denoted as weak binding (WB). In this case, AFGP8 “walks” irregularly on ice
surfaces leading to the reversible binding of AFGP8 to ice (Figure 3b). However, we find
that for about 20% of our simulations AFGP8 can bind to ice irreversibly through the
backbone, which lies flat on the ice surface with most of the methyl (–CH3) and amide
(–CONH–, on the backbone) groups being adsorbed to the ice surface and dramatically
prevents the growth of the ice front, as shown in Figure 3c,d. In this case, the –CH3 groups
occur at the cavities of ice through hydrophobic effect and the –CONH– groups anchor to
the ice surface by forming hydrogen bonds with ice directly. The disaccharides float in the
water phase with almost no hydrogen bond being formed between disaccharides and ice.
As a result, we ascribe this irreversible binding to the synergistic effect of the hydrophobic
interaction of –CH3 groups and hydrogen bonding between –CONH– groups and ice
and refer to this case as backbone dominant binding (BDB), which has not been reported
before. Additionally, we find another case of irreversible binding in our simulations (10%),
where the disaccharide of AFGP8 inserts into the ice steps and some –CH3 groups on the
backbone are also adsorbed to the ice front, see Figure 3e,f. In this case, the –OH group on
the disaccharides instead of the –CONH– group on the backbone anchors to the ice surface
by forming hydrogen bonds with ice directly, which is denoted as disaccharide dominant
binding (DDB). Furthermore, it is discovered that the binding strengths of AFGP8 to ice are
comparable for both DDB and BDB.
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and N (bule balls) of amide groups and hydroxyl groups (red balls); the backbone of AFGP8 (orange
ribbon), Thr residues (cyan or colorful licorice).

In order to quantitively investigate the cases of WB, BDB and DDB, we elucidate the
concrete roles of the –CH3, –CONH– and –OH groups of AFGP8 played in the IRI activity
of the three cases by analyzing the average number of –CH3 groups (NCH3 ) interacting with
ice and the hydrogen bonds formed by the –CONH– (NCONH) or –OH (NOH) groups with
ice, as shown in Figure 4. We find that AFGP8 binds to ice through the co-adsorption of the
hydrogen-bonding and hydrophobic groups in all three cases. For the case of WB, we note
that NCH3 , NCONH and NOH are only limitedly verifiable (~4, ~2 and ~2, respectively). This
might be the main reason for their reversible binding. In contrast to WB, NCH3(~12) and
NCONH (~8) are significantly increased, but NOH is even lower (~1) in BDB, which suggests
that the –CH3 and –CONH– groups play a key role in the irreversible binding of AFGP8 to
ice. For the case of DDB, NCH3 is similar with WB but its IRI activity is greatly improved
compared to WB. This can be attributed to the significant increasing of NOH (~6), which
demonstrates that the –OH group can also play as key for the binding of AFGP8 to ice.
Our results directly provide theoretical evidence for previous experiments [50] where –OH
groups are indispensable for the significant antifreeze activity of AFGP8.

However, the contributions of the –CH3 and –CONH– groups to the IRI activity are
difficult to distinguish because they are almost adjacent to each other in AFGP8 (Figure 1a,b).
To demonstrate the role of the –CONH– groups in IRI activity, we design a model molecule
of GLY14 ([Gly-Gly-Gly]4-Gly-Gly) that consists of –CONH– groups only and perform
MD simulations to investigate its IRI activity, see Figure 5. We find that the ice growth
inhibition mechanism of fully flexible GLY14 is similar to that of PVA, where the binding
mainly occurs from hydrogen bonding and its contact area with ice surface dictates the
IRI activity [56]. GLY14 binds to ice sufficiently well and effectively inhibits the growth
of ice until it is overgrown or pushed away (~250 ns in Figure 5b) by the advancing ice
front of the ice prism surface. This is because the contact area of GLY14 with the ice surface
decreases as it is deformed by the growth of the ice front due to its great hydrophilicity and
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full flexibility. On the other hand, experimental studies have shown that the amphiphilicity
is necessary for high IRI activity of AFGPs, and excessive hydrophilicity or hydrophobicity
is not conducive to its antifreeze activity [37,46,50,60,67]. Therefore, we speculate that a
strong IRI activity needs a synergy of sufficient hydrogen-bonding (–OH or –CONH–) and
hydrophobic (–CH3) groups in AFGP8 to bind to ice.
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3.3. Hydrophobic Desolvation and Hydrogen Bonding Drive the Binding of AFGP8 to Ice

We have shown that the –CH3, –CONH– and –OH groups of AFGP8 contribute to its
IRI activity. In order to clarify the driving force behind the binding of AFGP8 to ice, we seek
to perform enthalpic and entropic analyses in terms of adsorption energy and free energy
calculations. We saturate the three groups with methyl to obtain CH3CH3, CH3CONH2
and CH3OH molecules and calculate the adsorption energy of the three molecules on
the ice Ih prism surface. By taking the adsorption energy of water molecules (~0.51 eV
in Figure 6a) as a reference, we show that the adsorption of the energy of CH3CONH2
(~0.85 eV), which forms double hydrogen bonds to the ice surface, is much larger than
water molecule adsorption, indicating the less electronegative nature of the nitrogen atom
with respect to the oxygen atom. CH3OH exhibits a similar adsorption energy of ~0.45 eV
as water molecules because CH3OH also adsorbs to the ice surface by forming an O–H–O
hydrogen bond. For CH3CH3, no hydrogen is formed and the so-called “adsorption energy”
of CH3CH3 is small (~0.19 eV). We interpret that the –CH3 group is passively deposited
on the ice surface under hydrophobic desolvation. The free energy calculation (Figure 6b)
further confirms our explanation of –CH3 deposited on the ice surface. With the inclusion
of the water phase, the free energy of CH3CH3 exhibits two minima, corresponding to the
molecule in contact with ice and the ice-like water layer. Similarly, the free energies of
CH3CONH2 and CH3OH also show two minima near the ice surface, suggesting that all
three groups prefer to stay in the region of the ice/water interface. We note that the second
minimum of the free energy of CH3CH3 is smaller than the first but CH3OH shows a deeper
first minimum. This suggests that the –OH group provides a stronger direct adsorption on
the ice surface with respect to the –CH3 group and prevents AFGP8 from being pushed
away by the growing ice front. That is why, in the case of DDB, the AFGP8 hinders ice
growth with only one disaccharide anchoring to ice. Additionally, despite the free energy
of CH3CONH2 being equally conducive for –CONH– to stay on ice surface or ice-like water
layer, the enthalpic contribution (adsorption energy) may be stable –CONH– groups on
the ice surface by hydrogen bonding. This suggests that when there are enough –CONH–
and –CH3 groups being adsorbed to the ice surface, AFGP8 can also bind to ice tightly
(i.e., in the case of BDB). To conclude, the binding affinity to the ice surface is relevant to
the contribution of both enthalpy and entropy, associated with the formation of hydrogen
bonds and the desolvation of the –CH3 groups, respectively. Moreover, the hydrophobic
desolvation and hydrogen bonding synergistically promote the binding of AFGP8 to ice.
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surface. The background: ice (silver stick), ice-like layer (purple dot) and liquid water (silver dot).
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It is also observed that the –CH3 groups are mainly adsorbed to the S and W sites
(Figure 7a) on the ice surface, in agreement with previous work [45]. Instead, the –CONH–
and –OH groups tend to be adsorbed at the Hex site (as shown in Figure 7a, the H or O
of the surface ice molecule) through hydrogen bonding. Moreover, we note that N and
O atoms in the –CONH– group can form hydrogen bonds with ice at the Hex sites. This
indicates that the –CONH– group has more ice-binding sites than the –OH group, which
may be one of the reasons why the case of BDB is easier to be observed than DDB in
simulation. In addition, the “distance matching” between certain groups in antifreeze
agents and water molecules at the ice surface is also critical for the binding of antifreeze
agents to ice [57,58,92–94]. The nearest neighbor distance between the –CH3 group and
the O/N atom in –CONH– is about 4.0/4.5 Å. Moreover, the distance between the S/W
and Hex sites of ice is about 5.0 Å and 5.3 Å (Figure 7a), respectively. The proper distances
between the –CH3 groups and –CONH– groups can have a significant “stereoscopic match”
with the binding site on ice surfaces due to the flexibility of hydrogen bonds, and the
–CH3 group can be further stabilized on ice surfaces by its adjacent –CONH– group, which
binds to ice through directly hydrogen bonding. Thus, they can cooperatively promote the
binding of AFGP8 to ice (Figure 7b). This might be one of the reasons why the IRI activity
of AFGP8 is orders of magnitude better than PVAs. From the above analysis, we argue that
hydrogen-bonding and hydrophobic groups contribute equally to the binding of AFGP8 to
ice, in which the hydrophobic groups help AFGP8 to make contact with ice surfaces and
the hydrogen-bonding groups anchor AFGP8 on ice surfaces.
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(a) The lattice parameters of ice Ih prism surface (red double arrow line) and the binding sites of
AFGP8 on ice prism surface. S and W (green circles) are the binding sites of methyl groups. Hex (blue
circles) are the binding sites of amide groups (including hydroxy groups), representing the top of O
or H atoms at the vertex of the ice hexagon. (b) Co-adsorption of methyl groups and amide groups
on ice prism surfaces. The color coding: methyl groups (green balls), O (orange balls) and N (blue
balls) of amide groups; the backbone of AFGP8 (orange ribbon and colorful sticks); hydrogen bonds
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3.4. AFGP8 Perturbs the Water Dynamics

Previous works have suggested that AFGPs can also inhibit the growth of ice by
perturbing water dynamics [46,95–97]. To explore the influence of different groups in
AFGP8 on water dynamics, we further analyze the structural relaxation of hydrogen
bonds via the intermittent hydrogen bond autocorrelation function CHB(t), as shown in
Figure 8. Obviously, the CHB(t) between –CONH– groups and water decays more slowly
than that between –OH groups and water (Figure 8a), which hints that the –CONH–
group of AFGP8 has more stable hydrogen bonding with adjacent water molecules. In
this regard, we conjecture that the –CONH– groups of AFGP8 may be more steadily
adsorbed on ice surfaces than –OH groups. We also note that the CHB(t) between hydrogen-
bonding (–CONH– or –OH) groups and water decays significantly slower than that of
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water (Figure 8a,b), suggesting that –CONH– and –OH groups that stay in the ice-like
water layer can capture the surrounding water molecules and block the diffusion of water
onto the ice surface, thus further reducing the growth rate of ice. Overall, AFGP8 slows
down the dynamics of the surrounding water and perturbs the hydrogen bond network
of ice-like water (insert of Figure 8b), which is consistent with previous experimental
reports [33,95] and simulation studies [46,96,98]. Therefore, it is evident that AFGP8
inhibits ice growth not only by direct adsorption but also by slowing down the dynamics
of the surrounding water.
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3.5. The Flexible Disaccharides Are as Useful as the Rigid Backbone in Anti-Freezing

In our simulations, we observe that AFGP8 can automatically explore the appropriate
binding position on the ice surface. Although it has been explained by the great flexibility of
AFGP8 [45], the specific contribution of different residues of AFGP8 to its flexibility is still
elusive. Here, we analyze the mobility of different groups of AFGP8 in solution by comput-
ing the mean squared displacement (MSD), as shown in Figure 9a. The result indicates that
the sequence of the mobility of these three groups is: –OH > –CH3 > –CONH–, whether
at 268 or 300 K. This may explain why the CHB(t) between –CONH– groups and water
decays more slowly than that between –OH and water. To further visualize the flexibility
of each residue of AFGP8, we calculate the B factor of AFGP8, see Figure 9b. Clearly, the
disaccharide of AFGP8 is more flexible than the peptide. This suggests that the backbone is
harder to break off once it binds to the ice surfaces due to its slight rigidity; thereby, it may
bind to ice more easily than the disaccharides. Accordingly, the disaccharides are slightly
harder to anchor to the ice surface firmly, which requires forming multiple hydrogen bonds
with ice simultaneously. This may explain why most of the disaccharide chains of AFGP8
stay in solution and the case of BDB is more common than DDB in simulations. On the
other hand, these disaccharides in solution can slow down the dynamics of the surrounding
water and prevent water molecules from entering the ice surfaces, thus further enhancing
the IRI activity of AFGP8. Combining the idea that high affinity to water is necessary for
the effective separation of some IRI agents in the ice-water interface and gaining a high IRI
activity proposed by Wang et al. [99], the more flexible and hydrophilic disaccharides may
facilitate AFGP8 diffusion through the ice surfaces until finding the suitable adsorption
sites and cover a wider area of ice surfaces to gain a better antifreeze activity. Therefore, we
argue that both the highly flexible disaccharide motifs and the appropriately rigid backbone
play a crucial role in the individual antifreeze effect of AFGP8.
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4. Conclusions

We combine all-atom molecular dynamics simulations and density functional theory
(DFT) calculations to systematically elucidate the ice growth inhibition mechanism of
AFGP8 and the roles of –CH3, –CONH– and –OH groups in the binding of AFGP8 to
ice. On the one hand, AFGP8 can inhibit ice growth by an adsorption mechanism. Our
simulations indicate that both the backbone and disaccharides can bind to ice, and the
binding of AFGP8 to ice is driven by the synergistic effect of hydrophobic desolvation and
hydrogen bonding. The bindings can be divided into three cases: WB, BDB and DDB. The
reversible (WB) and irreversible (BDB and DDB) binding between protein and ice surfaces
are obviously observed on our finite simulation time scale (1000 ns) and the supercooling
condition (268 K), and the binding strengths of AFGP8 to ice are comparable for both
DDB and BDB. On the other hand, AFGP8 also enhances IRI activity by slowing down
the dynamics of the surrounding water and perturbing the hydrogen bond network. The
disaccharides are generally more flexible than the backbone and most of them prefer to
sway in solution and perturb the water dynamics, therefore further enhancing the IRI
activity of AFGP8.

Furthermore, our results show that the hydrophobic (–CH3) and hydrogen-bonding
(–CONH– or –OH) groups contribute equally to the binding of AFGP8 to ice, and synergis-
tically promote this binding. Specifically, the –CH3 groups promote AFGP8 contact with ice
surfaces through hydrophobic interaction, while the –CONH– and –OH groups anchor the
backbone and disaccharides to ice surfaces through direct hydrogen bonding, respectively.
The binding affinity of these three groups is relevant to not only the subtle contribution
of both enthalpic and entropic interactions but also the local topology of the complicated
protein or ice surface. In particular, the ancillary simulations of GLY14 indicate that the
–CONH– group also plays an important role in the IRI activity. Additionally, the –OH
groups on the disaccharides of AFGP8 more easily perturb the water dynamic due to their
high mobility and strong hydrogen bonding. It is also observed in our simulation that the
–CONH– groups on the disaccharide moieties can directly bind to ice, which is consistent
with the experiment result that the N-acetyl groups are important for the extraordinary
antifreeze activity of AFGP8 [60]. Based on our results, we suggest the following for the
design of highly effective flexible IRI agents: (1) A separation of the relatively hydrophobic
rigid backbone and hydrophilic flexible side chains is necessary, the rigid part is easier to
bind to ice and the flexible side chains can bind to ice and perturb the dynamics of the sur-
rounding water; (2) Enough ice binding sites (hydrogen-bonding and hydrophobic groups)
are required; thereby, the IRI agents can bind to ice strongly with a variety of configurations
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and gain a high IRI activity; (3) The hydrogen-bonding groups and hydrophobic groups
need to be spatially distributed in a way that fits the ice structure, promoting the binding of
IRI agents to ice through synergistic effects. Overall, this work enhances the understanding
of the IRI mechanisms of AFGPs at the molecular level and has important implications for
guiding the design of more refined materials with high antifreeze activity for medical and
industrial, as well as agricultural applications.
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