Effect of the Growth Interruption on the Surface Morphology and Crystalline Quality of MOCVD-Grown h-BN
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, L.; Feng, Y.P.; Shen, Z.X. Structural and electronic properties ofh-BN. Phys. Rev. B 2003, 68, 104102. [Google Scholar] [CrossRef]
- Ooi, N.; Rairkar, A.; Lindsley, L.; Adams, J.B. Electronic structure and bonding in hexagonal boron nitride. J. Phys. Condens. Matter 2006, 18, 97–115. [Google Scholar] [CrossRef]
- Hod, O. Graphite and Hexagonal Boron-Nitride have the Same Interlayer Distance. Why? J. Chem. Theory Comput. 2012, 8, 1360–1369. [Google Scholar] [CrossRef] [Green Version]
- Han, N.; Liu, H.; Zhang, J.; Gao, J.; Zhao, J. Atomistic understanding of the lateral growth of graphene from the edge of an h-BN domain: Towards a sharp in-plane junction. Nanoscale 2017, 9, 3585–3592. [Google Scholar] [CrossRef]
- Ludwiczak, K.; Da Browska, A.K.; Binder, J.; Tokarczyk, M.; Iwanski, J.; Kurowska, B.; Turczynski, J.; Kowalski, G.; Bozek, R.; Stepniewski, R.; et al. Heteroepitaxial Growth of High Optical Quality, Wafer-Scale van der Waals Heterostrucutres. ACS Appl. Mater. Interfaces 2021, 13, 47904–47911. [Google Scholar] [CrossRef]
- Levendorf, M.P.; Kim, C.J.; Brown, L.; Huang, P.Y.; Havener, R.W.; Muller, D.A.; Park, J. Graphene and boron nitride lateral heterostructures for atomically thin circuitry. Nature 2012, 488, 627–632. [Google Scholar] [CrossRef]
- Wang, H.; Zhao, Y.; Xie, Y.; Ma, X.; Zhang, X. Recent progress in synthesis of two-dimensional hexagonal boron nitride. J. Semicond. 2017, 38, 031003. [Google Scholar] [CrossRef]
- Kubota, Y.; Watanabe, K.; Tsuda, O.; Taniguchi, T. Deep ultraviolet light-emitting hexagonal boron nitride synthesized at atmospheric pressure. Science 2007, 317, 932–934. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Wang, P.; Lee, W.; Corbett, J.P.; Koll, W.H.; Vu, N.M.; Laleyan, D.A.; Wen, Q.; Wu, Y.; Pandey, A.; Gim, J.; et al. Scalable Synthesis of Monolayer Hexagonal Boron Nitride on Graphene with Giant Bandgap Renormalization. Adv. Mater. 2022, 34, e2201387. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, Q.; Bai, Y.; Zhang, H.; Hu, P.; Li, Y.; Yun, F. Deep-UV hexagonal boron nitride (hBN)/BAlN distributed Bragg reflectors fabricated by RF-sputtering. Opt. Mater. Express 2020, 11, 180–188. [Google Scholar] [CrossRef]
- Laleyan, D.A.; Zhao, S.R.; Woo, S.Y.; Tran, H.N.; Le, H.B.; Szkopek, T.; Guo, H.; Botton, G.A.; Mi, Z.T. AIN/h-BN Heterostructures for Mg Dopant-Free Deep Ultraviolet Photonics. Nano Lett. 2017, 17, 3738–3743. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Guo, Y.; Sundaram, S.; Yan, J.; Zhang, L.; Wei, T.; Wei, X.; Wang, J.; Ougazzaden, A.; Li, J. Exfoliation of AlN film using two-dimensional multilayer hexagonal BN for deep-ultraviolet light-emitting diodes. Appl. Phys. Express 2019, 12, 015505. [Google Scholar] [CrossRef]
- Chen, J.; Wang, G.; Meng, J.; Cheng, Y.; Yin, Z.; Tian, Y.; Huang, J.; Zhang, S.; Wu, J.; Zhang, X. Low-Temperature Direct Growth of Few-Layer Hexagonal Boron Nitride on Catalyst-Free Sapphire Substrates. ACS Appl. Mater. Interfaces 2022, 14, 7004–7011. [Google Scholar] [CrossRef]
- Grenadier, S.; Maity, A.; Li, J.; Lin, J.Y.; Jiang, H.X. Lateral charge carrier transport properties of B-10 enriched hexagonal BN thick epilayers. Appl. Phys. Lett. 2019, 115, 072108. [Google Scholar] [CrossRef]
- Li, J.; Majety, S.; Dahal, R.; Zhao, W.P.; Lin, J.Y.; Jiang, H.X. Dielectric strength, optical absorption, and deep ultraviolet detectors of hexagonal boron nitride epilayers. Appl. Phys. Lett. 2012, 101, 171112. [Google Scholar] [CrossRef] [Green Version]
- Bourrellier, R.; Meuret, S.; Tararan, A.; Stephan, O.; Kociak, M.; Tizei, L.H.; Zobelli, A. Bright UV Single Photon Emission at Point Defects in h-BN. Nano Lett. 2016, 16, 4317–4321. [Google Scholar] [CrossRef]
- Gan, L.; Zhang, D.; Zhang, R.; Zhang, Q.; Sun, H.; Li, Y.; Ning, C.Z. Large-Scale, High-Yield Laser Fabrication of Bright and Pure Single-Photon Emitters at Room Temperature in Hexagonal Boron Nitride. ACS Nano 2022, 16, 14254–14261. [Google Scholar] [CrossRef]
- Li, Q.; Wang, M.; Bai, Y.; Zhang, Q.; Zhang, H.; Tian, Z.; Guo, Y.; Zhu, J.; Liu, Y.; Yun, F.; et al. Two-Inch Wafer-Scale Exfoliation of Hexagonal Boron Nitride Films Fabricated by RF-Sputtering. Adv. Funct. Mater. 2022, 32, 2206094. [Google Scholar] [CrossRef]
- Li, X.; Sundaram, S.; El Gmili, Y.; Ayari, T.; Puybaret, R.; Patriarche, G.; Voss, P.L.; Salvestrini, J.P.; Ougazzaden, A. Large-Area Two-Dimensional Layered Hexagonal Boron Nitride Grown on Sapphire by Metalorganic Vapor Phase Epitaxy. Cryst. Growth Des. 2016, 16, 3409–3415. [Google Scholar] [CrossRef]
- Dahal, R.; Li, J.; Majety, S.; Pantha, B.N.; Cao, X.K.; Lin, J.Y.; Jiang, H.X. Epitaxially grown semiconducting hexagonal boron nitride as a deep ultraviolet photonic material. Appl. Phys. Lett. 2011, 98, 211110. [Google Scholar] [CrossRef] [Green Version]
- Doan, T.C.; Li, J.; Lin, J.Y.; Jiang, H.X. Charge carrier transport properties in layer structured hexagonal boron nitride. AIP Adv. 2014, 4, 107126. [Google Scholar] [CrossRef] [Green Version]
- Paduano, Q.S.; Snure, M.; Bondy, J.; Zens, T.W.C. Self-terminating growth in hexagonal boron nitride by metal organic chemical vapor deposition. Appl. Phys. Express 2014, 7, 071004. [Google Scholar] [CrossRef]
- Rice, A.; Allerman, A.; Crawford, M.; Beechem, T.; Ohta, T.; Spataru, C.; Figiel, J.; Smith, M. Effects of deposition temperature and ammonia flow on metal-organic chemical vapor deposition of hexagonal boron nitride. J. Cryst. Growth 2018, 485, 90–95. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Makimoto, T. Growth of Boron Nitride on 6H–SiC Substrate by Flow-Rate Modulation Epitaxy. Jpn. J. Appl. Phys. 2006, 45, 3519–3521. [Google Scholar] [CrossRef]
- Chugh, D.; Wong-Leung, J.; Li, L.; Lysevych, M.; Tan, H.H.; Jagadish, C. Flow modulation epitaxy of hexagonal boron nitride. 2D Mater. 2018, 5, 045018. [Google Scholar] [CrossRef]
- Yang, X.; Nitta, S.; Nagamatsu, K.; Bae, S.-Y.; Lee, H.-J.; Liu, Y.; Pristovsek, M.; Honda, Y.; Amano, H. Growth of hexagonal boron nitride on sapphire substrate by pulsed-mode metalorganic vapor phase epitaxy. J. Cryst. Growth 2018, 482, 1–8. [Google Scholar] [CrossRef]
- Jiang, H.X.; Lin, J.Y. Review—Hexagonal Boron Nitride Epilayers: Growth, Optical Properties and Device Applications. ECS J. Solid State Sci. Technol. 2016, 6, Q3012–Q3021. [Google Scholar] [CrossRef]
- Kim, D.Y.; Han, N.; Jeong, H.; Kim, J.; Hwang, S.; Kim, J.K. Role of hydrogen carrier gas on the growth of few layer hexagonal boron nitrides by metal-organic chemical vapor deposition. AIP Adv. 2017, 7, 045116. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.Y.; Han, N.; Jeong, H.; Kim, J.; Hwang, S.; Song, K.; Choi, S.-Y.; Kim, J.K. Pressure-Dependent Growth of Wafer-Scale Few-layer h-BN by Metal–Organic Chemical Vapor Deposition. Cryst. Growth Des. 2017, 17, 2569–2575. [Google Scholar] [CrossRef]
- Bera, K.; Chugh, D.; Patra, A.; Tan, H.H.; Jagadish, C.; Roy, A. Strain distribution in wrinkled hBN films. Solid State Commun. 2020, 310, 113847. [Google Scholar] [CrossRef]
- Geick, R.; Perry, C.H.; Rupprecht, G. Normal Modes in Hexagonal Boron Nitride. Phys. Rev. 1966, 146, 543–547. [Google Scholar] [CrossRef]
- Yap, Y.K.; Kida, S.; Aoyama, T.; Mori, Y.; Sasaki, T. Influence of negative dc bias voltage on structural transformation of carbon nitride at 600 degrees C. Appl. Phys. Lett. 1998, 73, 915–917. [Google Scholar] [CrossRef]
- Kobayashi, Y.; Akasaka, T. Hexagonal BN epitaxial growth on (0001) sapphire substrate by MOVPE. J. Cryst. Growth 2008, 310, 5044–5047. [Google Scholar] [CrossRef]
- Ahmed, K.; Dahal, R.; Weltz, A.; Lu, J.J.Q.; Danon, Y.; Bhat, I.B. Effects of sapphire nitridation and growth temperature on the epitaxial growth of hexagonal boron nitride on sapphire. Mater. Res. Express 2017, 4, 015007. [Google Scholar] [CrossRef] [Green Version]
- Tay, R.Y.; Tsang, S.H.; Loeblein, M.; Chow, W.L.; Loh, G.C.; Toh, J.W.; Ang, S.L.; Teo, E.H.T. Direct growth of nanocrystalline hexagonal boron nitride films on dielectric substrates. Appl. Phys. Lett. 2015, 106, 101901. [Google Scholar] [CrossRef]
- Souqui, L.; Palisaitis, J.; Högberg, H.; Pedersen, H. Plasma CVD of B–C–N thin films using triethylboron in argon–nitrogen plasma. J. Mater. Chem. C 2020, 8, 4112–4123. [Google Scholar] [CrossRef] [Green Version]
- Nasrin, K.; Sudharshan, V.; Subramani, K.; Karnan, M.; Sathish, M. In-Situ Synergistic 2D/2D MXene/BCN Heterostructure for Superlative Energy Density Supercapacitor with Super-Long Life. Small 2022, 18, e2106051. [Google Scholar] [CrossRef] [PubMed]
- Lewis, J.S.; Vaidyaraman, S.; Lackey, W.J.; Agrawal, P.K.; Freeman, G.B.; Barefield, E.K. Chemical vapor deposition of boron-carbon films using organometallic reagents. Mater. Lett. 1996, 27, 327–332. [Google Scholar] [CrossRef]
- Mazaheri, A.; Javadi, M.; Abdi, Y. Chemical Vapor Deposition of Two-Dimensional Boron Sheets by Thermal Decomposition of Diborane. ACS Appl. Mater. Interfaces 2021, 13, 8844–8850. [Google Scholar] [CrossRef]
- Snure, M.; Paduano, Q.; Hamilton, M.; Shoaf, J.; Mann, J.M. Optical characterization of nanocrystalline boron nitride thin films grown by atomic layer deposition. Thin Solid Film. 2014, 571, 51–55. [Google Scholar] [CrossRef]
- Caban, P.A.; Teklinska, D.; Michalowski, P.P.; Gaca, J.; Wojcik, M.; Grzonka, J.; Ciepielewski, P.; Mozdzonek, M.; Baranowski, J.M. The role of hydrogen in carbon incorporation and surface roughness of MOCVD-grown thin boron nitride. J. Cryst. Growth 2018, 498, 71–76. [Google Scholar] [CrossRef]
- Pedersen, H.; Höglund, C.; Birch, J.; Jensen, J.; Henry, A. Low Temperature CVD of Thin, Amorphous Boron-Carbon Films for Neutron Detectors. Chem. Vap. Depos. 2012, 18, 221–224. [Google Scholar] [CrossRef] [Green Version]
- Yang, X.; Nitta, S.; Pristovsek, M.; Liu, Y.; Nagamatsu, K.; Kushimoto, M.; Honda, Y.; Amano, H. Interface amorphization in hexagonal boron nitride films on sapphire substrate grown by metalorganic vapor phase epitaxy. Appl. Phys. Express 2018, 11, 051002. [Google Scholar] [CrossRef]
- Zhao, L.; Yang, K.; Ai, Y.; Zhang, L.; Niu, X.; Lv, H.; Zhang, Y. Crystal quality improvement of sputtered AlN film on sapphire substrate by high-temperature annealing. J. Mater. Sci. Mater. Electron. 2018, 29, 13766–13773. [Google Scholar] [CrossRef]
- Thangasamy, P.; Santhanam, M.; Sathish, M. Supercritical Fluid Facilitated Disintegration of Hexagonal Boron Nitride Nanosheets to Quantum Dots and Its Application in Cells Imaging. ACS Appl. Mater. Interfaces 2016, 8, 18647–18651. [Google Scholar] [CrossRef]
- Du, X.Z.; Li, J.; Lin, J.Y.; Jiang, H.X. The origin of deep-level impurity transitions in hexagonal boron nitride. Appl. Phys. Lett. 2015, 106, 021110. [Google Scholar] [CrossRef] [Green Version]
- Berzina, B.; Korsaks, V.; Trinkler, L.; Sarakovskis, A.; Grube, J.; Bellucci, S. Defect-induced blue luminescence of hexagonal boron nitride. Diam. Relat. Mater. 2016, 68, 131–137. [Google Scholar] [CrossRef]
- Vokhmintsev, A.; Weinstein, I.; Zamyatin, D. Electron-phonon interactions in subband excited photoluminescence of hexagonal boron nitride. J. Lumin. 2019, 208, 363–370. [Google Scholar] [CrossRef]
- Sunny, A.; Balapure, A.; Ganesan, R.; Thamankar, R. Room-Temperature Deep-UV Photoluminescence from Low-Dimensional Hexagonal Boron Nitride Prepared Using a Facile Synthesis. ACS Omega 2022, 7, 33926–33933. [Google Scholar] [CrossRef]
- Ngwenya, T.B.; Ukpong, A.M.; Chetty, N. Defect states of complexes involving a vacancy on the boron site in boronitrene. Phys. Rev. B 2011, 84, 245425. [Google Scholar] [CrossRef] [Green Version]
- Weston, L.; Wickramaratne, D.; Mackoit, M.; Alkauskas, A.; Van de Walle, C.G. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 2018, 97, 214104. [Google Scholar] [CrossRef] [Green Version]
- He, Y.; Tian, H.; Khanaki, A.; Shi, W.; Tran, J.; Cui, Z.; Wei, P.; Liu, J. Large-area adlayer-free single-layer h-BN film achieved by controlling intercalation growth. Appl. Surf. Sci. 2019, 498, 143851. [Google Scholar] [CrossRef]
- Cao, X.K.; Clubine, B.; Edgar, J.H.; Lin, J.Y.; Jiang, H.X. Two-dimensional excitons in three-dimensional hexagonal boron nitride. Appl. Phys. Lett. 2013, 103, 191106. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Guo, Y.; Liu, Z.; Wang, D.; Li, Q.; Yan, J.; Li, J.; Wang, J. Effect of the Growth Interruption on the Surface Morphology and Crystalline Quality of MOCVD-Grown h-BN. Crystals 2023, 13, 486. https://doi.org/10.3390/cryst13030486
Zhang Q, Guo Y, Liu Z, Wang D, Li Q, Yan J, Li J, Wang J. Effect of the Growth Interruption on the Surface Morphology and Crystalline Quality of MOCVD-Grown h-BN. Crystals. 2023; 13(3):486. https://doi.org/10.3390/cryst13030486
Chicago/Turabian StyleZhang, Qi, Yanan Guo, Zhibin Liu, Dadi Wang, Qiang Li, Jianchang Yan, Jinmin Li, and Junxi Wang. 2023. "Effect of the Growth Interruption on the Surface Morphology and Crystalline Quality of MOCVD-Grown h-BN" Crystals 13, no. 3: 486. https://doi.org/10.3390/cryst13030486
APA StyleZhang, Q., Guo, Y., Liu, Z., Wang, D., Li, Q., Yan, J., Li, J., & Wang, J. (2023). Effect of the Growth Interruption on the Surface Morphology and Crystalline Quality of MOCVD-Grown h-BN. Crystals, 13(3), 486. https://doi.org/10.3390/cryst13030486