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Abstract: A 9%Cr martensitic steel with Ta and B additions was subjected to thermo-mechanical
treatment (TMT) including rolling in the range of metastable austenite at 900–700 ◦C followed by
water quenching and tempering at different temperatures. Applied TMT with tempering at T≥ 700 ◦C
substantially improved the impact toughness. The application of the TMT with subsequent tempering
at 780 ◦C decreased the ductile–brittle transition temperature from 40 to 15 ◦C and increased the upper
shelf energy from 300 to 380 J/cm2 as compared to the normalized and tempered (NT) condition.
The microstructural observations with scanning and transmission electron microscopes showed
the precipitation of fine Ta-rich MX carbonitride and M23C6 carbide during TMT and subsequent
tempering. The analysis of the cleavage facets and the secondary cracks with electron back-scattered
diffraction (EBSD) revealed that the brittle fracture occurred via cleavage cracking along {100} planes
across the laths, while the high-angle boundaries of martensite blocks and packets were effective
barriers to the crack propagation. The increased impact toughness of the tempered TMT steel sample
was attributed to enhanced ductile fracture owing to the uniform dispersion of the precipitates and
favorable {332}〈113〉 crystallographic texture.

Keywords: high-Cr martensitic steels; electron microscopy; mechanical characterization; ductile–brittle
transition; grain and interfaces; fracture behavior

1. Introduction

High-chromium martensitic steels are the main structural materials used in the steam
circuit of modern power units due to their relatively high creep strength, good oxidation
resistance at elevated temperatures and low cost [1–3]. In recent decades, significant efforts
have been made to the development of advanced 9–12%Cr steels with increased boron con-
tent. The improved creep strength of these steel grades is mainly attributed to the pinning
effect from the finely dispersed M23C6 carbide and MX carbonitride (M—metal; X—C/N)
particles precipitated along the grain boundaries and characterized by low coarsening rate
at the elevated temperature [1,4–6]. The enrichment of M23C6 carbides by B enhances their
coarsening resistance under creep and aging conditions [7–10]. This effect was considered
as a result of decreased surface energy of the M23(C,B)6/Ferrite interfaces [7,10,11]. It
should be noted that the boron is a strong nitride-forming element and may form coarse
BN particles in steels with standard N content of 500 ppm [12]. Thus, the nitrogen content
should be controlled to prevent the formation of an undesirable brittle BN phase. The
balanced content of B = 130 ppm and N = 70 ppm was shown as a promising alloying
concept to increase the stability of M23C6 carbides without the formation of BN particles
and to provide improved creep strength [6,10,13]. However, these steels were often found to
be highly susceptible to brittle fracture at room temperature after conventional normalizing
and tempering treatment [14–18]. To improve the impact toughness, these steels are usually
subjected to tempering at higher temperatures (760–780 ◦C vs. 750–760 ◦C) compared to
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the widely used commercial steels such as P91 and P92 [14,15,18,19]. It was suggested
that the high density of M23C6 carbides located at the lath and block boundaries provoke
brittle fracture while spheroidization and coarsening of these particles may enhance the
Charpy impact energy [15]. Yan et. al. reported that the improvement of the toughness with
increasing tempering temperature can be also attributed to a decrease of the dislocation
density and the degree of supersaturation of interstitial atoms [14]. An increase in the
tempering temperature leads to the pronounced coarsening of precipitates and widening of
martensitic laths, thereby limiting the potential for an increase in creep resistance. Hence,
the developing of an effective processing method for improving both the impact toughness
and the distribution of secondary precipitations is of great importance.

Many studies have attempted to improve the mechanical properties of high-chromium
martensitic steels by applying thermo-mechanical processing [20–25]. These works actually
achieved considerable improvement in creep strength associated with the strengthening
effect caused by finer laths and smaller precipitates [20,22–25]. Hot rolling in the non-
recrystallization temperature region of γ-phase followed by water quenching was shown
to produce a high density of dislocations which could serve as additional nucleation sites
for precipitates and thus affects the particle dispersion [20,25–27]. Moreover, the devel-
opment of various crystallographic textures during deformation, recrystallization and
transformation may significantly influence the mechanical properties, especially, impact
toughness [20,28–30]. Some of textures of controlled rolled steels, such as {332}〈113〉 and
{554}〈225〉, were found particularly beneficial for the strength and toughness [28,30,31].
Thus, hot-rolling can be considered as promising method to provide the desirable fine-
grained microstructure, and improved mechanical properties of high-chromium marten-
sitic steels.

Since the steel grades with a modified balance of B and N have been developed re-
cently, there are limited data regarding the effect of hot-rolling and subsequent tempering
on their microstructure and mechanical properties. Therefore, the purpose of the present
study is to investigate the relationship between the microstructure and impact toughness
in the advanced 9%Cr steel with increased boron content subjected to different thermal and
thermo-mechanical treatments. The influence of the secondary precipitates and crystallo-
graphic texture on the fracture behavior with regard to that of the tempering temperatures
is discussed.

2. Materials and Methods

A 50 kg ingot of the studied 9%Cr steel was produced by vacuum induction melting.
The chemical composition of the steel is given in Table 1. The alloying design of the steel is
similar to that of commercial P92 grade. In this steel the boron and nitrogen contents were
adjusted to 120 ppm and 70 ppm, respectively, and Ta was added to enhance the dispersion
of the M23C6 and MX precipitates [32]. Two bars with dimensions 200 × 100 × 50 mm3

were homogenized at 1200 ◦C for 12 h followed by multidirectional hot forging. Then the
steel bars were subjected to the thermal and thermo-mechanical treatments as follows:

(1) Austenitization at 1050 ◦C for 30 min, air cooling (hereafter denoted as NT).
(2) Austenitization at 900 ◦C for 90 min, hot rolling with total reduction of 40%, water

quenching (hereafter denoted as HR+Q).

Table 1. Chemical composition of the studied steel (wt.%).

C Si Mn Cr Co Mo W V Nb Ni B N Ta Fe

0.11 0.03 0.31 9.05 3.03 0.60 1.99 0.20 0.06 0.02 0.013 0.007 0.085 Bal.

The NT and HR+Q samples were cut into 60× 21× 21 mm3 (length×width× thickness)
pieces and tempered at different temperatures ranging from 300 to 800 ◦C for 3 h. The
specimens with a gauge length of 16 mm, a width of 3 mm and a thickness of 1.5 mm were
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prepared for tensile tests. The tensile tests were performed at room temperature using an
Instron 5882 testing machine at a constant loading rate of 1 mm/min. The impact tests were
carried out on standard Charpy specimens of 10× 10× 55 mm3 with a 2 mm V-notch using
an Instron IMP460 impact testing machine equipped with an Instron Dynatup Impulse
data acquisition system. The load on the specimens during impact tests was continuously
recorded as a function of the deflection. The orientation and dimensions of the tensile
and Charpy specimens are sketched in Figure 1 along with the heat treatment and thermo-
mechanical treatment schemes. The ductile–brittle transition temperature (DBTT) was
determined as a temperature corresponding to the half value of the sum of the upper shelf
energy (USE) and the lower shelf energy (LSE).
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Figure 1. Schematic diagrams of thermal and thermo-mechanical heat treatments and schematic
view of the rolled steel plate showing the orientation and dimensions of tensile and Charpy impact
specimens (All dimensions are in mm).

The microstructures of the steel samples were analyzed by JEOL JEM-2100 trans-
mission electron microscope (TEM) with an INCA energy-dispersive X-ray spectrometer
(EDS) and a FEI Quanta 600 FEG and Nova NanoSEM 250 scanning electron microscopes
(SEM) operated at 20 kV and equipped with EBSD analysis system. The samples for SEM
observations and thin foils for TEM analysis were prepared using electrolytic polishing
and double jet polishing techniques, respectively, using 10% HClO4 solution in CH3COOH.
The density of the lattice dislocation on TEM micrographs was estimated by counting
individual dislocations crossing the thin foil surfaces [33]:

ρTEM =
N
A

, (1)

where N is the number of dislocations and A is the selected area.
The precipitate residues were extracted by electrolytically dissolving the matrix of the

bulk samples using 5% HCl solution in C2H5OH at applied voltage of 20 V. At least 0.4 g of
each sample was dissolved. The insoluble residues were separated by a centrifuge, using
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a rotor speed of 4000 rpm for 10 min. The obtained residues were air dried and weighed.
The total mass fraction of residues wr in the steel samples was then calculated as:

wr =
mr

mr + mM
, (2)

where mr is the mass of the dried residue and mM is the mass of the dissolved matrix. The
equilibrium mass fractions of precipitates were calculated using the Thermo-Calc software
package integrated with TCFE7 steel database.

3. Results
3.1. Tensile Properties

The dependences of the yield strength (YS), the ultimate tensile strength (UTS) and
total elongation (TE) of the HR+Q and NT steel samples on tempering temperature are
shown in Figure 2a. Both untempered HR+Q and NT samples are characterized by YS
of about 1000 MPa and TE of 10%. UTS of the NT samples after tempering at T ≤ 500 ◦C
is about 100 MPa higher than that of the steel in HR+Q condition. YS increases with
increasing tempering temperature to T≤ 500 ◦C and then decreases rapidly. With increasing
tempering temperature from 500 to 780 ◦C, the difference in UTS of the HR+Q and NT
samples gradually disappears. The stress–strain curves of the untempered steel samples
and those tempered at 780 ◦C for 3 h are shown in Figure 2b. The steel samples exhibit
continuous yielding behavior and TE generally increases after high temperature tempering.
The observed values of YS and UTS for the NT and HR+Q samples after tempering at
750 ◦C are similar to those for a P92 steel (YS = 480 MPa, UTS = 700 MPa) tempered under
the same conditions [34].
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Figure 2. The effect of tempering temperature on the tensile properties of the NT and HR+Q
samples (a) and the engineering stress–strain curves of the NT and HR+Q samples (b).

3.2. Impact Toughness and DBTT

The as-normalized steel shows an average impact toughness of 24 J/cm2 that tends
to decrease during subsequent tempering at temperatures below 500 ◦C (Figure 3a). The
impact toughness of the NT samples tempered at 600–765 ◦C varies from 18 to 40 J/cm2,
indicating the prevalence of the brittle fracture of the steel in this condition. With increasing
tempering temperature to 780 ◦C and 800 ◦C, the impact toughness increases to 135 J/cm2

and 221 J/cm2, respectively. In contrast to the NT condition, the untempered HR+Q sample
shows a low toughness of 6 J/cm2, and tempering at 500 ◦C has no effect on the impact
behavior. The tempering at T ≥ 700 ◦C results in a remarkable improvement in the impact
toughness of HR+Q samples.
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Figure 3. The effect of tempering temperature on the impact toughness of the NT and HR+Q
samples (a) and the Charpy impact absorbed energy vs. impact test temperature curves of the NT
and HR+Q samples tempered at 780 ◦C for 3 h (b).

The significant increase in the fracture toughness of the NT sample as observed after
tempering at 780 ◦C correlates with the precipitation of Ta-rich MX carbonitrides, which
are expected to have a significant effect on the creep strength [32]. Thus, the HR+Q and NT
specimens were subjected to tempering at 780 ◦C and tested at various temperatures from
−196 to 150 ◦C in order to determine the effect of hot-rolling on the fracture behavior. The
obtained Charpy impact curves fitted by the Boltzmann function are depicted in Figure 3b.
The steel after HR+Q possesses a lower DBTT (15 vs. 40 ◦C) and higher USE (380 vs.
300 J/cm2) than that after NT treatment while the cryogenic impact toughness at −196 ◦C
is about 2 J/cm2 after both HR+Q and NT treatments.

3.3. Microstructure and Precipitate Analysis

Figure 4a,c shows the EBSD IPF (inverse pole figure) maps of the untempered NT and
HR+Q samples. The boundary maps with misorientation angles of 22◦–48◦ highlighting
the prior γ grains are represented in Figure 4b,d. The microstructures in the samples are
quite different. The lath martensite structure with relatively large size of prior austenite
grains (PAG) of 46 ± 4 µm evolves in the steel after normalization at 1050 ◦C. Whereas,
the coarse elongated PAGs with the mean size of 340 ± 50 µm were observed in the
HR+Q sample, thus indicating the austenite deformation during rolling below austenite
recrystallization temperature. The measured size of the martensite packets was 25 ± 3 µm
and 83 ± 15 µm for the NT and HR+Q samples, respectively (Table 2). The <002> pole
figure from the single prior austenite grain in the HR+Q sample is shown in Figure 4e.
It is seen that child martensite obeys Kurdjumov–Sachs (K-S) orientation relationships
(OR) of {111}A ‖ {101}M, <110> A‖ <111>M to the parent austenite phase, and all the
24 variants appear within PAGs. Almost random texture is expected in the NT sample. In
contrast, the hot-rolled austenite affected the texture in HR+Q samples. Figure 4f shows
the ϕ2 = 45◦ section of the orientation distribution function (ODF) of the untempered
HR+Q sample along with the various texture components. The major components of
the texture of the untempered HR+Q sample are {332}<113> and {112}<111>. Slightly
increased intensity is also observed for {001}〈100〉 Cube texture. The distributions of grain
boundaries with different misorientation angles are shown in Figure 5. The low fraction
of the boundaries with misorientations between 20◦ and 49◦ is a typical crystallographic
feature of the martensite transformation [35]. The fraction of low-angle boundaries in
the HR+Q sample is somewhat smaller than that in the NT sample. The substructure of
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both untempered NT and HR+Q samples is lath martensite with high density of tangled
dislocations of 1015 m−2 and carbide particles (Figure 6, Table 2).
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Figure 4. EBSD analysis of the untempered NT (a,b) and HR+Q (c–f) samples. Inverse pole figure
maps for TD (a,c) and grain boundary maps showing the boundaries with misorientations between
20◦ and 49◦ to reveal PAGs (b,d). The <002> pole figure (e) and ODF (ϕ2 = 45◦ section) of the HR+Q
sample (f).
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Table 2. Microstructural parameters and the mean size of precipitates in the NT and HR+Q samples.

Sample State PAG Size
(OM), µm

Packet Size
(EBSD), µm

Lath
Thickness
(TEM), µm

ρTEM,
m−2 × 1014

Mean
Length/Width

of M3C
Carbide, nm

Mean Size
of M23C6

carbide, nm

Mean Size of
MX Carboni-

trides, nm

NT
Untempered 46 ± 4 25 ± 3 0.19 ± 0.02 10.0 ± 4.3 80/11 - 38

Tempered at 780 ◦C -//- -//- 0.36 ± 0.05 0.9 ± 0.3 - 79 21

HR+Q Untempered 340 ± 50 83 ± 15 0.41 ± 0.06 9.8 ± 3.9 - 69 6
Tempered at 780 ◦C -//- -//- 0.46 ± 0.05 0.5 ± 0.2 - 102 15
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It was previously shown that the steel normalized at 1050 ◦C contains the autotem-
pered needle-like cementite particles and MX-type carbonitrides [32]. The mean width of
martensite laths formed during HR+Q treatment is about two times larger than that formed
during the NT treatment (0.40 µm vs. 0.19 µm). However, this difference diminishes after
tempering at 780 ◦C.

The suppressed lath/subgrain boundary migration during tempering of the steel
after HR+Q treatment may be due to the pinning effect from the thermodynamically
stable carbide particles. The selected area diffraction (SAD) and EDX analysis of the
secondary precipitates in the untempered HR+Q sample reveal the presence of M23C6
particles with sizes ranging between 30 and 240 nm. Additionally, the precipitation of
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uniformly dispersed Ta-rich MX particles with the mean size of 15 nm was observed. These
particles are primarily located on the dislocations in lath interiors as shown in Figure 7. It
is worth noting that the mean size of the MX particles in the steel after thermo-mechanical
treatment is notably smaller than that in the NT sample (Table 2). Moreover, the finer
distribution of the MX carbonitrides maintains after subsequent tempering at 780 ◦C. The
SEM images of the NT and HR+Q samples in both the untempered condition and tempered
at 780 ◦C are given in Figure 8.

It is seen that M23C6 particles in the HR+Q sample are distributed more homoge-
neously than in the NT sample. Figure 9 shows the mass fraction of the extracted pre-
cipitate residue as function of tempering temperature along with thermodynamic-based
calculations performed using Thermo-Calc. The mass fraction of the precipitates in the
untempered HR+Q sample is ~65% higher than that of the steel after NT treatment.

Further tempering at a temperature above 500 ◦C is accompanied by an increase in the
total amount of the precipitate residue towards to the thermodynamically stable value. Note
that the equilibrium mass fraction of the secondary precipitates including M23C6 and MX
phases is calculated to be 0.35% at 900 ◦C. Therefore, the presence of M23C6 particles in the
as-quenched HR+Q treated steel can be justified by the lower austenitization temperature
(900 ◦C) which lies below the solvus temperature of this precipitating phase. Thus, in
contrast to conventional normalizing treatment, a certain proportion of the M23C6 particles
is formed during the hot-rolling process and is maintained in the steel after subsequent
water quenching.
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4. Discussion

The microstructural changes have a significant influence on the impact absorbed
energy. To examine the relationship between the microstructure and the fracture behavior,
the impact load versus displacement curves obtained during instrumented Charpy impact
tests are considered below. The total absorbed impact energy is composed of the crack
initiation energy, Wi, the crack propagation energy, Wp, and the crack arrest energy,
Wa [36,37]. The obtained values of the absorbed energy and the maximum load (PM) for the
steel in different conditions are summarized in Table 3. To evaluate the dynamic ultimate
tensile strength (σUTSd), the following experimental relationship was used [38]:

σUTSd =
2.385PMW

(W − a)2B
, (3)

where W is the specimen width (10 mm), B is the specimen thickness (10 mm) and a is the
notch depth (2 mm).

Table 3. Impact toughness, the energies absorbed at different crack propagation stages and dynamic
parameters calculated from load–deflection curves.

Sample State
Impact

Toughness,
J/cm2

Crack
Initiation

Energy (Wi), J

Crack
Propagation

Energy (Wp), J

Crack Arrest
Energy (Wa), J PM, kN σUTSd, MPa

NT

Untempered 24 13.7 5.5 - 29.3 1080
Tempered at 500 ◦C 5 1.8 1.7 - 6.8 255
Tempered at 700 ◦C 19 3.4 8.3 3.2 12.5 465
Tempered at 780 ◦C 96 47.4 12.2 17.1 21.8 810

HR+Q

Untempered 6 3.5 1.7 - 11.1 410
Tempered at 500 ◦C 6 2.1 3.0 - 7.0 260
Tempered at 700 ◦C 125 11.4 84.8 4.3 21.3 795
Tempered at 780 ◦C 212 50.3 96.0 23.2 20.3 755

The dynamic ultimate tensile strengths of the NT sample tempered at 500–700 ◦C and
the HR+Q sample tempered at T ≤ 500 ◦C are significantly lower than UTS values obtained
during tensile tests. This suggests that the crack initiates without plastic deformation
that is typical for the brittle fracture mechanism. The SEM fractography of the fractured
steel samples tempered at 500 ◦C reveals the quasi-cleavage facets with a river pattern
(Figure 10). The size of the facets in the HR+Q sample are slightly larger than those in the
NT sample, which correlates with the difference in the sizes of PAGs and packets (Table 2),
similar to the observations of Schino et al. [39]. The most common mechanism of the
cleavage fracture initiation in steels involves the cracking of the inclusions or second phase
particles due to plastic strain in the surrounding matrix [40–42]. Thus, the large packets
and the presence of relatively coarse M23C6 particles in the untempered HR+Q sample
facilitates the crack initiation and propagation. As a result, the fracture occurs at a lower
applied load and is characterized by low adsorbed energy as compared to that for the NT
sample in the untempered condition (Table 3).

The effect of the microstructure on the brittle fracture was also analyzed by observing
the secondary microcrack on the cross section close to the fracture surface of the ruptured
NT sample tempered at 500 ◦C (Figure 11). The observed crack has a length of ~20 µm
and is oriented at an angle of 30◦ to the primary crack propagation direction. The IPF map
and corresponding <002> pole figure clearly indicate that the crack is located within the
single PAG. Further consideration of the martensite variants show that the crack mostly
propagated along the {001} cleavage planes across the V1/V4 sub-blocks pair of the KS OR.
The stepwise crack path suggests that the crack propagated in a discontinuous manner.
The traced image of the fracture surface together with the block and packet boundaries
of the lath martensite reveal that the deflections of the crack path are associated with the
change in the crystal orientation between the different martensite packets and sub-block
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pairs. As the misorientation between sub-blocks is approximately 10◦ and that between
laths is 1–5◦ [35], it can be concluded that the boundaries between these microstructural
units are not effective in cleavage crack deflection, and thus cannot be treated in terms of
the effective grain size. In contrast, the high-angle boundaries of blocks and packets have a
similar ability to impede crack growth, which is in good agreement with other studies of
fracture behavior of lath martensite in low-alloy steels [43–45].

Since a significant difference in the impact behavior is found for the NT and HR+Q
specimens fractured at room temperature after tempering at 700 ◦C, the load–deflection
curves and fracture morphology are examined in this state (Figure 12).

The onset of the rapid crack propagation occurs immediately after peak load in both
NT and HR+Q samples. However, the remarkable difference in the slope of the load–
deflection curve at this stage is linked to the change in the fracture mode. The brittle
fracture in the crack propagation zone of the NT sample is characterized by transgranular
cleavage facets, while the fractured surface of the HR+Q specimen is composed of cleavage
facets separated by ductile dimples and tear ridges. The substantial post-peak load energy
absorption correlates with the large shear lip zones in the HR+Q sample. Moreover, the
presence of numerous large secondary cracks is linked to the delamination effect, which
is also confirmed by the load drops on the load–deflection curve (marked by the black
arrows in Figure 12). The presence of delamination was often observed in the hot-rolled
martensitic steels and associated with the development of crystallographic texture [30,46].
In these steels the texture of the deformed parent γ grains is inherited by martensite
during the transformation. The major transformation textures inherited by α from γ are
{332}〈113〉; {113}〈110〉 and {100}〈011〉 [28]. The crystallographic textures affect the impact
toughness by changing the densities of {001} cleavage planes lying parallel to the fracture
surface of impact specimens. The {332}〈113〉 component is the most desirable among the
transformation textures of the hot-rolled steels due to good formability, strength and impact
toughness [28,30]. Figure 13 represents the intensity of the major texture components in
the HR+Q sample. In this sample, the {332}〈113〉 texture has the highest intensity among
the observed texture components. This texture originates from the copper {112}〈111〉
component of deformed austenite [28]. The {001}〈110〉 component usually originated from
the Cube {001}〈100〉 component of the recrystallized austenite and has a low intensity in
the studied steel; thus, it has a little effect on the fracture behavior.
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Figure 11. SEM analysis of the secondary crack propagation in the NT sample tempered at 500 ◦C:
schematic and overall view of the ruptured Charpy specimen (a); SEM cross section image revealing
secondary cracks near to fracture surface (b); IPF map of the selected EBSD scan area (c); the variant
analysis of the lath martensite structure along the observed secondary crack and theoretical <002>
pole figure of martensite variants inside an austenite grain satisfying the K-S OR (d); the grain
boundary map showing the appearance of the crack deflection and corresponding three-dimensional
crystal orientations represented by unit cell cubes at the fracture surface (e).
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Figure 13. Major texture components in the untempered HR+Q sample.

An increased USE value of the tempered HR+Q steel sample is also indicating the
enhanced energy consumption of the ductile fracture as compared to that in the tempered
NT sample. The pronounced crack propagation stage on the load–deflection curves of the
HR+Q samples tempered at 780 ◦C and tested at 20 and 150 ◦C suggests a relatively slow
crack growth rate (Figure 14).

Figure 15 illustrates the fracture surface morphology of the steel samples tempered
at 780 ◦C and tested at 150 ◦C. The dimple pattern produced by ductile tearing in the
NT sample is characterized by a large number of small dimples, whereas the long and
narrow dimples mixed with small round dimples appeared on the tear ridges in the HR+Q
sample. The ductile crack propagation involves the nucleation, growth and coalescence of
microvoids. The microvoids are formed around the second phase particles when sufficient
stress is applied [41,47]. This is well agreed with in the SEM observations of the second
phase particles inside the dimples (Figure 15).
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780 ◦C and tested at 150 ◦C along with schematic illustration of the ductile crack propagation process.

It can be assumed that each formed void grows independently until it merges with
neighboring voids. Therefore, the local distribution of the precipitates plays an important
role in a ductile fracture. The preferred precipitation of the M23C6 carbides on the bound-
aries of PAGs, packets and blocks is an inherent feature of the tempered lath martensite
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structure [1,37,48,49]. In this structure the grain boundary precipitates are located closely to
each other, and the formed chains of particles act as the favorable path for the crack growth.
Since the carbide particles in the tempered NT sample are closely spaced, instability occurs
soon after these smaller voids form, resulting in the fine dimple pattern on the fracture
surface. In contrast, in the microstructure with uniformly distributed particles, the ductile
fracture is accompanied by a considerable plastic deformation in the formed voids followed
by the void linkage. As a consequence, the HR+Q sample tempered at 780 ◦C shows higher
crack propagation energy compared to the tempered NT sample. The uniform distribu-
tion of the M23C6 precipitates and increased density of MX nanoprecipitates after HR+Q
treatment is also expected to be beneficial for the creep resistance of the studied steel.

5. Conclusions

1. Hot-rolling of 9%Cr steel in the range of metastable γ-phase at 900–700 ◦C followed
by water quenching and tempering at T ≥ 700 ◦C results in a better impact toughness
compared to conventional normalization and tempering heat treatment. After tem-
pering at 780 ◦C, the HR+Q specimens exhibited a lower DBTT (15 vs. 40 ◦C) and
higher upper shelf energy (380 vs. 300 J/cm2) than the NT specimens. The presence
of numerous large secondary cracks on the fracture surface of the ruptured HR+Q
samples is associated with the delamination effect.

2. The hot-rolled and quenched steel is characterized by the lath martensite structure
with relatively large elongated PAGs of 340 ± 50 µm. Two types of precipitates are
observed in this condition. The dispersed particles of M23C6 carbide with the mean
size of 69 nm are uniformly dispersed on the lath/subgrain boundaries, whereas
fine Ta-rich MX carbonitride particles with a size of ~6 nm are precipitated on the
dislocations. Further tempering is accompanied by a decrease in the dislocation
density and an increase in the total amount of precipitates towards the equilibrium
content. Nevertheless, the mean size of MX carbonitride particles after tempering at
780 ◦C (15 nm) is still significantly smaller than that in the NT sample (21 nm).

3. The brittle fracture in the studied steel occurs via crack propagation along the {001}
cleavage planes. The high-angle boundaries of martensite packets and blocks hinder
the crack propagation while low-angle sub-block and lath boundaries are ineffec-
tive in retarding the cleavage crack propagation. The increased impact toughness of
the tempered HR+Q steel sample is attributed to the favorable {332}〈113〉 crystallo-
graphic texture and considerable plastic deformation during ductile fracture in the
microstructure with uniformly distributed particles.
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