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Abstract: Icing in the form of condensation frosting occurs ubiquitously in our daily life and numer-
ous industrial applications. As the frost layer mostly comprises mixed microscopic dendrites and
discrete air pockets, condensation frosting manifests a thick porous media and thus catastrophically
compromises the heat transfer efficiency of HVAC systems. Despite being a popular research topic
for centuries, a few unprecedented advances in the study of condensation frosting have been only
achieved very recently, such as the revealing of new features in the incipient stages of frost formation,
which used to be too fast or too small to capture, and new anti-/de-frosting techniques have been
developed based on the revealed physics. This work provides a comprehensive, up-to-date review of
condensation frosting, with an emphasis placed on progress in the very latest decade. Fundamentals
of condensation frosting, including condensation nucleation, coalescence and growth of the condensed
drops, icing nucleation, formation of frost halos, freezing propagation via ice bridging, and lastly den-
sification and fully developed frost layers, are introduced chronologically as what occurs. A summary
of recent engineering efforts to alleviate the negative impacts of condensation frosting, referred to as
anti-/de-frosting techniques, is also presented. The results of these studies can greatly enlighten the
existing understanding of condensation frosting and, meanwhile, benefit the development of new
anti-/de- frosting methods for numerous application backgrounds.

Keywords: condensation frosting; interfacial phenomena; frost characteristics; anti-/de-frosting
techniques

1. Introduction

Dated back to 1888, more than 130 years ago, Mr. A.N.S. saw the beautiful appearance of
snowflakes glowing in the dark night when exposed to sunlight, raising a few questions about
how these crystals are formed and why they look so fascinating [1]. It has been a remarkably
long history since people started to dig into one of the most ubiquitous phenomena encoun-
tered in nature and human activities, i.e., how water vapor gets frozen and the consecutive
processes such as the formation of frost, atmosphere icing (snow/hail/rime/frozen rain),
accretion of frost in HVAC (heating, ventilating, and air conditioning) systems, and snow/ice
making in sports and entertainment business [2,3]. Condensation frosting is one of the most
pervasive types of ice that we encounter in many application backgrounds. The structural in-
tegrity and mechanical reliability of infrastructures and facilities, such as power transmission
systems [4,5], aircraft, and wind turbines [6,7], can be compromised to a considerably large
extent due to frost accretion whenever exposed to humid and supercooled environments.
For heat transfer equipment such as refrigerators and heat pumps, both their heat transfer
efficacy and capacity will be tremendously reduced once the interfaces are covered by thick
porous frost layers [8–11]. Billions of economic losses or even the cost of human lives due
to frost/ice accretion have occurred multiple times, such as the cold weather strike across
southern China in 2018 and the Texas power crisis in 2021.
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Although we have come a long way since we noticed this intriguing phase-change
phenomenon, tried to explore the associated physics, and proposed promising strategies
to alleviate its negative impacts, our understanding of the physics associated with con-
densation frosting is still quite limited, and we are far from solving the frosting problem.
A great number of unprecedented advances in the study of condensation frosting have been
only achieved very recently. For instance, we used to believe icing nucleation in condensa-
tion frosting takes place in isolation by heterogeneous nucleation at the liquid–substrate
interface among a collection of condensed drops [12]. Dooley [13] and later Guadarrama-
Cetina et al. [14] found that small dendrites originated from a frozen drop contact physically
with its neighboring liquid drops to trigger them to freeze, resulting in a chain-like reac-
tion, referred to as freezing propagation. The revealing of freezing propagation dynamics,
along with other associated phenomena such as coalescences-induced spontaneous drop
jumping, two distinguished freezing stages of a sessile supercooled drop, and frost halos,
significantly reshaped our understanding of condensation frosting. Additionally, owing to
the recent development of surface engineering and microfabrication technologies [15–18],
tailoring surface chemistry and topological features to obtain superwettability to suppress
frost formation, termed anti-frosting approaches, has received growing attention in this
very decade. Compared to conventional de-frosting approaches, which solve the frosting
problem by promoting frost removal/drainage using thermal/mechanical/chemical ways,
anti-frosting approaches have already shown many clear advantages such as no require-
ment of external energy/chemical input [19], economically effective, and eco-friendly, to
name but a few.

Compared to other phase-change phenomena such as condensation, evaporation, and
boiling, icing, or more specifically condensation frosting, is undoubtedly the new hot spot
in thermal physics. Much greater progress has been made on condensation frosting in
the past decade, from both the fundamental studies of its physics and the application
of technologies aiming to address the frost challenge. Our work herein aims to provide
a comprehensive, up-to-date review of the literature on the recent progress of condensation
frosting. This review is organized as follows: Section 2 gives modified physical descriptions
of condensation frosting dynamics. Section 3 provides newly developed approaches to
solve the frost accretion problem with a special focus placed on anti-frosting methods.
Lastly, we conclude this review and provide our perspectives on this topic.

2. Mechanism of Condensation Frosting: 5 Consecutive Stages

Condensation frosting is a complex heat and mass transfer process composed of
two steps of phase change: condensation when ambient vapor becomes oversaturated
and nucleates on the liquid–substrate interface, and icing when condensed drops freeze
and subsequently frost dendrites grow atop frozen drops. Although the occurrence of
desublimation, i.e., vapor directly turns to ice on sufficiently hydrophilic surfaces and at
cold enough temperature (contact angle smaller than 50◦, substrate temperature lower
than −35 ◦C) [20], is also widespread, in this work we solely focus on the more general
cases of condensation frosting. As shown in Figure 1, we characterize the whole physical
process chronologically into five sequential stages: (I) nucleation, growth, and coalescence
of condensed drops; (II) icing in one of the condensed drops; (III) evaporation-induced
condensation/frost halos; (IV) freezing propagation via ice bridging; and (V) growth of ice
dendrites and frost densification.
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philic dots were patterned again on a hydrophobic background, engendering a typical 
wettability contrast. As shown in Figure 2a, the energy barrier for condensation nucleation 
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the late stage of condensation. Recently, engineered surfaces with both chemical and top-
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perhydrophobic nanograss. The condensation dynamics on this biphilic surface were cap-

Figure 1. Five physical stages of condensation frosting.

2.1. Condensation Nucleation and Interdrop Coalescences

Condensation refers to the formation of nanoscale liquid condensate once its vapor is
oversaturated, or in other words, the solid surface is supercooled for the heterogeneous
mode. For water vapor specifically, a certain degree of supercooling beneath the dew point
is necessary to overcome the heterogeneous energy barrier ∆GHetero required to create
a stable nucleating embryo (with a minimal radius r ≥ rcri, rcri being the critical radius for
condensation nucleation).

As the incipient stage of the whole physical process, the location and density of nucle-
ation sites dominate the distribution of condensate, which in turn plays a decisive role in
successive frosting stages. Both surface chemistry and topological features can be tailored to
modulate condensation dynamics. Boreyko et al. used engineered surfaces carrying solely
chemical patterns to spatially control the nucleation sites [21]. Arrays of hydrophilic dots
were patterned again on a hydrophobic background, engendering a typical wettability con-
trast. As shown in Figure 2a, the energy barrier for condensation nucleation in hydrophilic
regions is significantly smaller than that of hydrophobic regions, providing preferential
nucleation sites where stable condensed drops emerge and start to grow bigger in size.
Zhao et al. fabricated silicon-based topological patterns to control the size and distribution
of condensed drops [22,23]. As shown in Figure 2b, micropillar patterned surfaces with vary-
ing diameters and pitches were fabricated using standard photolithography. The prepared
surfaces are macroscopically superhydrophobic if placing a millimeter-sized water drop
atop. As the surface is chemically homogeneous, condensation nucleation occurs uniformly
on the substrate bases, as well as the pillar tops and sidewalls. However, condensed drops
atop pillars are subjected to much larger feeding flux, and thus can grow faster. Accordingly,
we can observe that pillar tops collect most of the condensate in the late stage of condensa-
tion. Recently, engineered surfaces with both chemical and topological patterns were also
exploited. Hou et al. designed and fabricated a surface that carries a biphilic topography
with patterned high-contrast wettability [24]. As shown in Figure 2c, the prepared surface
is composed of arrays of hydrophilic micropillars and superhydrophobic nanograss. The
condensation dynamics on this biphilic surface were captured via environmental scanning
electron microscopy (ESEM). Condensate drops preferentially nucleate atop hydrophilic
pillar tops, and superhydrophobic nanograss assists the drops remaining suspended.
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Figure 2. Microscopic condensation dynamics on various types of surfaces. (a) chemical patterned
surface, Reprint from [21], Copyright 2016 with permission from Springer Nature. (b) topologically
patterned surface, Reprint from [23], Copyright 2017 with permission from Elsevier. (c) biphilic surface
with hydrophobic nanograss and hydrophilic micropillars. Reprinted with permission from [24], Copy-
right 2018 with permission from American Physical Society. and (d) spontaneous drop jumping upon
coalescence, Reprinted with permission from [25], Copyright 2009 by the American Physical Society.

As condensation proceeds and more vapor is fed continuously, condensate drops grow
larger in size and merge with neighboring drops, which is usually termed interdrop coa-
lescence. Accordingly, we believe the transition from dropwise condensation to filmwise
condensation is inevitable without applying external forces. Boreyko and Chen found that
continuous dropwise condensation is possible on properly designed superhydrophobic
surfaces [25]. Condensate drops can jump spontaneously upon the coalescence with neigh-
boring drops due to the release of excess surface energy. As shown in Figure 2d, a surprising
out-of-plane jumping motion with a speed up to 1 m/s can result from an in-plane coa-
lescence of two micrometer-sized drops. Later, they further implant this mechanism into
phase-thermal thermal diodes to promote heat transfer efficiency with a strong directional
preference [26]. Nenad et al. discovered that jumping drops carry a net positive charge, yield-
ing a self-repelling behavior in the mid-fight [27]. They used externally applied electric fields
to modulate the kinetics of jumping drops and, more specifically, to increase the jumping
frequency from the substrate to promote condensation heat transfer.

2.2. Icing Nucleation and Freezing of a Single Drop

As deduced from Fletcher’s classical nucleation theory [28], icing nucleation occurs
inside condensed drops at energetically preferential sites, analogous to that of condensation
nucleation. For icing nucleation in supercooled sessile drops, there has been a long-lasting
debate about whether the triple line is the spatial preferential nucleation site. Gurganus et al.
developed a direct experimental approach to study the spatial distribution of nucleation
sites for a sessile supercooled drop [29,30]. Two high-speed cameras from both the top
view and side view allow pinpointing precisely the location and growth dynamics of the
ice embryo. The hexagonal ice crystal initiates from an arbitrary location at the liquid–solid
interface, showing that icing nucleation has no preference for the triple line.
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Different from the scenario of the freezing of an impinging drop, condensed drops
are sessile and supercooled before icing nucleation initiates. Despite that nucleation sites
also locate at the liquid–solid interface, the whole freezing dynamics can be very different.
Jung et al. found that the freezing process of a sessile supercooled drop proceeds in two con-
secutive stages, termed the recalescence stage and the isothermal stage, respectively [31].
In the first recalescence stage, a rapid partial freezing occurs, and the whole drop space
gradually becomes cloudy as freezing proceeds. Most of the released latent heat is absorbed
by the remaining water to raise its temperature, while a small portion is dissipated to the
surroundings. In the second isothermal stage, the remaining water gradually transits into
a solid, filling the crystalline gaps formed during the recalescence stage. The released latent
heat in this stage is mostly transferred to the substrate base. In general cases, the isothermal
stage proceeds near 3 orders of magnitude slower than the recalescence stage.

An intriguing fact about water is it expands upon freezing, and thus the shape of
a drop evolves as freezing proceeds. Marín et al. carried out a set of experiments to study
the shape of frozen drops, and proposed a quantitative description [32]. For both 3D drops
and 2D drops (as confined in a Hele–Shaw geometry), the top portion of a frozen drop is
a conical tip, which is independent of contact angle and substrate supercooling temperature.

2.3. Freezing Halo

The formation of frost halos initiates at the onset of icing nucleation, and thus chrono-
logically is partially overlapping with the drop icing stage. Before the recent work by
Jung et al. [33], people used to formulate frost halos as the result of the spontaneous ejection
of micrometer-sized drops when a large drop starts to freeze. An appreciable amount of
vapor is released from the air–liquid interface when the main drop freezes and heats up the
remaining liquid. This vapor becomes locally supersaturated and deposits surrounding the
main drop, engendering a halo consisting of micrometer-sized condensate drops. These
condensate drops inside the halo are either frozen into ice drops forming so-called frost
halos, or evaporated off if too remote from the main drop. Vapor from the evaporated
remote condensate drops is transferred via diffusion and redeposited on the neighboring
frost halo. Furthermore, they compared the halo formation on surfaces with varying ther-
mal conductivity. On low thermal conductivity materials, the freezing time of the main
drop is longer, and thus more evaporated vapor is released. Condensed drops can grow,
coalesce, and freeze, yielding a large freezing halo. On high thermal conductivity materials,
the main drop freezes drastically faster, cutting off the source of feeding vapor flux. More
condensed microdrops are evaporated off before freezing, yielding a small freezing halo.

Note that when one single drop among condensed drops gets frozen, ice covers not
only the frozen drop itself, but also a radial area to an appreciable extent, explaining
why frost coverage is significantly larger than condensate coverage for the same thermal
physical circumstances. Such frost halos were also reported recently by Zhao et al. when
they deposited a warm drop onto supercooled surfaces [34]. Even for the case of a surface
temperature higher than the freezing point, a similar halo-like configuration was observed,
whereas frost halos transit into condensate halos instead [35].

2.4. Freezing Propagation via Ice Bridging, Dry Zones

As late as 2010, people started to notice that icing in condensation frosting follows
a pattern instead of a collection of individual incidences [13,36]. Interdrop dynamics,
referred to as freezing wave or ice bridging, are exploited to describe the process of how
an ice dendrite initiated from a frozen condensate extends to contact with neighboring
liquid drops and freezes them. Accordingly, icing nucleation only occurs in energetically
preferential sites such as topological cavities and chemical defects, and then limited frozen
condensates set off a chain reaction spreading over whole supercooled surfaces.

Ice bridging is a multistep phase-change phenomenon coupled with spatial and tem-
poral variations of heat and mass transfer, and thus a quantitative physical description that
matches experimental observations is impractical. Boreyko and Collier employed a simplified



Crystals 2023, 13, 493 6 of 16

two-dimensional physical model to describe how a typical ice bridge is constructed, as shown
schematically and experimentally in Figure 3a,b, respectively [37]. Once a condensate drop is
frozen, a vapor concentration gradient is built between its ice interface and neighboring liquid
interface. The neighboring liquid drop evaporates, and the evaporated vapor is deposited
onto the frozen drop to construct the ice bridge. As the evaporation and the deposition
proceeds, the ice dendrite expands towards the neighboring drop, which meanwhile shrinks
in size due to the evaporative loss of mass. A scaling analysis that correlates the dendrite
growth rate and the evaporative mass loss can be applied to evaluate the time scale to
construct the ice bridge. Note that a frozen drop has multiple neighboring liquid drops and
vice versa, and a sequence presents when frost spreads across a group of condensate drops.
Guadarrama-Cetina et al. experimentally investigated the routine of frost spreading when
2D ice bridges percolate through a network of condensate drops [14]. A growing dendrite
points to the neighboring liquid drop and a successful ice bridge is constructed if the liquid
drop is sufficiently close and large enough. A failed percolation, or a partially constructed
ice bridge, occurs when the liquid drop is evaporated off before any dendrite reaches. Ac-
cordingly, a considerable number of liquid drops that are too small in size and too remote
vanish during frost spreading, leaving depleted dry zones around the frozen drops and ice
bridges. Hauer et al. studied the pattern formation in frost spreading using laser-induced
fluorescence microscopy [38]. Varying modes of frost spreading on microstructured surfaces
were revealed by setting the degree of supercooling and the time of condensation.
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in experiments, Reprint from [22], Copyright 2016 with permission from AIP Publishing.
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The scenario becomes drastically different when condensate drops are suspended.
Zhao et al. developed an analytical model to describe quantitatively the time required to
construct a 3D ice bridge [22,39]. A series of silicon-based micropillar patterned surfaces
were employed to control precisely the size and distribution of condensate drops. Icing
nucleation occurs at substrate edges which carry topological defects, allowing us to further
control the direction of ice bridging. As shown in Figure 3c,d, the geometry of a typical
3D ice bridge is considered to be of a circular cone. They also assumed that vapor transfer
is governed by one-dimensional diffusion. The time required to construct one single ice
bridge can be computed by balancing the mass transfer rate and the total bridge mass,
based on which a spatial average frost spreading velocity can be obtained.

2.5. Dendrite Growth Atop Frozen Drop and Densification

As a conical tip presents atop the frozen drop due to the volume expansion upon
freezing, this phenomenon engenders an interesting consequence in the succeeding growth
of ice dendrites when dealing with condensation frosting. The singular tip is exposed
to a significantly large feeding flux driven by the vapor concentration gradient, making
it a preferential site for vapor deposition (physically can be termed desublimation [40]).
Accordingly, ice dendrites grow like a tree, as reported by Enriquez et al. [41]. Yu et al.
measured quantitatively the growth dynamics of ice dendrites atop frozen drops at varying
supercooling temperatures, as shown in Figure 4a [42]. In general cases of ordinary-low
temperatures, needle dendrites grow into columnar shapes, and their tips melt when
exposed to thermal fluctuations. Their upper interfaces gradually change into lumps, and
overall dendrites grow into larger sizes. At relatively lower cryogenic temperatures, the
growth of ice dendrites is much slower. Vapor is frozen into ice clusters and deposited
atop the drop instead. As frosting proceeds, thicker ice clusters cover the drop and inhibit
the growth of dendrites. Huang et al. further evaluated the effect of surface orientations
with respect to gravity on the growth rate of ice dendrites as vapor transfer occurs via
natural convection, as shown in Figure 4b [43]. They found both the average vapor
deposition rate and its spatial variation change profoundly by altering surface orientation.
For a horizontally placed surface, detectable dendrites grow all over the frozen drop, with
an appreciable larger growth rate at the singular tip, named the “global peak”. Later, vapor
deposition near the global peak is suppressed to some extent, yielding two secondary
“local peaks”. For a vertically placed surface, the frozen drop is unsymmetrical due to the
effect of gravity. Ice embryos emerge only at the upper portion of the frozen drop, and
eventually, only the upper portion is covered with a collection of ice dendrites, leaving
a smooth ice-air interface for the bottom portion of the frozen drop. The results show that
natural convection can either assist or hinder the vapor diffusion process, and affect the
deposition outcomes.

Once the entire surface is covered by a network of frozen drops and ice bridges, den-
drite growth atop the frozen phase leads to crossing, reverse melting, and collapses, and
thus frost density evolves over time [44–48]. Different from other incipient condensation
frosting stages, frost densification has been studied extensively for decades. Hermes et al.
developed a physical model to describe the variation of the frost density over time based
on the mass and energy balances within the frost layer [49]. In such cases, the frost layer
is assumed as a porous medium exposed to supersaturated moist air. Song et al. exper-
imentally measured the frost density at varying surface supercooling temperatures [50].
They found that the reverse melting can profoundly increase the frost density, and thus the
obtained frost density increases with the increase of the surface temperature. Wang et al.
studied experimentally the effect of surrounding humidity on frost density [51]. For larger
humidity, more water vapor penetrates the frost interface and diffuses into the inside layer
in the desublimation form, yielding a larger frost density. Shin et al. studied the effect
of surface wettability on frost density [52]. Their experimental results show hydrophobic
surfaces allow the presence of large irregular ice crystals in the earlier stage of frost deposi-
tion, and thus result in a low frost density. Thermal physical properties such as thermal



Crystals 2023, 13, 493 8 of 16

conductivity, heat transfer coefficient, and thermal capacity, depend strongly on the frost
density. Therefore, in view of anti-frosting technical attempts, proper design to increase
frost density is preferred for HVAC devices.
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3. Attempts to Solve Frosting Problems
3.1. Conventional Anti-/De-Frosting Methods

Frost accretion is detrimental and thus undesired in most applications. Ever since
studying its underlying mechanism, most of the research attention is placed on how to
prevent its occurrence, or alleviate its negative impact. Over the past decades, numerous
methods have been developed to prevent frost accretion or to eliminate accreted frost layers.
Based on the philosophy selected, these methods can be categorized into two groups: anti-
frosting methods, which aim to prevent frost accretion; and de-frosting methods, which
aim to promote rapid removal of accreted frost layers.

Conventional de-frosting methods have been very popular for a relatively long history.
Selective heating is one of the most common de-frosting methods. The source of heat can
vary from the Joule effect induced by electrical conductors, warm air flow, to microwaves,
to keep the temperature of protected surfaces slightly above 0 ◦C [6]. Selective heating is
very energy intensive, and thus it is not economically efficient. Chemical spray is another
active anti-icing method. The icing nucleation temperature of mixtures can be drastically
reduced when adding some chemicals into water, i.e., the freezing point depression. Such
chemicals include calcium chloride, methanol, glycerol and glycols, etc. As the magnitude
of the freezing point depression decreases almost linearly with the chemical concentration
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at low concentrations [19], and the mixture is continuously diluted during the operation as
the result of incoming frost melt and chemical drainage, more chemicals need to be added
periodically to maintain proper de-frosting performance. Electromagnetically induced
vibration is a newly developed active de-icing method, where vibration pulses flex the
surface and crack the covered frost layers [53,54]. It occurs when a spiral coil is placed
near a metal surface, and a magnetic field is generated when current passes the coil. This
magnetic field yields a rapid displacement of the surface, and detaches the accreted frost.
One important advantage of this method is that it does not require modifying the surface
of equipment.

3.2. Anti-Frosting Methods via Delaying Icing Nucleation

One effective way to prevent frost accretions is to delay the occurrence of icing nucle-
ation. The longer the supercooled surface can stay in the condensation stage, the less frost
is accreted, and thus more heat transfer capacity is preserved.

Hao et al. fabricated a nanoribbon-structured superhydrophobic surface, and tested
its anti-frosting performance [55]. As shown in Figure 5a, their results show that jumping
condensate drops spontaneously leave the surface and take away dust particles, which are
either intentionally introduced or naturally deposited onto the surface. Otherwise, these
chemical and topological defects can trigger heterogeneous icing nucleation. Particularly,
the surface can stay more than 1 h of frost-free when facing downwards and gravity assists
in jumping drops off the surface. Accordingly, one main anti-frosting mechanism of su-
perhydrophobic surfaces is that they can keep the whole surface clean from dust particles.
Hou et al. used a surface that carries a biphilic topography with patterned high-contrast
wettability to promote self-propelled drop jumping [24]. As the average departing radius is
small enough (3 times smaller than the drop freezing length scale), supercooled microdrops
launch from the surface before icing nucleation occurs. Therefore, the biphilic surface can
remain in a sustainable condensation mode without triggering frosting. Wen et al. also
proposed to use a specific type of superhydrophobic surface to delay icing nucleation and
meanwhile obtain a profoundly improved heat transfer performance [56]. As shown in
Figure 5b, the superhydrophobic surface has a three-dimensional nanowire network, which
can effectively accelerate the condensation nucleation-to-departure cycle, and thus prevent
microdrops from freezing. Unlike most literature using topologically structured surfaces to
prevent frosting by suppressing condensation, this new concept can maintain the surface
free of frost for more than 5 h and obtain a tenfold enhancement of heat flux. Jung et al.
compared the delay of icing nucleation on smooth hydrophilic surfaces and rough su-
perhydrophobic surfaces [58]. They found that wettable surfaces with nano-meter scale
roughness can inhibit icing nucleation for a much longer duration than that of typical super-
hydrophobic surfaces, as heterogeneous nucleation is suppressed on smooth hydrophilic
surfaces. Hence, surface engineering aiming to delay icing nucleation needs to consider
both wettability and roughness. Ezzat and Huang’s work show that even superhydrophilic
polymer brushes can resist the icing nucleation of condensed microdrops [59].

Besides surfaces of superwetabilities, other types of surface designs were also devel-
oped to achieve anti-frosting via delaying icing nucleation. Recently, Niroomand et al.
reported for the first time the icing delay in condensation frosting using a semipermeable
membrane [57]. As shown in Figure 5c, as vapor can transfer through the membrane, the
onset of freezing is postponed from only 5 min on the impermeable surfaces to more than
2 h on the membrane with the highest vapor transfer rate adopted. Additionally, the shape
and layer structure of the frost layer are remarkably altered using the semipermeable mem-
brane. Bio-products such as anti-freeze proteins [60], polypeptides [61], and metal-catechol
complexes [62] can also effectively mediate icing nucleation.
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3.3. Anti-Frosting Methods via Retarding Freezing Propagation

Another effective way to prevent frost accretions is to retard freezing propagation,
i.e., to suppress or even stop the building of ice bridges among condensate microdrops.
For a relatively long term since reported, the study on freezing propagation is limited to
qualitative descriptions, where the propagation velocity is evaluated from the evolving frost
coverage [63–65]. Boreyko et al. studied quantitatively the freezing propagation of a list of
chemically patterned surfaces [21]. Instead of waiting for the occurrence of spontaneously
heterogeneous icing nucleation at any condensate microdrops, they intentionally triggered
icing nucleation by touching the wafer edge using a small piece of ice at the desired time
during experiments. As shown in Figure 6a, the freezing phase front propagates almost
perpendicularly to the edge, allowing us to measure quantitatively the spatially averaged
propagation velocity. They also noticed that the earlier icing nucleation is triggered, the
longer time is required for the freezing front to propagate across the surface. Zhao et al.
adopt a simple way to evaluate the freeing propagation velocity by selecting the obser-
vation window near the edge [39]. As shown in Figure 6b, they compared the measured
freezing propagation velocity on microscale wettability and morphology-patterned sur-
faces. The results show that morphology-patterned surfaces can drastically retard freezing
propagation by one order of magnitude via modulating the distribution of condensate
microdrops, while the wettability patterned surfaces are less effective.
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Copyright 2016 with permission from Springer Nature. (b)wettability/morphology patterned surface,
Reprint from [39], Copyright 2017 with permission from Elsevier. (c) vertically aligned carbon
nanotube based superhydrophobic surface, Reprinted with permission from [66], Copyright 2020
American Chemical Society. and (d) copper-based hierarchically structured surface, Reprint from [67],
Copyright 2021 with permission from Elsevier.

Besides directly changing the nature of condensation nucleation and vapor deposition,
promoting self-propelled drop jumping on superhydrophobic surfaces can also tailor the dis-
tribution of condensate drop, and thus affect the building of ice bridges. Mohammadian et al.
studied the drop-jumping phenomenon on a vertically aligned carbon nanotube-based su-
perhydrophobic surface and evaluated its effect on the freezing propagation [66]. As shown
in Figure 6c, drop jumping together with induced drop sweeping collects all neighboring
microdrops, engendering spots of dry zones. These dry spots prevent inter-drop ice bridging
from crossing the surface, and thus slow down the overall freezing propagation velocity to
1/3 of that on a smooth untreated surface. Recently, Chu et al. even developed a quantita-
tive correlation between the jumping capacity of microdrops and the freezing propagation
velocity [68]. By analyzing three representative parameters, i.e., the drop diameter, the
interdrop distance, and the degree of closeness, they obtained the mathematical description
of the freezing propagation velocity based on ice bridging theory.

Engineering surfaces with more complex structures have been designed to achieve
better anti-frosting performance via further retarding freezing propagation. Yao et al.,
inspired by the discrete distributed frost pattern on nature leaves, proposed to use the
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surface patterned with serrated structures on the scale of millimeters [69]. In the initial
stage of condensation frosting, vapor deposition in the form of condensate is enhanced on
peaks and suppressed in valleys. During the freezing propagation stage, smaller drops
in valleys are evaporated off, producing a millimeter-sized frost-free gap. The freezing
phase front cannot cross the gap, and thus frost spreading is constrained locally even on
superhydrophilic surfaces. Zhao et al. employed a copper-based hierarchically structured
surface to regulate freezing propagation [67]. As shown in Figure 6d, size mismatching
among condensate drops is induced by microgroove peaks and nanoblades. Successful ice
bridging only occurs along microgrooves, while failing along the perpendicular direction.
As the frosting proceeds, only groove peaks are covered with frozen drops and ice dendrites
atop in the background of continuous dry valleys.

3.4. Anti-Frosting Methods via Reducing Frost Coverage

Reducing frost (or ice) coverage becomes more applicable when the complete pre-
vention of icing is technologically impossible or economically ineffective. Jin et al. used
patterned polyelectrolyte brushes to inhibit condensation frosting as polyelectrolytes can
regulate icing nucleation and propagation via changing interfacial counterions [70]. As
shown in Figure 7a, icing nucleation only occurs at the top of the polyelectrolytes coated
domain, and freezing propagates the rest of the clean surface. Almost all neighboring
condensate drops are evaporated off due to the released latent heat and vapor sinks of the
frozen drops. An extremely low frost coverage of 4% can be achieved via proper patterning.
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from [70], Copyright 2020 American Chemical Society. (b) an ice-patterned aluminum surface,
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patterned surface, Reprint from [72], Copyright 2023 with permission from Elsevier.

Like polyelectrolytes, salts, and glycols, ice is also of a hygroscopic nature, meaning it
absorbs moisture from the supersaturated ambient. Ahmadi et al. fabricated an aluminum-
based surface with arrays of parallel microgrooves to carry microscopic ice strips [71]. As
shown in Figure 7b from both side and top views, the fin tops are treated as sacrificial ice
regions that absorb all nearby moisture, leaving the substrate base and sidewalls free from
both condensate and frost dendrites. As the ice strips are elevated, frost atop them is in a
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suspended state with a growth rate of an order of magnitude slower than that directly on
the smooth surface. Recently, they adopt this concept to another regime by placing a clean
surface in parallel with a prefrosted surface [73]. The clean surface can remain ice-free
even in chilled and supersaturated conditions as a uniform out-of-plane dry zone covers it.
Properly patterning icing stripes in the micrometer scale is necessary to fully explore its anti-
frosting capacity. However, multiple delicate micromachining procedures as introduced are
unlikely to apply in practical applications. Zuo et al. proposed a much simpler templating
method to fabricate micrometer-sized parallel ice walls on any surface [72]. As shown in
Figure 7c, three-dimensional ice walls engender local vapor sinks, attracting all nearby
moisture on sidewalls and tops. The substrate base can remain uncontaminated from frost
and condensate. A sustainable frost coverage of less than 13% is obtained. As ice walls can
also be considered as fins, more heat transfer capacity is preserved when exposed to the
same frost coverage.

3.5. Passive De-Frosting Methods via Reducing Ice Adhesion

Another frosting solution that reduces ice adhesion can also be applied if frost for-
mation becomes inevitable. Surface engineering aiming to weaken the bonding strength
between accumulated frost layers and substrate bases has been proven to be an effective
passive de-frosting method. The ideal case is that the ice adhesion is so weak that frost
layers can spontaneously be removed from the equipment surface under limited natural
driven forces such as gravity.

Nanotextured superhydrophobic surfaces can resist the penetration of condensed
microdrops, yielding a small solid–liquid contact. Accordingly, the resultant icing adhesion
might be pronouncedly reduced than that of smooth surfaces. Ge et al. compared experi-
mentally the bonding strength of an octadecyltrichlorosilane (OTS) superhydrophobic film
and a smooth surface [74]. A mechanical sensor was employed to measure directly the
bonding force of a frozen condensate drop on the prepared surface. The results show that
OTS surfaces on average can reduce more than 95.74% of the bonding force, remaining
icephobic even for a relatively large degree of supercooling. However, for microtextured su-
perhydrophobic surfaces, condensed microdrops penetrate gaps and get locked after frozen,
resulting in the formation of the impaled “Wenzel ice”. An extremely large bonding strength
7 times higher than that of smooth surfaces was reported by Subramanyam et al. [75]. There-
fore, tailoring surface textures to obtain the suspended “Cassie ice” is the key in the surface
design to reduce ice adhesion.

Besides textured superhydrophobic surfaces, slippery liquid-infused porous surfaces
(SLIPS) are very effective options in reducing ice adhesion. Kim et al. designed SLIPS by
infusing a water-immiscible liquid into a nanotextured surface and obtained a bonding
strength (~15.6 kPa) of 2 orders of magnitude lower than that of untreated aluminum
surfaces(~1359 kPa) [76]. They attribute such low adhesion to the perfect smoothness of
the ice-liquid interface which has very few defects or heterogeneities serving as pining
spots. One possible failure of SLIPS is that the robustness can be compromised by losing
the lubricant when exposed to strong shear flow or undergo repeating frosting/de-frosting
cycles [77]. Liu et al. investigated extensively the effect of surface chemistry and topological
features on their capability to retain the lubricant [78]. Their results show that a fluorinated
hierarchical micro/nanoscale structured surface has the best performance in retaining the
lubricant, while microscale and nanoscale pores fail to provide enough capillary forces to
hold the lubricant.

4. Concluding Remarks and Future Perspectives

In this review, we have characterized the physical process of condensation frosting
into five sequential stages, and provided an in-depth discussion of each stage. As frosting
is undesired in most applications, we have also reviewed promising solutions to frosting
problems, with a special focus placed on these newly developed anti-frosting methods.
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Despite unprecedented advances in our understanding of the mechanism of conden-
sation frosting and the development of many anti-frosting methods, we are still far from
fully exploring its physics, and designing effective, eco-friendly, and low-cost anti-frosting
surfaces is still a long-term goal. For example, many anti-frosting methods have been
confirmed in laboratory conditions, but fail to meet harsh environments in applications.
Condensation frosting, as one of the most important phase-change phenomena, needs to
be further explored from both fundamental and application viewpoints.
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