Self-Assembly Heterometallic Cu-Ln Complexes: Synthesis, Crystal Structures and Magnetic Characterization
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Synthesis
2.2.1. H2L Synthesis
2.2.2. Complex 1CuHo Synthesis
2.2.3. Complex 2CuGd Synthesis
2.3. X-ray Crystallography
3. Results and Discussion
3.1. IR Spectra
3.2. Crystal Structure Descriptions
3.3. Magnetic Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, S. Molecular Nanomagnets and Related Phenomena. In Structure and Bonding; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar] [CrossRef]
- Sessoli, R.; Gatteschi, D.; Caneschi, A.; Novak, M.A. Magnetic bistability in a metal-ion cluster. Nature 1993, 365, 141–143. [Google Scholar] [CrossRef]
- Miller, J.S.; Gatteschi, D. (Eds.) Themed issue on Molecule-based Magnets. Chem. Soc. Rev. 2011, 40, 3053. [Google Scholar] [CrossRef]
- Jiang, S.D.; Wang, B.W.; Su, G.; Wang, Z.M.; Gao, S. A Mononuclear Dysprosium Complex Featuring Single-Molecule-Magnet Behavior. Angew. Chem. Int. Ed. 2010, 49, 7448–7451. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.-S.; Day, B.M.; Chen, Y.-C.; Tong, M.-L. Magnetic hysteresis up to 80 kelvin in a dysprosium metallocene single-molecule magnet. Science 2018, 362, 1400–1403. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boganai, L.; Wersdorfer, W. Molecular spintronics using single-molecule magnets. Nat. Mater. 2008, 7, 179–186. [Google Scholar] [CrossRef]
- Vincent, R.; Klyatskaya, S.; Ruben, M.; Wersdorfer, W.; Balestro, F. Electronic read-out of a single nuclear spin using a molecular spin transistor. Nature 2012, 488, 357–360. [Google Scholar] [CrossRef]
- Woodruff, D.N.; Winpenny, R.E.P.; Layfield, R.A. Lanthanide Single-Molecule Magnets. Chem. Rev. 2013, 113, 5110–5148. [Google Scholar] [CrossRef]
- Hill, S.; Edwards, R.S.; Aliaga-Alcalde, N.; Christou, G. Quantum Coherence in an Exchange-Coupled Dimer of Single-Molecule Magnets. Science 2003, 302, 1015–1018. [Google Scholar] [CrossRef] [Green Version]
- Leuenberger, M.N.; Loss, D. Quantum computing in molecular magnets. Nature 2001, 410, 789–793. [Google Scholar] [CrossRef] [Green Version]
- Gatteschi, D.; Sessoli, R. Quantum Tunneling of Magnetization and Related Phenomena in Molecular Materials. Angew. Chem. Int. Ed. 2003, 42, 268–297. [Google Scholar] [CrossRef] [PubMed]
- Pointillart, F.; Le Guennic, B.; Cador, O.; Maury, O.; Ouahab, L. Lanthanide Ion and Tetrathiafulvalene-Based Ligand as a “Magic” Couple toward Luminescence, Single Molecule Magnets, and Magnetostructural Correlations. Acc. Chem. Res. 2015, 48, 2834–2842. [Google Scholar] [CrossRef]
- Liu, K.; Shi, W.; Cheng, P. Toward heterometallic single-molecule magnets: Synthetic strategy, structures and properties of 3d–4f discrete complexes. Coord. Chem. Rev. 2015, 289–290, 74–122. [Google Scholar] [CrossRef]
- Piquer, L.R.; Sañudo, E.C. Heterometallic 3d–4f single-molecule magnets. Dalton Trans. 2015, 44, 8771–8780. [Google Scholar] [CrossRef] [Green Version]
- Costes, J.P.; Ladeira, S.M.; Vendier, L.; Maurice, R.; Wernsdorfer, W. Influence of ancillary ligands and solvents on the nuclearity of Ni–Ln complexes. Dalton Trans. 2019, 48, 3404–3414. [Google Scholar] [CrossRef]
- Dhers, S.; Costes, J.P.; Guionneau, P.; Paulsen, C.; Vendier, L.; Sutter, J.P. On the importance of ferromagnetic exchange between transition metals in field-free SMMs: Examples of ring-shaped hetero-trimetallic [(LnNi2){W(CN)8}]2 compounds. Chem. Commun. 2015, 51, 7875–7878. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.; Zhang, X.-J.; Meng, X.-X.; Shi, W.; Cheng, P.; Powell, A.K. Constraining the coordination geometries of lanthanide centers and magnetic building blocks in frameworks: A new strategy for molecular nanomagnets. Chem. Soc. Rev. 2016, 45, 2423–2439. [Google Scholar] [CrossRef] [PubMed]
- Day, B.M.; Guo, F.-S.; Layfield, R.A. Cyclopentadienyl Ligands in Lanthanide Single-Molecule Magnets: One Ring To Rule Them All? Acc. Chem. Res. 2018, 51, 1880–1889. [Google Scholar] [CrossRef]
- Zhu, Z.; Guo, M.; Li, X.L.; Tang, J. Molecular magnetism of lanthanide: Advances and perspectives. Coord. Chem. Rev. 2019, 378, 350–364. [Google Scholar] [CrossRef]
- Jia, J.H.; Li, Q.W.; Chen, Y.C.; Liu, J.L.; Tong, M.L. Luminescent single-molecule magnets based on lanthanides: Design strategies, recent advances and magneto-luminescent studies. Coord. Chem. Rev. 2019, 378, 365–381. [Google Scholar] [CrossRef]
- Goodwin, C.A.P.; Ortu, F.; Reta, D.; Chilton, N.F.; Mills, D.P. Molecular magnetic hysteresis at 60 kelvin in dysprosocenium. Nature 2017, 548, 439. [Google Scholar] [CrossRef] [Green Version]
- Bar, A.K.; Kalita, P.; Singh, M.K.; Rajaraman, G.; Chandrasekhar, V. Low-coordinate mononuclear lanthanide complexes as molecular nanomagnets. Coord. Chem. Rev. 2018, 367, 163–216. [Google Scholar] [CrossRef]
- Li, J.; Wei, R.-M.; Pu, T.-C.; Cao, F.; Yang, L.; Han, Y.; Zhang, Y.-Q.; Zuo, J.-L.; Song, Y. Tuning quantum tunnelling of magnetization through 3d–4f magnetic interactions: An alternative approach for manipulating single-molecule magnetism. Inorg. Chem. Front. 2017, 4, 114–122. [Google Scholar] [CrossRef]
- Mishra, A.; Wernsdorfer, W.; Parsons, S.; Christou, G.; Brechin, E.K. The search for 3d–4f single-molecule magnets: Synthesis, structure and magnetic properties of a [MnIII2DyIII2] cluster. Chem. Commun. 2005, 16, 2086–2088. [Google Scholar] [CrossRef] [PubMed]
- Cimpoesu, F.; Dahan, F.; Ladeira, S.; Ferbinteanu, M.; Costes, J.P. Chiral Crystallization of a Heterodinuclear Ni-Ln Series: Comprehensive Analysis of the Magnetic Properties. Inorg. Chem. 2012, 51, 11279–11293. [Google Scholar] [CrossRef]
- Wen, H.-R.; Bao, J.; Liu, S.-J.; Liu, C.-M.; Zhang, C.-W.; Tang, Y.-Z. Temperature-controlled polymorphism of chiral CuII–LnIII dinuclear complexes exhibiting slow magnetic relaxation. Dalton Trans. 2015, 44, 11191–11201. [Google Scholar] [CrossRef]
- Zhang, S.L.; Fan, X.F.; Du, R.L.; Shen, B.W.; Song, X.D.; Wei, X.Q.; Li, S.S. Synthesis, crystal structures and magnetism of CuIILnIII N2O4-donor coordination compounds involving dicyanamides. Polyhedron 2021, 206, 115336. [Google Scholar] [CrossRef]
- Dey, A.; Bag, P.; Kalita, P.; Chandrasekhar, V. Heterometallic CuII–LnIII complexes: Single molecule magnets and magnetic refrigerants. Coord. Chem. Rev. 2021, 432, 213707. [Google Scholar] [CrossRef]
- Maity, S.; Bhunia, P.; Ichihashi, K.; Ishida, T.; Ghosh, A. SMM behaviour of heterometallic dinuclear CuIILnIII(Ln = Tb and Dy) complexes derived from N2O3 donor unsymmetrical ligands. New J. Chem. 2020, 44, 6197–6205. [Google Scholar] [CrossRef]
- Mahapatra, P.; Koizumi, N.; Kanetomo, T.; Ishida, T.; Ghosh, A. A series of CuII–LnIII complexes of an N2O3 donor asymmetric ligand and a possible CuII–TbIII SMM candidate in no bias field. New J. Chem. 2019, 43, 634–643. [Google Scholar] [CrossRef]
- Shimada, T.; Okazawa, A.; Kojima, N.; Yoshii, S.; Nojiri, H.; Ishida, T. Ferromagnetic Exchange Couplings Showing a Chemical Trend in Cu–Ln–Cu Complexes (Ln = Gd, Tb, Dy, Ho, Er). Inorg. Chem. 2011, 50, 10555–10557. [Google Scholar] [CrossRef]
- Osa, S.; Kido, T.; Matsumoto, N.; Re, N.; Pochaba, A.; Mrozinski, J. A Tetranuclear 3d−4f Single Molecule Magnet: [CuIILTbIII(hfac)2]2. J. Am. Chem. Soc. 2004, 126, 420–421. [Google Scholar] [CrossRef]
- Yang, X.P.; Jones, R.A.; Huang, S.M. Luminescent 4f and d-4f polynuclear complexes and coordination polymers with flexible salen-type ligands. Coord. Chem. Rev. 2014, 273–274, 63–75. [Google Scholar] [CrossRef]
- Andruh, M. The exceptionally rich coordination chemistry generated by Schiff-base ligands derived from o-vanillin. Dalton Trans. 2015, 44, 16633–16653. [Google Scholar] [CrossRef]
- Mahapatra, P.; Ghosh, S.; Koizumi, N.; Kanetomo, T.; Ishida, T.; Drew, M.G.B.; Ghosh, A. Structural variations in (CuL)2Ln complexes of a series of lanthanide ions with a salen-type unsymmetrical Schiff base(H2L): Dy and Tb derivatives as potential single-molecule magnets. Dalton Trans. 2017, 46, 12095–12105. [Google Scholar] [CrossRef] [PubMed]
- Ohba, M.; Okawa, H. Synthesis and magnetism of multi-dimensional cyanide-bridged bimetallic assemblies. Coord. Chem. Rev. 2000, 198, 313–328. [Google Scholar] [CrossRef]
- Batten, S.R.; Murray, K.S. Structure and magnetism of coordination polymers containing dicyanamide and tricyanomethanide. Coord. Chem. Rev. 2003, 246, 103–130. [Google Scholar] [CrossRef]
- Colacio, E.; Ruiz, J.; Mota, A.J.; Palacios, M.A.; Ruiz, E.; Cremades, E.; Hänninen, M.M.; Sillanpää, R.; Brechin, E.K. CoIILnIII dinuclear complexes (LnIII = Gd, Tb, Dy, Ho and Er) as platforms for 1,5-dicyanamide-bridged tetrauclear CoII2LnIII2 complexes: A magneto-structural and theoretical study. C. R. Chim. 2012, 15, 878–888. [Google Scholar] [CrossRef] [Green Version]
- Roy, S.; Choubey, S.; Bhar, K.; Sikdar, N.; Costa, J.S.; Mitra, P.; Ghosh, B.K. Counter anion dependent gradual spin transition in a 1D cobalt(ii) coordination polymer. Dalton Trans. 2015, 44, 7774–7776. [Google Scholar] [CrossRef]
- Xu, W.J.; Du, Z.Y.; Zhang, W.X.; Chen, X.-M. Structural phase transitions in perovskite compounds based on diatomic or multiatomic bridges. CrystEngComm 2016, 18, 7915–7928. [Google Scholar] [CrossRef]
- Carlin, R.L. Magnetochemistry; Springer Press: Berlin/Heidelbeg, Germany, 1986. [Google Scholar]
- SAINT Software Users Guide, Version 7.0; Bruker Analytical X-Ray Systems: Madison, WI, USA, 1999.
- Sheldrick, G.M. SADABS, Version 2.03; Bruker Analytical X-Ray Systems: Madison, WI, USA, 2000. [Google Scholar]
- Sheldrick, G.M. SHELXL-2014; Program for the Solution of Crystal Structures; University of Göttingen: Göttingen, Germany, 2014. [Google Scholar]
- Sheldrick, G.M. SHELXT, Version 6.14; Bruker AXS, Inc.: Madison, WI, USA, 2003. [Google Scholar]
- Casanova, D.; Alemany, P.; Bofill, J.M.; Alvarez, S. Shape and Symmetry of Heptacoordinate Transition-Metal Complexes: Structural Trends. Chem. Eur. J. 2003, 9, 1281–1295. [Google Scholar] [CrossRef]
- Kong, J.J.; Zhang, J.C.; Jiang, Y.X.; Tao, J.X.; Wang, W.Y.; Huang, X.C. Two-dimensional heterometallic CuIILnIII (Ln = Tb and Dy) coordination polymers bridged by dicyanamides showing slow magnetic relaxation behaviour. CrystEngComm 2019, 21, 5145–5151. [Google Scholar] [CrossRef]
- Chilton, N.F.; Anderson, R.P.; Turner, L.D.; Soncini, A.; Murray, K.S. PHI: A powerful new program for the analysis of anisotropic monomeric and exchange-coupled polynuclear d- and f-block complexes. J. Comput. Chem. 2013, 34, 1164–1175. [Google Scholar] [CrossRef] [PubMed]
Complex | 1 | 2 |
---|---|---|
Formula | C22H28N6O10ClCuHo | C22H28N6O10ClCuGd |
M | 800.42 | 792.74 |
Crystal system | Monoclinic | Monoclinic |
Space group | P21/n | P21/n |
a [Å] | 8.8038(6) | 8.8191(7) |
b [Å] | 16.3659(12) | 16.5598(14) |
c [Å] | 19.8889(13) | 20.0787(18) |
α [°] | 90 | 90 |
β [°] | 91.5570(10) | 91.748(2) |
γ [°] | 90 | 90 |
V [Å3] | 2864.6(3) | 2931.0(4) |
Z | 4 | 4 |
ρcalcd(g cm−3) | 1.856 | 1.797 |
T/K F(000) | 298(2) 1580 | 298(2) 1568 |
Crystal size (mm) | 0.48×0.42×0.40 | 0.45×0.40×0.38 |
Reflections collected | 13,358 | 13,751 |
Independent reflections | 4984 | 5137 |
Rint | 0.1262 | 0.1758 |
GOF R1 a, wR2 b (I > 2σ(I)) | 0.865 0.0901, 0.1761 | 0.788 0.0822, 0.1644 |
Complex | D···A | D(D···A)/Å |
---|---|---|
complex 1CuHo | O9···Cl1 a | 3.023(2) |
π···π b | 3.763(2) | |
complex 2CuGd | O9···Cl1 a | 3.056(2) |
π···π b | 3.872(2) |
Complex | Cu-Ln Interaction | Cu–Ophenol-Ln Bridging Angle (°) | Cu-Ophenol Bond Length (Å) | Ln-Ophenol Bond Length (Å) | SMM Behavior under Zero DCc Field | Ref |
---|---|---|---|---|---|---|
1CuHo | antiferromagnetic | 105.15/104.06 | 1.929/1.938 | 2.316/2.338 | yes | This work |
2CuGd | ferromagnetic | 104.96/105.41 | 1.948/1.925 | 2.366/2.375 | no | This work |
3CuTb | ferromagnetic | 105.43/104.48 | 1.907/1.943 | 2.334/2.327 | yes | 27 |
4CuDy | ferromagnetic | 104.52/105.42 | 1.942/1.915 | 2.328/2.328 | no | 27 |
Complex | Ground State of Ln | χMT/cm3mol−1K (Theoretical) | χMT/cm3mol−1K (Observed) | M/μB (Theoretical) | M/μB (Observed) |
---|---|---|---|---|---|
1CuHo | 5I8 | 14.445 | 14.22 | 11 | 6.22 |
2CuGd | 8S7/2 | 8.255 | 7.72 | 8 | 7.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Du, R.; Fan, X.; Zhao, X.; Wang, Y.; Li, S. Self-Assembly Heterometallic Cu-Ln Complexes: Synthesis, Crystal Structures and Magnetic Characterization. Crystals 2023, 13, 535. https://doi.org/10.3390/cryst13030535
Zhang S, Du R, Fan X, Zhao X, Wang Y, Li S. Self-Assembly Heterometallic Cu-Ln Complexes: Synthesis, Crystal Structures and Magnetic Characterization. Crystals. 2023; 13(3):535. https://doi.org/10.3390/cryst13030535
Chicago/Turabian StyleZhang, Shaoliang, Ruili Du, Xiufang Fan, Xinhua Zhao, Yanlan Wang, and Shanshan Li. 2023. "Self-Assembly Heterometallic Cu-Ln Complexes: Synthesis, Crystal Structures and Magnetic Characterization" Crystals 13, no. 3: 535. https://doi.org/10.3390/cryst13030535
APA StyleZhang, S., Du, R., Fan, X., Zhao, X., Wang, Y., & Li, S. (2023). Self-Assembly Heterometallic Cu-Ln Complexes: Synthesis, Crystal Structures and Magnetic Characterization. Crystals, 13(3), 535. https://doi.org/10.3390/cryst13030535