Nanocrystalline Sulfided NiMoW Catalyst Supported on Mesoporous Aluminas for the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene
Abstract
:1. Introduction
2. Materials and Methods
2.1. Catalyst Preparation
2.2. Characterization of Solids
2.3. Catalyst Activity
3. Results
3.1. Characterization of the Alumina Supports and Oxidic Catalysts
3.2. Characterization of Sulfided and Used Catalysts
3.3. Catalytic Activity
3.4. Selectivity of Catalyst during 4,6-Dimethyldibenzothiophene HDS
dyDMBP/d(W/F4,6-DMDBT) = kDDS×a4,6-DMDBT − kCRA1 × yDMBP
dyTH-DMDBTs+HH-DMDBTs/d(W/F4,6-DMDBT) = kHYD1 × a4,6-DMDBT − kHYD2 × yTH-DMDBTs+HH-DMDBTs
dyMCHTs+DMBCHs/d(W/F4,6-DMDBT) = kHYD2 × yTH(HH)-DMDBTs + kHYD3 × yDMBP − kCRA2 × yMCHTs+DMBCHs
dyTOL+MCH+DMCPs/d(W/F4,6-DMDBT) = kCRA1 × yDMBP + kCRA2 × yMCHTs+DMBCHs
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Song, C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel. Catal. Today 2003, 86, 211–263. [Google Scholar] [CrossRef]
- Topsøe, H.; Clausen, B.S.; Massoth, F.E. Hydrotreating Catalysts, Science and Technology; Springer: Berlin/Heidelberg, Germany, 1996; pp. 22–24. [Google Scholar]
- Yerga, R.M.N.; Pawelec, B.; Mota, N.; Huirache-Acuña, R. Hydrodesulfurization of Dibenzothiophene over Ni-Mo-W Sulfide Catalysts Supported on Sol-Gel Al2O3-CeO2. Materials 2022, 15, 6780. [Google Scholar] [CrossRef] [PubMed]
- Cervantes-Gaxiola, M.E.; Arroyo-Albiter, M.; Pérez-Larios, A.; Balbuena, P.B.; Espino-Valencia, J. Experimental and theoretical study of NiMoW, NiMo, and NiW sulfide catalysts supported on an Al-Ti-Mg mixed oxide during the hydrodesulfurization of dibenzothiophene. Fuel 2013, 113, 733–743. [Google Scholar] [CrossRef]
- Shan, S.; Liu, H.; Yue, Y.; Shi, G.; Bao, F. Trimetallic WMoNi diesel ultra-deep hydrodesulfurization catalysts with enhanced synergism prepared from inorganic-organic hybrid nanocrystals. J. Catal. 2016, 344, 325–333. [Google Scholar] [CrossRef]
- Castillo-Villalón, P.; Ramírez, J.J.; Cuevas, R.; Vázquez, P.; Castañeda, R. Influence of the support on the catalytic performance of Mo, CoMo, and NiMo catalysts supported on Al2O3 and TiO2 during the HDS of thiophene, dibenzothiophene, or 4,6-dimethyldibenzothiophene. Catal. Today 2016, 259, 140–149. [Google Scholar] [CrossRef]
- Garcia, E.D.; Chen, J.; Oliviero, E.; Oliviero, L.; Mauge, F. New insight into the support effect on HDS catalysts: Evidence for the role of Mo-support interaction on the MoS2 slab morphology. Appl. Catal. B 2020, 260, 117975. [Google Scholar] [CrossRef]
- Mendoza-Nieto, J.A.; de Oca, A.V.-M.; Calzada, L.A.; Klimova, T.E. Trimetallic NiMoW and CoMoW catalysts supported on SBA-15 modified with titania or zirconia for deep hydrodesulfurization. Catal. Today 2021, 360, 78–89. [Google Scholar] [CrossRef]
- Alonso-Pérez, M.O.; Pawelec, B.; Zepeda, T.A.; Alonso-Nunez, G.; Nava, R.; Navarro, R.M.; Huirache-Acuña, R. Effect of the titanium incorporation method on the morphology and HDS activity of supported ternary Ni-Mo-W/SBA-16 catalysts. Microporous Mesoporous Mater. 2021, 312, 110779. [Google Scholar] [CrossRef]
- Čejka, J. Organized mesoporous alumina: Synthesis, structure and potential in catalysis. Appl. Catal. A 2003, 254, 327–338. [Google Scholar] [CrossRef]
- Kaluža, L.; Zdražil, M.; Žilková, N.; Čejka, J. High activity of highly loaded MoS2 hydrodesulfurization catalysts supported on organised mesoporous alumina. Catal. Commun. 2002, 3, 151–157. [Google Scholar] [CrossRef]
- Kaluža, L.; Gulková, D.; Šolcová, O.; Žilková, N.; Čejka, J. Hydrotreating catalysts supported on organized mesoporous alumina: Optimization of Mo deposition and promotional effects of Co and Ni. Appl Catal. A 2008, 351, 93–101. [Google Scholar] [CrossRef]
- Bejenaru, N.; Lancelot, C.; Blanchard, P.; Lamonier, C.; Rouleau, L.; Payen, E.; Dumeignil, F.; Royer, S. Synthesis, Characterization, and Catalytic performances of novel CoMo hydrodesulfurization catalysts supported on mesoporous aluminas. Chem. Mater. 2009, 21, 522–533. [Google Scholar] [CrossRef]
- Yuan, Q.; Yin, A.-X.; Sun, L.-D.; Zhang, Y.-W.; Duan, W.-T.; Liu, H.-C.; Yan, C.-H. Facile Synthesis for Ordered mesoporous γ-aluminas with high thermal stability. J. Am. Chem. Soc. 2008, 130, 3465–3472. [Google Scholar] [CrossRef] [PubMed]
- Lesaint, C.; Glomm, W.R.; Borg, Ø.; Eri, S.; Rytter, E.; Øye, G. Synthesis and characterization of mesoporous alumina with large pore size and their performance in Fischer–Tropsch synthesis. Appl. Catal. A 2008, 351, 131–135. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. IUPAC Technical Report. Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Mendoza-Nieto, J.A.; Robles-Méndez, F.; Klimova, T.E. Support effect on the catalytic performance of tri-metallic NiMoW catalysts prepared with citric acid in HDS of dibenzothiophenes. Catal. Today 2015, 250, 47–59. [Google Scholar] [CrossRef]
- Schoonheydt, R.A. Chemical Industries Series. In Characterization of Heterogeneous Catalysts; Delannay, F., Ed.; Marcel Dekker, Inc.: New York, NY, USA, 1984; Volume 15, pp. 125–185. [Google Scholar]
- Zhang, Z.; Suo, J.; Zhang, X.; Li, S. Synthesis, characterization, and catalytic testing of W-MCM-41 mesoporous molecular sieves. Appl. Catal. A 1999, 179, 11–19. [Google Scholar] [CrossRef]
- Huirache-Acuna, R.; Zepeda, T.A.; Vazquez, P.J.; Rivera-Munoz, E.M.; Maya-Yescas, R.; Pawelec, B.; Alonso-Nunez, G. The use of inorganic Al-HMS as a support for NiMoW sulfide HDS catalysts. Inorg. Chim. Acta 2021, 524, 120450. [Google Scholar] [CrossRef]
- Ramírez, J.; Romualdo-Escobar, D.; Castillo-Villalón, P.; Gutiérrez-Alejandre, A. Improved NiMoSA catalysts: Analysis of EDTA post-treatment in the HDS of 4,6- DMDBT. Catal. Today 2020, 349, 168–177. [Google Scholar] [CrossRef]
- Li, M.; Ihli, J.; Verheijen, M.A.; Holler, M.; Guizar-Sicairos, M.; Van Bokhoven, J.A.; Hensen, E.J.M.; Weber, T. Alumina-Supported NiMo Hydrotreating Catalysts Aspects of 3D Structure, Synthesis, and Activity. J. Phys. Chem. C 2022, 126, 18536–18549. [Google Scholar] [CrossRef]
- Mendoza-Nieto, J.A.; Vera-Vallejo, O.; Escobar-Alarcon, L.; Solis-Casados, D.A.; Klimova, T. Development of new trimetallic NiMoW catalysts supported on SBA-15 for deep hydrodesulfurization. Fuel 2013, 110, 268–277. [Google Scholar] [CrossRef]
- Zuo, D.; Li, D.; Nie, H.; Shi, Y.; Lacroix, M.; Vrinat, M. Acid–base properties of NiW/Al2O3 sulfided catalysts: Relationship with hydrogenation, isomerization and hydrodesulfurization reactions. J. Mol. Catal. A Chem. 2004, 211, 179–189. [Google Scholar] [CrossRef]
- Yin, C.; Wang, Y.; Xue, S.; Liu, H.; Li, H.; Liu, C. Influence of sulfidation conditions on morphology and hydrotreating performance of unsupported Ni–Mo–W catalysts. Fuel 2016, 175, 13–19. [Google Scholar] [CrossRef]
- Amaya, S.L.; Alonso-Núñez, G.; Cruz-Reyes, J.; Fuentes, S.; Echavarría, A. In-fluence of the sulfidation temperature in a NiMoW catalyst derived from layered structure (NH4)Ni2OH(H2O)(MoO4)2. Fuel 2015, 139, 575–583. [Google Scholar] [CrossRef]
- Hensen, E.J.M.; Van der Meer, Y.; Van Veen, J.A.R.; Niemantsverdriet, J.W. Insight into the formation of the active phases in supported NiW hydrotreating catalysts. Appl. Catal. A 2007, 322, 16–32. [Google Scholar] [CrossRef]
- Lizama, L.; Klimova, T. Highly active deep HDS catalysts prepared using Mo and W heteropolyacids supported on SBA-15. Appl. Catal. B 2008, 82, 139–150. [Google Scholar] [CrossRef]
- Fu, W.; Zhang, L.; Tang, T.; Ke, Q.; Wang, S.; Hu, J.; Fang, G.; Li, J.; Xiao, F.-S. Extraordinarily High Activity in the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene over Pd Supported on Mesoporous Zeolite Y. J. Am. Chem. Soc. 2011, 133, 15346–15349. [Google Scholar] [CrossRef]
Sample | SBET [m2 g−1] | Vt [cm3 g−1] | Dav [nm] | kTH [mmol g−1 h−1] | kHDS [mmol g−1 h−1] |
---|---|---|---|---|---|
Al | 232 | 0.52 | 9.0 | ||
AlHYDT | 217 | 0.47 | 8.7 | ||
NiMoW/Al | 215 (93) 1 | 0.26 (0.15) 1 | 4.8 (6.3) 1 | 12 | 1.9 |
NiMoW/AlHYDT | 167 (118) 1 | 0.31 (0.25) 1 | 7.5 (8.6) 1 | 94 | 10.3 |
Elements | NiMoW/Al | NiMoW/AlHYDT |
---|---|---|
Calcined catalysts | ||
Ni2p3/2 | 857.2 | 856.7 |
Mo3d5/2 | 233.3 | 233.0 |
W4f7/2 | 36.4 | 36.3 |
Sulfided catalysts | ||
Ni2p3/2 | 864.8 NiOx | 863.9 NiOx |
854.1 NiMo(W)S | 853.9 NiMo(W)S | |
852.9 NiSx | 852.9 NiSx | |
Mo3d5/2 | 234.5 MoO3 | 233.7 MoO3 |
232.5 MoOxSy | 231.7 MoOxSy | |
229.2 MoS2 | 229.0 MoS2 | |
W4f7/2 | 36.2 WO3 | 36.0 WO3 |
32.8 WS2 | 32.7 WS2 | |
S2p3/2 | 162.1 S2− | 162.1 S2− |
167.9 SO42− | 168.2 SO42− | |
Used catalysts | ||
Ni2p3/2 | 864.7 NiOx | 863.8 NiOx |
854.0 NiMo(W)S | 853.9 NiMo(W)S | |
852.9 NiSx | 852.9 NiSx | |
Mo3d5/2 | 234.1 MoO3 | 233.9 MoO3 |
232.4 MoOxSy | 232.0 MoOxSy | |
229.2 MoS2 | 229.2 MoS2 | |
W4f7/2 | 36.3 WO3 | 36.2 WO3 |
32.8 WS2 | 32.6 WS2 | |
S2p3/2 | 162.2 S2− | 162.1 S2− |
168.5 SO42− | 168.1 SO42− |
Samples | Ni/Al | Mo/Al | W/Al | S/Mo | S/W | S/(Ni+Mo+W) | Mo4+/Motot., % | W4+/Wtot., % |
---|---|---|---|---|---|---|---|---|
NiMoW/Al | ||||||||
calcined | 0.02 | 0.05 | 0.04 | |||||
sulfided | 0.02 | 0.04 | 0.03 | 2.57 | 3.22 | 1.16 | 66 | 27 |
used | 0.01 | 0.03 | 0.03 | 2.14 | 2.65 | 0.99 | 61 | 20 |
NiMoW/AlHYDT | ||||||||
calcined | 0.03 | 0.06 | 0.06 | |||||
sulfided | 0.03 | 0.06 | 0.05 | 3.00 | 3.93 | 1.33 | 79 | 48 |
used | 0.03 | 0.06 | 0.05 | 2.97 | 3.64 | 1.29 | 74 | 46 |
Catalyst | DDS and HYD Pathway of HDS Reaction | Cracking Reaction | ||||
---|---|---|---|---|---|---|
kDDS | kHYD1 | kHYD2 | kHYD3 | kCRA1 | kCRA2 | |
mmol g−1 h−1 | ||||||
NiMoW/Al | 1.19 | 0.75 | 13.98 | 1.34 | 0.01 | 0.06 |
NiMoW/AlHYDT | 4.92 | 6.14 | 73.41 | 3.47 | 0.16 | 0.17 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Palcheva, R.; Kaluža, L.; Petrova, T.; Dimitrov, L.; Karashanova, D.; Tyuliev, G.; Jirátová, K. Nanocrystalline Sulfided NiMoW Catalyst Supported on Mesoporous Aluminas for the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. Crystals 2023, 13, 543. https://doi.org/10.3390/cryst13030543
Palcheva R, Kaluža L, Petrova T, Dimitrov L, Karashanova D, Tyuliev G, Jirátová K. Nanocrystalline Sulfided NiMoW Catalyst Supported on Mesoporous Aluminas for the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. Crystals. 2023; 13(3):543. https://doi.org/10.3390/cryst13030543
Chicago/Turabian StylePalcheva, Radostina, Luděk Kaluža, Tanya Petrova, Lubomir Dimitrov, Daniela Karashanova, Georgi Tyuliev, and Květuše Jirátová. 2023. "Nanocrystalline Sulfided NiMoW Catalyst Supported on Mesoporous Aluminas for the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene" Crystals 13, no. 3: 543. https://doi.org/10.3390/cryst13030543
APA StylePalcheva, R., Kaluža, L., Petrova, T., Dimitrov, L., Karashanova, D., Tyuliev, G., & Jirátová, K. (2023). Nanocrystalline Sulfided NiMoW Catalyst Supported on Mesoporous Aluminas for the Hydrodesulfurization of 4,6-Dimethyldibenzothiophene. Crystals, 13(3), 543. https://doi.org/10.3390/cryst13030543