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Abstract: A high-performance temperature sensor based on a p-GaN/AlGaN/GaN hybrid anode
diode (HPT-HAD) fabricated by hydrogen plasma treatment is demonstrated. The sensor exhibits
accurate and stable temperature responses from 73 to 573 K. The forward anode voltage is linearly
proportional to the temperature over the measured temperature range at a fixed current. At a forward
current density of 10−7 mA/mm, the device achieves a maximum sensitivity of 1.93 mV/K. The
long-time anode current stress measurement reveals that the HPT-HAD shows almost no degradation
even at 573 K for 1 h at a current of 100 µA, and the anode voltage shifts only 120 mV at 573 K for
1000 s at 1 nA. This work shows that the HPT-HAD temperature sensor can be reliably operated
over a wide temperature range from cryogenic to high temperatures, so can be used in a variety of
extreme environments.

Keywords: p-GaN/AlGaN/GaN; temperature sensor; semiconductor materials

1. Introduction

Temperature is one of the most essential and fundamental physical quantities. Both di-
rect and indirect methods can be utilized to obtain temperature parameters [1]. Commonly
used direct temperature-sensing techniques include optical methods, physical contact
methods, and electrical methods [2]. The utilization of a p-GaN high electron mobility
transistor (HEMT) in power integrated circuits is already well-established in the com-
mercial industry; however, detecting their operational status and promptly notifying of
malfunctions in real-time has been an ongoing challenge [3]. An integratable temperature-
sensing module for real-time temperature monitoring can help to detect and predict the
failure of critical components in a timely manner [4,5]. GaN is a promising semiconductor
material for extreme-environment-sensing applications due to its wide bandgap (3.4 eV)
and performance stability [6,7]. GaN diodes have been previously demonstrated as viable
temperature sensors [8–15]; however, there are very few reports on the design and fabri-
cation of temperature sensors on the AlGaN/GaN platform [14,16]. In order to achieve
real-time monitoring of the operating temperature of power integrated circuits, we require
a compact device that can be easily integrated into a p-GaN HEMT. Our designed lateral
hybrid anode diode (HAD) is substrate consistent with a conventional p-GaN HEMT for
power integrated circuits and is manufactured with fully compatible processes. In our
previous work, HAD temperature sensors on the commercial p-GaN HEMT platform were
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reported with a temperature range from room temperature to 473 K [17]. However, certain
extreme applications necessitate the operation of these devices at cryogenic temperatures
as low as that of liquid nitrogen (~77 K), such as aerospace, quantum computing, and
extreme-environment exploration [18–20]. Therefore, temperature sensors that can reliably
measure a wide temperature range from cryogenic to high temperature are highly beneficial
for these applications.

In this paper, a high-performance temperature sensor based on a p-GaN/AlGaN/GaN
hybrid anode diode (HPT-HAD) fabricated by self-aligned etching-free hydrogen plasma
treatment is demonstrated and comprehensively characterized from 73 to 573 K. It should
be noted that the temperature range is limited by the Janis Cryogenic Probe System, not
by the device itself. The forward anode voltage below the zero-temperature coefficient
(ZTC) point is linearly proportional to the temperature over the measured temperature
range with a maximum sensitivity of 1.93 mV/K at a current density of 10−7 mA/mm. The
HPT-HAD showed good long-time-stress reliability even at 573 K for 1 h.

2. Materials and Methods
2.1. Epitaxial Structure

The heterostructure epitaxy materials utilized in this study were grown on a 2-inch
silicon (111) substrate using metal organic chemical vapor deposition (MOCVD).

The epitaxial structure on which the HPT-HAD device was based is illustrated in
Figure 1a, as depicted. We first grew a layer of amorphous GaN nucleation sites on the Si
substrate via MOCVD at a low temperature of 500 ◦C. Next, we performed a rapid annealing
step at 1100 ◦C for five minutes, which facilitated the recrystallization of GaN along the
crystalline phase of the Si substrate. We then grew a buffer layer of AlxGa1−xN at a higher
temperature of 1050 ◦C, which was doped with carbon to minimize background carrier
concentration and withstand stress. To increase device mobility and reduce scattering
of 2DEG by the buffer layer, we grew a layer of high-quality intrinsic GaN crystals as a
transport channel for the electrons. Additionally, we inserted a thin layer of AlN between
the potential and channel layers to reduce the effect of alloy scattering from the AlGaN
ternary material and improve electron mobility. To balance the concentration of 2DEG
and reduce stress in the barrier layer, we grew an 18 nm thick Al0.2Ga0.8N layer with
an Al fraction of 0.2. Finally, we grew a 70 nm thick p-GaN cap layer doped with Mg
at approximately 4 × 1019 cm−3. Figure 2b demonstrates that p-GaN grown using this
method possesses excellent surface roughness with an RMS value of 0.26 nm.
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Figure 2. (a) Cross-sectional schematic of the HPT-HAD; (b) fabrication process for the HPT-HAD.

2.2. Device Structure and Manufacturing Methods

Figure 2a illustrates the structure of the temperature sensor based on HPT-HAD. The
p-GaN/AlGaN/AlN/GaN (70 nm/18 nm/~0.8 nm/~2 µm) epi-structure was grown on a
2-inch silicon substrate by metal-organic chemical vapor deposition, and the Mg-doping
concentration of a p-GaN cap layer was about 4 × 1019 cm−3. The hybrid anode consists of
the ohmic anode metal in contact with the two-dimensional electron gas (2DEG) and the
p-GaN, and the gate metal connecting the p-GaN to the anode metal. Thus, the HPT-HAD
is equivalent to a gate-to-source connected transistor.

The HPT-HAD was fabricated using traditional optical photolithography as shown in
Figure 2b. It began with removing the p-GaN layer on the anode- and cathode-contact area
by dry etching. Before the Ti/Al/Ni/Au metal stack deposition by electron beam evapora-
tion, the sample was briefly dipped in diluted hydrochloric acid (HCl) to remove native
surface oxides. The ohmic anode and cathode were formed after rapid thermal annealing
(RTA) at 850 ◦C in N2 ambient. The device isolation was realized by fluorine implantation.
The Ni/Au gate was evaporated on the p-GaN and ohmic anode. To form high-resistivity
GaN (HR-GaN), the sample was load into the Oxford Plasmalab System 100 ICP 180 for H2
plasma treatments where the metal electrodes serve as hard masks, followed by thermal
annealing by RTA at 623 K in N2 ambinet. The procedure of passivating H plasma is profi-
cient in assuaging etching while transforming the processed GaN into a protective layer of
high resistance. This modality engenders notable abatements in the deleterious impacts of
etching, superficial state defects, and lattice fit defects, thereby amplifying the stability of
devices and ameliorating the reverse leakage current. The treatment conditions were the
same as the previous works [17,21]. Concomitantly, the Ni/Au metallic gate functions as a
robust mask, preserving the p-type doping characteristics of the GaN beneath it from the H
plasma processing. The minute segment of p-GaN that endures is able to exhaust the 2DEG
below, adroitly regulating device turn-off. The reduced defects also mitigate the hot carrier
effect at elevated temperatures, endowing our devices with improved thermal stability.
The HPT-HADs had an p-GaN length (Lp) of 4 µm, an anode-to-cathode length (LAC) of
20 µm, and a width of p-GaN gate (WG) of 100 µm. No surface passivation was employed
in the devices. The current-voltage (I–V) characteristics of the HPT-HAD temperature
sensor were measured using Keysight B1500A semiconductor analyzer system and Janis
Cryogenic Probe System from 73 to 573 K.

To validate the superior surface quality preservation achieved through H plasma
as opposed to traditional ICP etching, we conducted separate H plasma and ICP etching
procedures on a single p-GaN substrate. The stark contrast observed in Figure 3a,b provides
compelling evidence that the H plasma treatment inflicts far less damage on the material
surface compared to ICP etching.



Crystals 2023, 13, 620 4 of 10Crystals 2023, 13, x FOR PEER REVIEW 4 of 11 
 

 

 

Figure 3. AFM image of (a) after H plasma treatment, and (b) after ICP Etching. 

3. Results 

3.1. Performance and Principle 

Figure 4a shows the temperature−dependent forward I–V characteristics of the 

HPT−HAD temperature sensor in a semi−log scale from 73 to 573 K. The HPT−HAD ex-

hibited good rectifying behaviors at all measured temperatures. The current density of the 

device decreased as the temperature increased, which is due to the enhanced phonon scat-

tering and thus reduced carrier mobility at high temperatures [22]. The OFF−state current 

density of the device was as low as 10 pA/mm, and the ION/IOFF ratio was 109~1011, which 

can be ascribed to the low surface damage by the etching−free plasma treatment technol-

ogy. The HPT−HAD sensor showed a zero−temperature coefficient (ZTC) bias point of 1.6 

V at which the device exhibited minimum temperature sensitivity, which is similar to re-

ported devices [13,16]. 

Figure 4b presents the forward anode voltage (VA) across the HPT−HAD against tem-

perature (T) at different fixed low current density (IA) levels. A highly linear relationship 

between the VA and T with a negative temperature coefficient from 73 to 573 K was ob-

served, indicating that the HPT−HAD sensors can operate in a wide temperature range 

from cryogenic to high temperatures. This test is a step−by−step progression from the low 

temperature to the high temperature. The sensitivity (S) of the devices was defined as the 

temperature coefficient extracted from the linear fitting curves. Figure 4c depicts the de-

vice sensitivity at different current density levels. The device sensitivities at eight IA of 1, 

10−1, 10−2, 10−3, 10−4, 10−5, 10−6, and 10−7 mA/mm were extracted as 0.38, 0.73, 0.96, 1.15, 1.34, 

1.63, 1.75, and 1.93 mV/K, respectively. The relationship between the device sensitivity 

and the current density level can be expressed as follows: 𝑆 ∝ In(𝐼𝐴). 

  

Figure 3. AFM image of (a) after H plasma treatment, and (b) after ICP Etching.

3. Results
3.1. Performance and Principle

Figure 4a shows the temperature-dependent forward I–V characteristics of the HPT-
HAD temperature sensor in a semi-log scale from 73 to 573 K. The HPT-HAD exhibited
good rectifying behaviors at all measured temperatures. The current density of the device
decreased as the temperature increased, which is due to the enhanced phonon scattering
and thus reduced carrier mobility at high temperatures [22]. The OFF-state current density
of the device was as low as 10 pA/mm, and the ION/IOFF ratio was 109~1011, which can
be ascribed to the low surface damage by the etching-free plasma treatment technology.
The HPT-HAD sensor showed a zero-temperature coefficient (ZTC) bias point of 1.6 V at
which the device exhibited minimum temperature sensitivity, which is similar to reported
devices [13,16].
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Figure 4b presents the forward anode voltage (VA) across the HPT-HAD against
temperature (T) at different fixed low current density (IA) levels. A highly linear relationship
between the VA and T with a negative temperature coefficient from 73 to 573 K was
observed, indicating that the HPT-HAD sensors can operate in a wide temperature range
from cryogenic to high temperatures. This test is a step-by-step progression from the low
temperature to the high temperature. The sensitivity (S) of the devices was defined as the
temperature coefficient extracted from the linear fitting curves. Figure 4c depicts the device
sensitivity at different current density levels. The device sensitivities at eight IA of 1, 10−1,
10−2, 10−3, 10−4, 10−5, 10−6, and 10−7 mA/mm were extracted as 0.38, 0.73, 0.96, 1.15, 1.34,
1.63, 1.75, and 1.93 mV/K, respectively. The relationship between the device sensitivity and
the current density level can be expressed as follows: S ∝ In(IA).

Based on the thermionic emission theory, the Schottky diode’s I–V relationship can be
expressed as [23]

I = AA∗T2 exp
(
− q∅B

kT

)[
exp

(
qV
kT

)
− 1

]
(1)

IS = AA∗T2exp
(
− q∅B

kT

)
(2)

where A represents the Schottky junction’s area, A* is the effective Richardson constant,
and the A* value for GaN is 26.3 A/(cm2·K2) at 300 K. For AlGaN materials with Al
compositions of 20%, the corresponding A value is 32.6 A/(cm2·K2). Here, ∅B is the height
of the Schottky barrier at zero bias, and IS represents the reverse saturation current.

When considering non-ideal effects such as image force, tunneling, recombination
current of electron-hole pairs, hole injection effect, and series resistance, the IV equation
can be expressed as [24,25]

I = AA∗T2exp
(
− q∅B

kT

)[
exp

(
qV − IRS

nkT

)
− 1

]
(3)

In Equation (3), n represents the ideality factor, and RS is the equivalent series resis-
tance of the current path. When V is greater than 3 kT/q, the equivalent series resistance
RS is relatively small and can be simplified to

I = AA∗T2exp
(
− q∅B

kT

)
exp

(
qV
nkT

)
(4)

By taking the logarithm of both sides of Equations (3) and (4), we can obtain

lgI =
qlge
kT

· 1
n
·V + lgAA∗T2 + lge·−q∅B

kT
(5)

The barrier height and ideality factor can be extracted from the slope and intercept of
the lgI–V curve on a semi-logarithmic coordinate system, yielding:

∅B =
kT

qlge
·lg AA∗T2

intercept
(6)

n =
qlge
kT

· 1
slope

(7)

Based on temperature-dependent testing results and the aforementioned calculation
formula, we extracted the Schottky barrier and ideality factor of the device from 273 K
to 523 K. As shown in Figure 5, the Schottky barrier of the device continues to rise while
the ideality factor gradually approaches 1 as the temperature increases. This trend of the
Schottky diode barrier and ideality factor variation with temperature is consistent with
that reported in other articles [26].
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3.2. Reliability and Comparison

To evaluate the long-time reliability of the HPT-HAD temperature sensor, the device
was measured under the anode current stress for a long time at high temperatures [27].
Figure 6 shows the changes in VA (∆VA) at different temperatures for 1 h with the anode
current density of 1 mA/mm. This suggests that the VA drifted negatively and more
significantly with increasing temperature under the anode current stress and the highest
∆VA were only −1.60, −1.71, −2.87, and −2.89 mV at 298, 373, 473, and 573 K, respectively.
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Figure 6. Shift in Anode voltage during forward current densities of 1 mA/mm at (a) 298 K, (b)373 K,
(c) 473 K, and (d) 573 K.
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Figure 7 shows the ∆VA at different anode current stresses for 1000 s at 573, 298 and
73 K. At 573 K, the VA showed almost no change at high current density (≥10 µA/mm)
and shifted negatively by about 120 mV at low current density (<10 µA/mm). At 73 K, the
device exhibited excellent long-term stability, with almost no performance drift observed.
This may be because defects are frozen at 73 K, and the performance drift caused by carrier
thermal effects cannot accumulate. At room temperature, this device also demonstrated
impressive stability, which may be attributed to the reduction of defects. These results
indicate the high reliability of the HPT-HAD temperature sensors.
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As shown in Figure 8, the performance of our device was benchmarked against some
state-of-the-art temperature sensors based on AlGaN/GaN diodes [8,10–17]. Our HPT-
HAD temperature sensor demonstrated sensitivity of 1.93 mV/K and a broad operating
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temperature range from 73 to 573 K. Moreover, the device showed remarkable stability at 73,
298, and 573 K. This desirable performance is mainly attributed to the H plasma treatment
employed during the device fabrication process, which mitigates etching-induced damage
and minimizes defects. Moreover, the H-treated p-GaN also serves to passivate and protect
the device to some extent. Our previous work has confirmed the effectiveness of this
approach [28].
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4. Conclusions

In summary, we demonstrated a temperature sensor based on HPT-HAD that can
operate from 73 to 573 K. The temperature sensor maintained a good linear relationship
between forward anode voltage and temperature with a sensitivity of 1.93 mV/K. The
experimental results were supported by an analytical model. Almost no forward anode
voltage degradation during a long-time current stress test even at 573 K showed the high
reliability of the HPT-HAD temperature sensors. These results indicate that the HPT-HAD
is a promising candidate for temperature sensors in extreme environments.
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