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Abstract: The manipulation of matter at the atomic level (nanotechnology) has experienced an
explosion in research interest in recent years. Bimetallic nanoparticles are vital due to their high bio-
compatibility, stability and comparatively less toxicity. The synthesis methods that include physical,
chemical and biological methods are explored and explained in detail, along with their advantages.
They have a wide range of applications due to their synergistic properties including biological appli-
cations (in medicine and agriculture), environmental application (in water treatment and removal of
toxic contaminants), engineering application (in nanosensors, nanochips and nano-semiconductors)
and chemical and physical application (in optics, catalysis and paints). The green synthesis approach
is a promising method of synthesis that can give rise to more biocompatible and less toxic bimetallic
nanoparticles due to increasing environmental pollution. However, despite these interesting at-
tributes of bimetallic nanoparticle, there is still much work to be done to improve the biocompatibility
of bimetallic nanoparticles because of their toxicity and potentially hazardous effects.
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1. Introduction

As the name implies, nanotechnology is a technology that deals with matter at the
nanoscale level. It refers to the branch of science and engineering that deals with the
manipulating of atoms or molecules at the nanoscale to design systems and produce devices
for various applications. The main building block of nanotechnology is the nanoparticles.
These nanoparticles are tiny in size, have a high surface area and exhibit a property known
as quantum effects, which means irregular or unpredictable behavior [1]. Nanoparticles are
of different types, and they can be classified based on structure (metal base, carbon base,
dendrimers or liposome), dimension (zero, one, two or three dimensions) or origin (natural
or artificial) [2]. Among the various types of nanoparticles, metal-based nanoparticles,
especially those of noble metals, have more advantages than other nanoparticles This is
because metal-based nanoparticles are highly stable, biocompatible and possibly capable
of large-scale production for biomedical and environmental applications [3]. However,
despite having these fascinating abilities and properties, the application of metal based
nanoparticles still needs to be improved in some fields of study due to their toxicity, large
size, cellular uptake and chemical stability [4,5]. Therefore, there is a need to overcome
those limitations. By combining any two metals to form a bimetallic nanoparticle, the
fascinating and synergetic relationship between them shows new enhanced structural and
physical properties, subsequently increasing their functionality and application [2]. In
addition, the experimental results have shown a remarkable enhancement capability and a
possible solution to overcome the limitation of monometallic nanoparticles.

Bimetallic nanoparticles are attracting more attention in recent years due to their
unique physical properties (quantum effect, high surface area, mobility), chemical, me-
chanical, thermal, optical, catalytic and magnetic properties [6–10]. These properties make
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bimetallic distinguishable from their monometallic counterparts and give a superior perfor-
mance that the individual metals do not have [11–13]. Both mono and bimetallic nanopar-
ticles are suitable for applications in various fields, including biomedical, biosensors,
nanomedicine, imaging, wastewater treatment, oil and gas industries, agriculture/food
processing and gene/drug delivery [14–20]. In addition, antimicrobial and anticancer
activities of bimetallic nanoparticles have also been investigated extensively [21–26].

There are three methods of synthesizing nanoparticles: physical, chemical and biolog-
ical (Figure 1). Either of the two main approaches can make these methods, namely, the
top-down and the bottom-up approach. The top-down approach involves the breaking
down of the bulk material by external mechanical force to nanosized particles, e.g., mechan-
ical grinding, ball milling, laser ablation, microwave irradiation, etc. On the other hand,
the bottom-up approach involves building the nanoparticles right from the atomic level.
Atoms build up to form molecules, then the molecules grow into a cluster and finally create
the nanoscale particles. Examples of this method include the sol-gel process, pyrolysis
and chemical precipitation [27]. Though the top-down approach is a faster method, there
is no control of particle shape and size as compared to the bottom-up approach, where
shape and size can be easily controlled by controlling the synthesis parameters such as
pH, temperature and concentration. This review will focus on bimetallic nanoparticles,
synthesis, characterization, biological and environmental applications and the toxicity of
bimetallic nanoparticles.

Crystals 2023, 13, x FOR PEER REVIEW  2  of  34 
 

 

Bimetallic nanoparticles are  attracting more  attention  in  recent years due  to  their 

unique physical properties (quantum effect, high surface area, mobility), chemical, me-

chanical, thermal, optical, catalytic and magnetic properties [6–10]. These properties make 

bimetallic distinguishable from their monometallic counterparts and give a superior per-

formance that the individual metals do not have [11–13]. Both mono and bimetallic nano-

particles are suitable for applications in various fields, including biomedical, biosensors, 

nanomedicine,  imaging, wastewater  treatment, oil and gas  industries, agriculture/food 

processing and gene/drug delivery [14–20]. In addition, antimicrobial and anticancer ac-

tivities of bimetallic nanoparticles have also been investigated extensively [21–26]. 

There are three methods of synthesizing nanoparticles: physical, chemical and bio-

logical (Figure 1). Either of the two main approaches can make these methods, namely, 

the top-down and the bottom-up approach. The top-down approach involves the breaking 

down of the bulk material by external mechanical force to nanosized particles, e.g., me-

chanical grinding, ball milling,  laser ablation, microwave  irradiation, etc. On  the other 

hand, the bottom-up approach involves building the nanoparticles right from the atomic 

level. Atoms build up to form molecules, then the molecules grow into a cluster and finally 

create the nanoscale particles. Examples of this method include the sol-gel process, pyrol-

ysis and chemical precipitation [27]. Though the top-down approach is a faster method, 

there  is no control of particle shape and size as compared  to  the bottom-up approach, 

where shape and size can be easily controlled by controlling the synthesis parameters such 

as pH, temperature and concentration. This review will focus on bimetallic nanoparticles, 

synthesis, characterization, biological and environmental applications and the toxicity of 

bimetallic nanoparticles. 

 

Figure 1. Schematic diagram of bimetallic nanoparticles. 

2. Different Types of Bimetallic 

Bimetallic nanoparticles are  synthesized when  two different metals are mixed  to-

gether in a reaction vessel under optimized conditions, resulting in various structural and 

morphological changes [28]. Different combinations of metals, including noble and tran-

sition metals can produce many different types of bimetallic nanoparticles. These bime-

tallic nanoparticles  can be  in many  forms,  including gold-based,  silver-based,  copper-

based, nickel-based, iron-based, platinum-based or palladium-based bimetallic nanopar-

ticles (Table 1). 

   

Figure 1. Schematic diagram of bimetallic nanoparticles.

2. Different Types of Bimetallic

Bimetallic nanoparticles are synthesized when two different metals are mixed together
in a reaction vessel under optimized conditions, resulting in various structural and mor-
phological changes [28]. Different combinations of metals, including noble and transition
metals can produce many different types of bimetallic nanoparticles. These bimetallic
nanoparticles can be in many forms, including gold-based, silver-based, copper-based,
nickel-based, iron-based, platinum-based or palladium-based bimetallic nanoparticles
(Table 1).
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Table 1. Summary of the different combinations of bimetallic nanoparticles and the method
of synthesis.

Forms of Bimetallic
Nanoparticles

Type of Bimetallic
Nanoparticle

Structure of the
Bimetallic Nanoparticle Method of Synthesis References

Gold based

Au-Pt Cubic crystal structure Green synthesis [29]
Au-Cu Porus structure Galvanic replacement [30]
Au-Ni Porus structure Chemical synthesis [31]
Au–Pd Core-shell Chemical Synthesis [32]
Au-Ag Alloy & Core-shell Green synthesis [33]

Silver based

Ag-Cu Alloy Green synthesis [34]
Ag-Au Alloy Green synthesis [35]
Ag-Fe Spherical shape Green synthesis [36]
Ag-Pd Cubic crystalline structure Green synthesis [37]
Ag-Zn Wurtzite hexagonal Green synthesis [38]

Copper based

Cu-Ni Alloy Sol-gel [39]
Cu-Ag Alloy Green synthesis [40]
Cu-Fe Classified Janus Electrical explosion [41]

Cu-Co Spherical Inverse micellar
encapsulation [42]

Cu-Pt Alloy & core Hydrothermal method [43]

Nickel based

Ni-Co Porous Chemical co-reduction [44]
Ni-Fe Alloy & core shell Chemical synthesis [45]
Ni-Au - Physical Synthesis [46]
Ni-Pt Alloy Co-reduction [47]
Ni-Ru Alloy Chemical synthesis [48]

Iron based

Fe-Zn Spherical Green synthesis [49]
Fe-Ti Nano-Sphere Chemical synthesis [50]

Fe-Mn Spheroid-like Chemical synthesis [51]
Fe-Ag Janus structure Physical Synthesis [52]
Fe-Cu Crystalline Green synthesis [53]

Platinum based

Pt-Ag face-centred cubic structure Chemical synthesis [54]
Pt-Co face-centred cubic structure Chemical reduction [55]
Pt-Ni face-centred cubic structure Chemical reduction [56]
Pt-Pd Carbon sphere Chemical reduction [57]
Pt-Pd Crystalline Green synthesis [58]
Pt-Fe Face-cantered cubic Chemical synthesis [59]

Palladium based Pd-Au Hexagonal nanoplate DNA ligand [60]
Pd-Ag Spherical Green synthesis [61]
Pd-Cu Crystalline alloy Green synthesis [62]
Pd-Zn Spherical Chemical synthesis [63]

3. Synthesis of Bimetallic Nanoparticles

Generally, the synthesis of bimetallic nanoparticles involves either breaking down
bulk materials to nanosized particles or building up the nanoparticles from their respective
atoms. These two approaches are the top-down approach and the bottom-up approach
(Figure 2). The bottom-up approach usually involves mixing two different metal precursors
in a reaction vessel under the optimized condition to which a reducing and stabilizing
agent is added. However, the general procedure of synthesizing bimetallic nanoparticles
can be categorized into three main categories, namely, physical, chemical and biological
methods (Figure 3).
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3.1. Physical Method

The physical method of nanoparticle synthesis generally involves the breaking of bulk
materials into fine particles. It has some advantages over the other synthesis methods, such
as uniformity in the formation of nanoparticles and less contamination.

3.1.1. Laser Ablation

This is a top-down approach where the bulk material is broken down into nano-
sized particles. The process involves irradiating a solid or sometimes a liquid substance
with a laser beam to remove particles from their surface. This process can be used to
synthesize a well dispersed bimetallic nanoparticle, as reported by [64]. The mecha-
nism of nanoparticle formation using laser ablation method is appropriately explained
by [65] and [66], respectively.

3.1.2. Mechanical Grinding

In this process, bimetallic nanoparticles are formed by grinding the mixture of the
metal salts with the reducing agent in a solid state. Au–Ag nanoparticles were synthesized
by [67] using this method. In a simple two-step experiment, a solid-state mixture of
AgNO3, chitosan and NaOH was first ground using a mortar and pestle and then followed
by the addition of a concentrated solution of HAuCl3 which, subsequently, resulted in the
formation of Au–Ag bimetallic nanoparticle.

3.1.3. Microwave Irradiation

Microwave irradiation can also assist in the fabrication of bimetallic nanoparticles
and have certain advantages, such as excellent control of the reaction parameters, the
heating source having no direct contact with the reactant/solvent and a high heating
rate. Microwave heating in this method is used to replace the use of chemicals during
the synthesis process. This method synthesized Ag/ZnO bimetallic nanoparticles by
heating the mixture of AgNO3 and ZnO nanoparticles dispersed in ethanol under reflux
in a microwave reactor for 20 min [68]. In addition, [69] synthesized Au–Pd and Au–Pt
bimetallic nanoparticles using hydrothermal and microwave irradiation.

3.1.4. Ball Milling

Ball milling is a method that grinds materials into extremely fine powders. It consists
of a hollow horizontal compartment containing balls made of steel that rotate around
its axis. The subsequent rotation crushes the materials inside the compartment into fine
particles with the help of the steel balls. This method was used for synthesizing Al–Fe and
Ni–Fe bimetallic nanoparticles, as reported by [70] and [71], respectively.

3.1.5. Electrochemical Method

In this method, an electrolyte and an electrically conductive metal substrate are used
for the synthesis of bi-metallic nanoparticles. The synthesis occurs at the interface between
the electrolyte solution, containing the metal salt precursors and the conductive metal
substrate [72]. A study employed this method and synthesized Co–Ni bimetallic nanopar-
ticles that were used to detect tetracycline [73]. Similarly, Bi–Sb and Au@Ag core shells
were synthesized by [74] and [75] using the same electrochemical method and used for the
reduction of CO2 and detection of thiram in juice and milk, respectively.

3.2. Chemical Method

The most important factor in the chemical synthesis method is the reducing and stabi-
lizing agent. This method generally involves using a suitable metal source, usually soluble
salts or ions that can be dissolved in water. To that solution, a reducing agent in the form
of chemical, polymer or ligand is added which strongly affects the nanoparticle particle
formation. In some instances, only the stabilizing or reducing agent is required for the
synthesis while other processes require both the reducing agent and as well as the stabiliz-
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ing agent. When both metal precursors are present and simultaneously reduced during
the synthesis process, it can lead to nanoparticle formation, while successive reduction
can lead to core–shell formation [76]. The fabrication of bimetallic nanoparticles using the
chemical method can be generally grouped into two, namely, simultaneous and successive
reduction. Both are simple, fast, economic and can be used for large-scale production, and
the doping of other materials during synthesis is possible. Various parameters such as
pH, temperature, concentration and rate of irradiation are used to control the chemical
synthesis of bimetallic nanoparticles.

3.2.1. Simultaneous Reduction
Co-Reduction

Co-reduction is the simplest method of bimetallic synthesis. It involves the mixing
of two metal precursors together. To that mixture, a reducing agent or stabilizing agent is
added, which can reduce the metal ion to atoms and stabilize the aggregation process [77].
In practice, polymers can be used to control the reduction and aggregation of bimetallic
nanoparticles. The polymer and metal ions can interact after the reduction and vise
vasa. It is believed that when the reduction of metal nanoparticles comes first, before the
interactions, some properties including the size and structural properties can be determined
only by the reduction process. However, when the interaction comes before the reduction,
the particle size structure may be affected [78]. For example, Fe-Ni bimetallic nanoparticle
supported by zeolite was prepared by sodium borohydride—NaBH4—for the simultaneous
reduction of the corresponding mixture of the two metal salts. In the experiment, the Fe
and Ni metal salts precursors were dissolved in an ethanol-water solution and then mixed
with zeolite, which acts as the stabilizing agent. Adding the reducing agent—NaBH4—to
the mixture under vigorous stirring in a dropwise manner causes a black suspension within
30 min, thereby indicating the formation of Z–Fe/Ni bimetallic nanoparticles. Subsequently,
Fe–Ni bimetallic nanoparticle was also fabricated by the simultaneous reduction of the same
mixture of metal salt solution using the same reducing agent but without the addition of
the stabilizing agent ‘zeolite’ [79]. The same process was employed by [80] in synthesizing
the same bimetallic nanoparticle supported by bentonite (B–Fe/NI), which serves as the
stabilizing agent.

Sonochemical Co-Reduction

This process involves using high-intensity ultrasound radiation in a solution to create
a chemical reaction at the atomic level. When the aqueous mixture is exposed to a high-
intensity ultrasound wave, an acoustic cavitation effect is produced where growth occurs
in the region of high temperature and pressure. Sonification also leads to the breaking
down of molecules that lead to the production of radicals that act as oxidizing and reducing
radicals [81]. A study reported that magnetic Ni–Ag nanoparticles supported by graphene
oxide were synthesized using ultrasonication of the aqueous solution of AgNO3 and
Ni(NO 3)2 [82]. The graphene oxide act as the stabilizing agent while NaOH and hydrazine
hydrate (N2H4) act as the reducing agent. The mixture of the aqueous solution of the
metal salts with stabilizing agent (graphene oxide) was first ultrasonicated for 30 min.
Then, the reducing agents (NaOH and hydrazine hydrate (N2H4)) were added under N2
atmosphere at 90 ◦C and the mixture was ultrasonicated again for 10 min. The mixture was
refluxed at 90 ◦C for 1 h, then centrifuged and the solid product was removed and washed
with ethanol and distilled water before drying at 50 ◦C in a hot air oven. In addition, a
polymer-stabilized Au-Pd bimetallic nanoparticle synthesized by ultrasonic irradiation
using PVP and ethylene glycol was the stabilizing agent [83].

Radiolytic Co-Reduction

Radiolytic co-reduction is the process of applying ionizing radiation (UV, X-ray,
Gamma ray, electron beam, etc.) to an aqueous mixture in order to reduce the ionic
solutions to atoms. This method offers some advantages due to the efficient control of
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radiation dose delivered to the mixture which, in return, control the structure and growing
process of nanoparticles, although in terms of nanoparticles shape the radiolytic process can
be difficult to control in the radiolytic co-reduction of metal ion solutions, reducing radicals
produced when radiolysis occurs [84]. Moreover, the electron radicals with a high reduction
potential replace the chemical reducing agent. The radiolytic co-reduction mechanism
involves hydrogen-free radicals and hydrated electrons generated by the radiolysis of wa-
ter. A study [85] reported a two-step synthesis of platinum-based bimetallic nanoparticles
Pt–M (M: V, Mo, W) supported by graphene oxide with the help of gamma-ray irradia-
tion at a rate of 4.5 (kGy/h) under ambient conditions. In the first step, graphene oxide
was prepared, while in the second step, the metal source was dissolved in the prepared
graphene oxide solution. Exposing this mixture to gamma radiation reduces the mixture
and produces Pt–V, Pt–Mo and Pt–W bimetallic nanoparticles. Further, another study [86]
reported that a low exposure rate can reduce gold and silver ions, thereby producing a gold
core silver-coated bimetallic nanoparticle but, in contrast, a high dose rate can produce
alloyed Ag–Pt bimetallic nanoparticles. Other types of bimetallic nanoparticles that were
produced using gamma irradiation include Ag–Pt [87], Au–Cu [88], Pd–M (M = Ag, Au,
Cu, Ni, and Pt) [89], Pt–M (M = Au, Cu, Ni) [90], Pd–Au–Ag tri-metallic nanoparticle [91]
and Pt monometallic, Pt–Ru bimetallic, Pt–Ru–Sn, Pt–Ru–Mo trimetallic and Pt–Ru–Mo–Sn
tetra-metallic nanoparticles [92].

Chemical Precipitation

Chemical precipitation is an easy, single step and fast method of synthesizing nanopar-
ticles. It involves converting dissolved substances in a solution into an insoluble solid,
thereby making the solution a super saturated one. The insoluble solid that is formed is
known as the “precipitate”. In terms of synthesizing a bimetallic nanoparticle, it is often
regarded as “co-precipitation” due to the fact that two metal salts form the precipitate.
Fe–Mn bimetallic have been synthesized using co-precipitation method [51]. The metal
precursors were first prepared individually in the presence of excess oxygen and then
mixed in an Erlenmeyer flask at 70 ◦C while stirring at 50 rpm. The pH of the solution was
adjusted to 9 by adding 10% NH4OH while mixing continues for 4 h The solution was left
in a stationary condition until the precipitate was formed. The precipitate was separated
by centrifugation, washed and finally dried in hot air oven at 50 ◦C until constant weight
was reached. Then, the final product was stored in a desiccator. hBN–Fe3O4 [93], Me–Mn
(Me = Co, Ni, Sn) [94], Fe–Ti [50], CoCu–Mof [95] and Fe–Cr bimetallic nanoparticles have
also been synthesized using this method.

Thermal Decomposition

Thermal decomposition is a chemical reaction that occurs when a compound breaks
down at high temperature. It is known that metal nanoparticles, especially the noble
metals, can be synthesized at room temperature through the action of the reducing agent
that reduced the corresponding metal salts. However, some metal nanoparticles such as
transition metals, require a higher temperature during synthesis because of their inability
to be crystallized at room temperature [96,97]. To synthesize bimetallic nanoparticles using
this method, the temperature of the reaction must be increased to or near decomposition
temperature. The metal precursor with lower decomposition temperature will be decom-
posed (reduced) first and form a single-component monometallic nanoparticle, while the
second metal precursor is still in the solution. When the decomposition temperature of the
second metal precursor is reached, it will be decomposed and formed on the surface of the
first metal nanoparticle, thereby forming a bimetallic nanoparticle. For example, synthesis
of bimetallic titanium complexes M–Ti–O (M = nickel—Ni, Cobalt—Co, Manganese—Mn)
from cobalt, manganese and nickel metal precursors by using the thermal decomposi-
tion method were reported in the literature [98]. In addition, the thermal decomposition
method of synthesis has been used to synthesize Pd–Ir, [59], Co–Mn [99], PdxNiy [100],
Ti/Ce-Sb-SnO2NFs and Pd–Ag/C bimetallic nanoparticles [101].
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Sol-Gel Method

Sol-gel method is a simple, cheap and fast method of fabricating nanoparticles. It is a
technique based on colloidal chemistry, where a liquid mixture is transformed into a gel.
To synthesize nanoparticles, the metal precursors are first converted into a “sol” form or
colloidal suspension through hydrolysis and polymerization and then subsequently con-
verts into “gel” by gelation. The sol-gel formation process involves four stages: hydrolysis,
condensation, growth and agglomeration of particles [102]. A study reported synthesis of
alloyed Cu–Ni bimetallic nanoparticles using sol-gel method [39]. The metal precursors
were mixed with citric acid and stirred at room temperature until transparent solution
is obtained. While stirring continues, ethylene glycol was added, and the mixture was
evaporated at 130 ◦C for 24 h to obtain dry precursor and then calcinated at 700 ◦C to obtain
the final product. The magnetic properties were studied using SQUID magnetometry
and the Cu–Ni bimetallic nanoparticle shows a ferromagnetic behavior. Other bimetallic
nanoparticles synthesized using sol-gel method include Mg–Al [103], Pt–Pd [104], and
Au–M (M = Ag, Pd, Pt) [105].

Micro-Emulsion Method

Micro-emulsion is a homogeneous, isotropic and thermodynamic stable solution that
contains at least 3 components: a polar domain (usually water), non-polar domain (usually
oil) and a surfactant (ionic or non-ionic). This solution is macroscopic in nature and the
surfactant molecules usually form a tiny film that separate the polar and non-polar phase.
Different types of micro-emulsion include water-in-oil (reverse micelles), oil-in-water
(O/W), bicontinuous and supercritical CO2 microemulsion. Among the different types
of microemulsion, water in oil microemultion is mostly used for nanoparticle synthesis
while only a few nanoparticles are synthesized using the oil-in-water microemulsion
method [106,107]. In a study, Ag–Au bimetallic nanoparticle was prepared using the water-
in-oil microemulsion (reverse micelle) method [108]. The Ag and Au metal precursors were
reduced at room temperature using sodium-bromide—NaBH4¯as the reducing agent in
water-in-oil microemulsion containing TrionX100, water and cyclohexane and 1-hexanol
as the surfactant, respectively. The solution was mixed by continuous stirring and a color
change was immediately noticed after the formation of the bimetallic nanoparticle. Zn–
Se [109], Au–Pd [36], Au–Pt [110], Au–Ag [111], Pd–Ir [112], N—Mo [113], Cu–Ni [114], and
Pt–Ru bimetallic nanoparticles [115] were synthesized using water-in-oil microemulsion
method while Ag-AgCl [116], Ag@AgCl [117], Ag@AgBr surface-sensitize Bi2WO6 [118],
Mn–Zn [119], Zn-doped TiO2 [120], and Cu–Ce [121] were synthesized by the oil-in-water
microemulsion method, respectively.

Hydrothermal Reduction Method

The hydrothermal method is a convenient method of synthesizing nanoparticles at
very high temperature and pressure. The properties of the nanoparticles can be controlled
by regulating the pH, temperature and pressure of the synthesis medium. Some advantages
of this method are that pure products without contamination can be produced, and thus
a high yield production of high quality nanocrystal can be obtained and it offers the
ability to control some properties of nanoparticles such as chemical and physical properties.
However, the high cost of equipment is always a challenge while the process of crystal
growth cannot be monitored. A study reported [122] synthesis of bimetallic Pd–Au alloy
nanocatalysts using the hydrothermal method. In a typical experiment, the aqueous mixture
of metal precursors was heated at 180 ◦C in a stainless-steel autoclave for 12 h. The final
product was centrifuged, washed and redispersed in ethanol for further use. Additionally,
microwave-assisted hydrothermal synthesis of Cu–Co embedded in nitrogen doped carbon
(CuCo–N/C) was also reported [123]. In addition, other bimetallic nanoparticles were
synthesized using this method, including Au–Pt and Au–Pt [69], Ni–Cu [124,125], Ce–
Fe [126], Co–Ni [127], Pt–Pd [128], Pt–Ru [129], Ti–Zr [130], Pd@Au [131] and multi-walled
carbon nanotube Ni–Mn–S tri-metallic nanoparticle.
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3.2.2. Successive Reduction

Successive reduction (also referred to as seeded growth or seed mediated growth)
is a sequential reduction approach whereby the first metal precursor is reduced to metal
atoms (the seed), then the second metal precursor is added and subsequently reduced on
the surface of the first metal thereby forming a bimetallic nanoparticle in form of clusters,
crystals or core–shells. However, some metals are nobler than others. For example, in the
synthesis of Au–Ag nanoparticles, if the aqueous solution of Au3+ is first reduced to gold
nanoparticles, the subsequent addition of the aqueous solution of Ag+ in the presence of
sufficient reducing agent will lead to the formation of a bimetallic that has a gold core–which
is the seed and a silver shell. However, the reverse is not always the case. Assuming that Ag+

is reduced first to silver nanoparticles, the subsequent addition of Au3+ will most likely form
a hollow nanoparticle where the silver core is completely dissolved. This happens because
gold is nobler than silver and the cations of the noble gold oxidizes the silver core and
deposited on the surface of the dissolving silver nanoparticle [76]. Galvanic replacement
reaction is a technique that is mostly used to prepare hollow metallic nanostructures and
it is widely used to fabricate core–shell bimetallic nanoparticles. Synthesized core–shell
and seeded grown bimetallic nanoparticles include Au–Ag bimetallic nano-boxes [132],
Pd–Cu [133], Pd–Au nano-cubes [134], Au–Pd [135,136], Au–Ag [137], Pd-core Au–Pt shell
tri-metallic [138] and Au–Pd core Pt shell tri-metallic nanoparticles [139].

3.3. Polymer Mediated Approach

Bio-compatible polymer has also been used to synthesize bimetallic nanoparticles.
Bio-compatible polymers are capable of interacting with biological systems without causing
an adverse effect. Bio-compatible polymers are of two categories: natural and synthetic
polymer. Natural polymers are derived from a natural source such as polysaccharides,
nucleic acids and proteins. Examples include chitosan, collagen and hyaluronic acid.
Synthetic polymers, on the other hand, are chemically synthesized and tailored to meet
specific requirement for various biomedical applications. Some of the examples include
PLGA–poly (lactic-co-glycolic acid), PEG–polyethylene glycol, and polyurethanes. Both
natural and synthetic polymers have been used to synthesize various types of bimetallic
nanoparticles. For instance, a study reported [140] the synthesis of Ag–Au by using
poly diallyldimethyl ammonium chloride (PDADMAC) as the stabilizing agent. The
Ag–Au bimetallic nanoparticle was found to be 2–20 nm in size and also possess good
catalytic activity. Cu/Ag was also synthesized by using hydrazine and gelatin as the
stabilizing agent [141]. Carboxymethyl cellulose coated Fe–Cu bimetallic nanoparticles was
synthesized [142] to prevent aggregation and removal activity of Cr(VI). A comparative
assessment of the bimetallic nanoparticles was carried out pre and post being coated with
carboxymethyl cellulose to evaluate the role of stabilization method and it was found
out that the removal efficiency of the coated nanoparticle was lower as compared to the
uncoated particle. This was attributed to the electrostatic repulsion between the stabilized
nanoparticles and Cr(VI) species. Similarly, PEG was used to stabilize Ni–Fe for the
removal of Cr(VI) [143]. It was observed that more than 99% of Cr(VI) was removed from
the solution in about 60 min. The excellent performance of the bimetallic nanoparticle
was linked to the strong adsorption, reduction and co-precipitation of the PEG-coated
Ni–Fe. Ru–Co was also stabilized by PEG and used as an efficient heterogeneous catalyst
for Suzuki-Miyaura cross-couplings [144]. Bimetallic nanoparticles revealed excellent
catalytic activity with a conversion rate of up to 100%. It also maintains its catalytic
activity for up to 6 catalytic cycles. PLGA@Au-Ag loaded anticancer drug was synthesized
by [145]. Paclitaxel (PTX) anticancer drug was loaded into PLGA and a shell of Ag formed
through controlled reduction by PVP was used to coat the PLGA forming PLGA@Ag
nanoparticle. The PLGA@Ag was then used to grow Ag–Au nanoshell on the PLGA,
thereby forming a PLGA loaded PTX core and Ag–Au shell hybrid. Surface enhanced
Raman Spectroscopy experiments showed that PTX-loaded PLGA@Ag-Au has the potential
to provide a desirable SERS optical tag for biomedical imaging, controlled anti-cancer drug
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release and hyperthermal effect. It also has the potential to be used as a new theranotic for
detecting and treating cancer effectively. Fe–Cu and Fe–Ni chitosan stabilized bimetallic
nanoparticles were synthesized by [146] and [147], respectively. The former was found
to be highly effective for the removal of chromium from wastewater, while the latter was
found to be very effective for the removal of organic contaminants such as amoxicillin and
heavy metals including Cd(II). The role of collagen concentration in stabilizing Ag@Au
bimetallic nanoparticles was also investigated by [148].

3.4. Solid-Supported Bimetallic Nanoparticles

These are a class of bimetallic nanoparticles that are supported on a solid substrate
such as silica, alumina or carbon. The bimetals are usually adsorbed on the surface of
the substrate, thus increasing their stability and durability and preventing aggregation
or detachment from the surface. Solid-supported bimetallic NPs have been widely used
in various catalytic reactions, such as hydrogenation, oxidation and reduction reactions.
For example, Pt-based bimetallic NPs supported on carbon have been used as efficient
catalysts for the hydrogenation of aromatic compounds such as benzene and toluene [149].
Pd–Au supported by mesoporous silica have been used as high performance catalyst for
the hydrogenation of cinnamaldehyde [150]. Ni–Fe supported by activated carbon was
synthesized by [151] and used for the hydrogenation of biomass-derived ethyl levulinate
into γ-valerolactone. Similarly, Pd-based bimetallic NPs supported on silica have been used
as efficient catalysts for the selective oxidation of alcohols to aldehydes [152]. In addition
to catalysis, solid-supported bimetallic NPs have also been investigated for their potential
applications in other fields, such as electrocatalysis and sensing. For example, Pt-based
bimetallic NPs supported on carbon have been used as efficient electrocatalysts for the
oxidation of methanol in fuel cells [153]. Similarly, Au-based bimetallic NPs supported on
silica have been used as efficient sensors for the detection of heavy metal ions [154].

3.5. Biological Method

Usually, synthesizing nanomaterials via physical or chemical method is expensive,
tedious, time consuming, and hazardous to the ecosystem, and further, they produce
highly toxic by-products, require a high energy demand and pose a potential threat to
human health. Therefore, there is a need to find a more biocompatible, fast and cheap
synthesis approach that can overcome these limitations. The biological method of syn-
thesizing nanoparticles, also termed the ‘green synthesis method’, is an alternative and
more biocompatible approach to fabricating nanomaterials. The green synthesis method
involves producing nanoparticles without the use of hazardous or expensive chemicals.
Instead, natural sources are used to produce the nanoparticles and the end product is
more environmentally friendly and biocompatible. Generally, biological synthesis can
be done in two ways, by using plants (i.e., leaves, stem, fruits, seeds, bark, peels, shoots,
roots, etc.) as the reducing and stabilizing agent or microorganisms (bacteria, fungus,
yeast etc.). Nanoparticles synthesized by this approach are often referred to as biogenic
nanoparticles/nanomaterials [6].

3.5.1. Microbial Synthesis Method

This method involves the use of microbes, especially bacteria, fungi or yeast to syn-
thesize nanoparticles by an intracellular or extracellular mechanism. For the intracellular
mechanism, ions are transported into the cell of the microorganism with the help of in-
tracellular enzymes (endo-enzymes), and thus nanoparticles can be formed. As for the
extracellular mechanism, it involves metal ions binding or adsorption on the surface of
the cell and subsequent reduction occurs in the presence of extracellular enzyme or exo-
enzyme. Among these two mechanisms, extracellular is preferred because in intracellular
mechanism, further downstream processing is required in order to recover the synthesized
nanoparticles. The recovery process involves breaking the cell wall of the microorgan-
ism in order to retrieve the nanoparticles and subsequent washing, and centrifugation
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steps are required to purify them. Numerous research studies have reported on synthesis
of monometallic nanoparticles using bacteria. However, there are very few reports on
bimetallic synthesis. For example, a study reported [155] synthesis of Pd–Pt bimetallic
nanoparticle by using Shewanella oneidensis MR-1 bacteria and reduction occurs via the
extracellular mechanism. Bacteria were able to reduce the aqueous mixture of the metal
ions after incubation for 24 h at 30 ◦C. The final product was washed, centrifuged and
resuspended in Milli-Q water for subsequent assays. Similarly, Pd–Ag, Pd–Au and Pd–Pt
bimetallic nanoparticles have been synthesized using Shewanella oneidensis MR-1 [156–159].
Core–shell Au–Pd, Au–Ag and Pd–Ru bimetallic nanoparticles have been synthesized
using Escherichia coli [160–162]. Au–Ag alloy have been synthesized by using Lactobacillus
strains and Spirulina platensis, respectively [163,164]. A study reported synthesis of Ag–
Cu bimetallic nanoparticles using the fungal strain—Aspergillus terreus [164]. The fungal
biomass was mixed with the aqueous solution of the metal salts and then kept under
stirring in a microwave for a specific time duration. The precipitate was collected and
washed multiple times before being calcinated at 450 ◦C to obtain the final product. In
addition, Au–Ag and Au–Ag alloy nanoparticles were also synthesized using filamen-
tous fungus Neurospora crassa [165] and Fusarium oxysporum [166], respectively. Regarding
yeast mediated synthesis, most of the synthesized nanoparticles using this method are
monometallic nanoparticles such as gold and silver [167], but there are limited reports on
bimetallic nanoparticle synthesis. However, a study reported synthesis of Au–Ag alloy by
using instant dry yeast [168]. Ag–Au was also synthesized by using algae [169].

Other microorganisms such as viruses and macromolecules such as proteins and
DNA have also been used in synthesizing bimetallic nanoparticles [170]. Recently, a
report suggested [171] fabrication of Au–Ag bimetallic nanoparticle using viral strain
Squash leaf curl China virus (SLCCNV) isolated from a plant species. Likewise, protein
and DNA mediated synthesis of Au–Ag and CuO–NiO bimetallic nanoparticle were also
reported [172,173].

3.5.2. Plant Mediated Synthesis

There are many nanoparticles including mono, bi, tri and quad metallic nanoparticles
that have been synthesized via plants. Plant mediated synthesis offers various advantages
which makes them more suitable and a better approach than microbial synthesis. It uses
plant extracts which act as a reducing and stabilizing agent. It also eliminates the need
for bacterial culture medium while offering a faster synthesis route and better control of
the nanoparticle size and morphology. It is believed that different phytochemicals found
in the plant extract are responsible for reducing and forming nanoparticles (nano-phyto-
technology). They include proteins, carbohydrates, vitamins, amino acids, flavonoids,
alkaloids, terpenoids, ketones, tannins, aldehydes, amides, polysaccharides, polyphenols,
carboxylic acid and phenolic acid [174,175]. The main controlling factors during synthesis
of bimetallic nanoparticles using plant extract are the pH of reaction mixture, reaction
time, reactant concentration, temperature, concentration of the plant extract and metal
salts. These same factors also affect the size and morphology of nanoparticles during
synthesis [173]. Several research articles reported the use of different types of plant parts
to synthesize bimetallic nanoparticles. A study reported the synthesis of Ag–Au alloy
nanoparticles using Kolanut extract [174]. The synthesized nanoparticle was 17–91 nm
in size, has spherical morphology and possesses antimicrobial, larvicidal, catalytic and
anticoagulant properties. Kigelia africana fruit was used to synthesize Cu–Ag by [175,176]
at 120 ◦C under reflux. The nanoparticle was 10 nm in size and inhibits the growth of
gram-positive and gram-negative bacteria more than the antibiotic used in the study.
Green/red cabbage was used to synthesize Ag/Au alloy/hollow nanoparticles by [177]
through a straightforward approach by simply adjusting the pH of the aqueous medium.
The vegetable extract act as both reducing and stabilizing agents and the synthesized
nanoparticles were 25 nm in size with spherical shape. Moringa oleifera leaf has also been
used to synthesize Ni/Fe3O4. The nanoparticles were synthesized under vigorous stirring
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at 70 ◦C and they were of spherical shape with the size ranging from 16–20 nm [178]. In
another study [179], Fe/Pd was synthesized using grape leaf. Equal ratio of the metal
precursor and extract were mixed thoroughly for 30 min at room temperature and the
nanoparticles were found to be spherical in shape between the size of 20–100 nm. Neem
leaf was used to synthesize Au core–Ag shell by mixing an equal ratio of metal precursor in
neem leaf broth [180]. The nanoparticles were found to be 50–100 nm in size, and spherical
in shape. Mahogany was used to synthesize Au/Ag at room temperature and both metal
precursors were reduced simultaneously by the mahogany leaf extract at pH 8.5 and 12.5,
respectively [181]. Cashew leaf extract was used to synthesize Au–Ag nanoparticles and by
effect of the quantity of the extract, pH and temperature were also observed [182]. Fe/Pd
was synthesized using green tea which acts as a reducing/capping agent [183]. Date palm
tree leaves are also used for synthesizing bimetallic nanoparticles. A study reported [184]
Cu–Ag synthesis using aqueous extract of date palm tree by heating at 95 ◦C with constant
stirring for 1 h, and the nanoparticles obtained were about 26 nm in size. Synthesis of
Au–Ag at room temperature using fruit juice pomegranate was also reported [33]. The
bimetallic nanoparticle was synthesized via simultaneous reduction and were found to be
effective in degradation of methyl orange dye. Aloe vera leaf was also used to synthesize
Ag-Cu on cotton fabric that can be used for dressing wounds [185]. Fenugreek, coriander
and soybean leaf were used to synthesize Au–Ag nanoparticles by mixing equal proportion
of the extract and metal precursors after heating at 80 ◦C for 30 min [186], and chebulic
myrobalan was used to synthesize Ag–Pd at room temperature under constant stirring [37].
A detailed list of bimetallic nanoparticles synthesized using different parts of plant extracts
from shoots, leaves, stem, roots, buds, fruits, seeds, flowers and whole plants have been
reported by [187].

3.5.3. Bio-Waste Approach for Synthesizing Bimetallic Nanoparticles

Biological waste is a rich source of phytochemicals that can also be utilized in syn-
thesizing nanoparticles. The concept involves utilization of waste biomaterials which are
sustainable sources for synthesizing nanomaterials and simultaneously remediating envi-
ronmental pollution. Waste materials used in synthesizing bimetallic nanoparticles include
agro waste. A study reported [29] synthesis of Au–Pt by utilizing paddy straw, which is an
abundant agro waste to grow nutritionally and medically rich oyster mushroom Pleurotus
florida (pf ), which is further used as a reducing agent to synthesize bimetallic nanoparticle.
It was found that the synthesized bimetallic nanoparticle possesses anticancer activity.
Another study reported [30] synthesis of Au–Cu bimetallic nanoparticle supported on nano
P zeolite modified carbon paste electrode for the detection of hydrazine. The agro waste
material–stem sweep ash (SSA) was used as a starting material for silica source for the
synthesis of nano P zeolite. The construction of Au–Cu/NPZ/CPE was done via Galvanic
replacement technique and the sensor represented favorable analytical properties such as
rapid response time, high sensitivity and wide linear range. Graphene oxide supported
Au–Pd bimetallic nanoparticle with a core–shell morphology was synthesized by using
water extract of pomegranate ash (WEPA) [32]. The core–shell structure of Au–Pd/rGO
made a positive contribution in achieving the Suzuki coupling reaction in a very short time.
Another agro waste (Amaranthus tricolor) was used as a reducing and stabilizing agent
to synthesize Ag–Cu bimetallic nanoparticle [29]. The synthesized nanoparticles were
found to be very useful for optical sensing of dimethoate. Lemon pomace waste was used
to synthesize activated carbon Fe–Zn and the synthesized nanoparticle were utilized as
catalyst for the degradation of reactive red 2 (RR2) and azo-dyestuff with a heterogeneous
fenton-like reaction. The optimum decolorization condition were pH 3.0, 50 nM H2O2
concentration, dye concentration 100 mg L−1, catalyst concentration of 0.1 g L−1 and tem-
perature of 25 ◦C [49]. Orange peels extract was used to synthesize Au–Pd nanoparticles
through a two-step reduction process. The extract serves as a reducing and stabilizing
agent. The synthesized nanoparticle showed a color change from light to dark brown in the
presence of different concentrations of formaldehyde. This suggests that the synthesized
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nanoparticle can be used for formaldehyde sensing [188]. Pomegranate peels was used
to synthesize Ni–Fe and they were tested for tetracycline removal and its efficiency was
about 93% [189]. Waste tea leaves was used to synthesize Ag–Au [190]. It was found
that synthesized nanoparticles can efficiently degrade congo red and 4-nitrophenol in
water and in the presence of sodium borohydrate within 6 and 7 min. Avocado fruit peels
has also been used to synthesize Ag–Au alloy [191] and synthesized nanoparticles were
found to possess antimicrobial and antioxidant properties. Eggshell and cobalt nitrate was
used to synthesize Co–Ca bimetallic nanoparticles. They were found to be efficient in the
removal of norfloxacin by activating peroxymonosulfate at wide pH 3.0–9.0 in 35 min, and
the degradation efficiency was over 90% [192]. NiO-ZnO was also synthesized by using
eggshell membrane as template to control the size of the nanoparticle [193]. The synthesis
involved a two-step process, i.e., soaking, followed by calcination method. The synthesized
nanoparticles were tested for antibacterial and antifungal activity. The result indicated
that cell growth was inhibited even at the lowest concentration. Water chestnut peel was
used to synthesize Au–Ag bimetallic nanoparticles and synthesized nanoparticles were
exposed to various cancer cell lines (HeLa, HCT116 and MDA-MB-231). It was found that
bimetallic nanoparticles induced cytotoxicity effectively at 200 ug/ML. Au-Ag bimetallic
nanoparticles exposed cancer cells and exhibited apoptotic effects, including mitochon-
drial membrane potential loss and nuclear condensation [194]. Mahau seeds were used
to synthesize Au–Ag [195]. The seed extract contains a family of seven flavonoid fraction
which was used as the reducing agent for the synthesis of the bimetallic nanoparticles. The
bimetallic nanoparticle was found to be effective in the enhancement of wound healing
bio-efficacy. Waste silkworm cocoon has also been used to synthesize Fe/Cu alloy nanopar-
ticles [196]. Silkworm cocoon is a by-product of the silk industry. The cocoon is rich in
protein and the extract made from it serves as the reducing as well as stabilizing agent.
The synthesized nanoparticles were tested for their antimicrobial activity against selected
bacteria strains and fungal pathogens. The result indicated significant antimicrobial activity,
which suggested that the nanoparticles can be used as protective agents in cement mortars
that can inhibit the growth of pathogens of environmental concern, therefore avoiding
early ageing of the mortar. Although it is a known fact that green synthesis approach has
some limitations, it still offers an alternative for nanoparticle development due to the rising
environmental pollution [197].

4. Characterization Techniques of Bimetallic Nanoparticles

The molecular architecture of nanoparticles such as shape, size, structure, stability,
chemical composition, crystallinity and surface interaction plays an important role in figur-
ing out the behavior, characteristics and properties of nanomaterials (Table 2). By analyzing
the individual atoms, the nature and type of bond that exist between various atoms can be
deduced. Similarly, when the properties of the individual atoms are known, the charac-
teristics of the bulk counterpart can also be predicted. There are various characterization
techniques available for nanoparticles depending upon the measurand.

Table 2. Different methods of characterization of bimetallic nanoparticles.

Properties Features Techniques Reference

Morphology shape, size, structure DLS, TEM/SEM, STM,
XPS, AFM [198–204]

Topology

Chemical
bonding/composition,

physical properties,
crystallographic structures

XRD, TEM, zeta potential,
Brunauer Emmett Teller

(BET)
[204–206]
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Table 2. Cont.

Properties Features Techniques Reference

Chemical properties

Surface energy, chemical
potential, oxidation process,
catalysis, functionalization

of nanostructures

UV-vis, EDXS, FTIR [207,208]

Electrical properties Conductivity, resistivity,
dielectric permittivity

AC/DC conductivity,
electrokinetics (zeta

potential/cyclic
volumetry studies)

[209–211]

Optical properties
Absorption, reflectance,

luminescence,
phosphorescence

Microscopy, FTIR, UV-vis,
DPCS, Raman

spectroscopy, surface
plasmon resonance.

[212,213]

Mechanical properties Hardness, plasticity, young
modulus

AFM, thermomechanical
analysis [214–216]

Magnetic properties Magnetism VSM, SQUID, MFM [217–219]

Thermal properties Heat flux, change of
temperature, volatiles DSC, EGA, TGA, DTA [220,221]

Biological properties Anti-microbial,
biodegradability, toxicity

In vitro cell viability,
in vivo microbial colony

viability
[222,223]

5. Applications of Bimetallic Nanoparticles

Bimetallic nanoparticles are very crucial due to their unique and synergetic properties
which are distinguishable from their individual counterparts. Several research articles
have reported wide range of applications of bimetallic nanoparticles which were fabri-
cated through physical, chemical or biological method. Bimetallic nanoparticles have
application in many fields including biological applications (in medicine and agriculture),
environmental application (in water treatment and removal of toxic contaminants), engi-
neering application (in nanosensors, nanochips and nano-semiconductors), and chemical
and physical application (in optics, catalysis and paints) (Figure 4).

5.1. Biological Applications

Bimetallic nanoparticles have found numerous applications in medicine, including di-
agnostic (bio-imaging), therapy (cancer therapy) and preventive (antimicrobial, antioxidant,
antidiabetic drug delivery) medicine (Table 3). The highly magnetic properties of Au–Fe and
Ni–Co bimetallic nanoparticles makes them suitable to use as contrast agent for CT and MRI
diagnosis/prognosis imaging [224] and theranostic agent for tumors [225]. Similarly, Cu–Fe
have been used for enhanced chemodynamic therapy [226], Pd–Pt, Au–Co, Au–Co, Ag–Cu,
Au–Pt have been used for cancer therapeutics and anticancer activity [21,227–230] and Au–
Bi have been used for the inhibition of tumor cells [231]. In preventive medicine, the use
of bimetallic nanoparticles is quite extensive and many of them are used as antimicrobial
agents, antioxidants, antidiabetic, anti-Alzheimer, anti-inflammatory and drug delivery.
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Table 3. Biological applications of bimetallic nanoparticles.

Application Bimetallic Nanoparticle Reference

Antimicrobial agents

Pd–Pt [21]
Ag–Fe [28]

CuO–NiO [232]
Ag–Au [23,169,174,233]
Cu–Ag [176]
Ag–Cu [234]
Au–Pt [235]
Cu–Zn [236,237]
Cu–Ni [237]

Antioxidant

CuO/NiO [232]
Ag–Cu [228]
Au–Ag [233]
Mn–Cu [238]
Pt–Pd [239]

Ag–Au [240]

Antidiabetic

Au–Ag [241]
Ag–Au [242]

Ag/ZnOVI [243]
Ag–ZnO [244]

Anti-Alzheimer Ag–Au [242]
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Table 3. Cont.

Application Bimetallic Nanoparticle Reference

Anti-inflammatory

Ag/ZnOVI [243]
Zn–Fe2O4, [245]
CuFeO2, [246]
Au@Ag [247]

Drug delivery
Au@Pd [248]
Au–Pt [249]
Pd–Pt [250]

5.2. Agriculture

The agricultural sector has been challenged with numerous pathogens, insufficient
soil nutrients and pests that affect the growth of plants and the storage of crops, resulting in
poor yield of food crops while causing food security problem. Although many approaches
such as using different types of pesticides and herbicides have been applied in combating
plant disease, weeds and pests. However, there is an ecological concern regarding pesticides
and herbicides toxicity to the environment. Hence, there is a need for more biocompatible
alternatives that are less harmful to human, plants and animals. Due to their synergetic
and distinct properties, bimetallic nanoparticles have already found their applications in
the agricultural sector. Bimetallic nanoparticles such as Fe–Mn and Zn–Fe have been used
as nano-fertilizer to influence the growth of lettuce seedlings [251] and chickpea [252].
Synthesized Cu–Zn nano-fertilizer can also serve as a micronutrient source for plants [253].
Similarly, synthesized Cu–Zn, ZnO–TiO and Ag–Ni bimetallic nanoparticles have been
used as nano-pesticide/insecticide against cotton Mealybug [254], Spodoptera fruggiperda (an
important pest of several crops) [255] and Lymphatic filariasis Vector [256]. In addition, Au–
Pd have also shown larvicidal activity against mosquito larvae [257]. Another application
of bimetallic nanoparticles in agriculture is food packaging. In order to increase the life span
of food stuffs, it is necessary that the packing material should possess the ability to block
CO2, oxygen and moisture/water vapors. It is also necessary for effective transportation
and preservation. In addition, the packing material should possess some properties such as
biodegradability, antimicrobial activity, thermal and chemical stability, mechanical strength
and recyclability [18]. Bimetallic nanoparticles used in active food packaging include
Ag–TiO [258], ZnO–Ag [259] and Ag–Cu [260,261].

5.3. Environmental Application

The contamination of water bodies by heavy metal ions and dye discharge from
various industries around the world have aroused concerns regarding human health. Dyes
discharged from industries are known to be toxic for human organs such as liver and
kidney [262]. However, there is a need to purify and remove the various contaminants from
bodies of water. Bimetallic nanoparticles have been used for this purpose. A study reported
that Fe–MgO is able to remove heavy metal ion and dye from water [262]. Ag–Au [263,264],
Fe–TiO [265] and Pt–Ag [266,267] have been used for 4-nitrophenol reduction, Cu–Ni have
been used for dye degradation and reduction of hazardous pollutants [268–270], Cu–Pt
have been found to reduce nitrate to ammonia [270], Fe–Ni have been used for the removal
of profenofos organophosphorus pesticide [271], Fe/Ni have been used for simultaneous
removal of nitrate and phosphate, antibiotics and arsenic (V) from mine water [79,80,272].
Fe–Ti was used for the removal of fluoride from drinking water [50]. Fe–Mn and Co–Fe
have also been used as antifouling agent to prevent corrosion or reduce the growth or
speedup the detachment of the subaquatic organism that usually stick at the bottom or hull
of a vessel and also affect its performance [273–275].

5.4. Engineering Application

The fascinating properties of bimetallic nanoparticles have made them to be suit-
able for various engineering applications. Bimetallic nanoparticles have been used in the
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fabrication of nanosensors, nanochips, nano semiconductors and nanocoating. For exam-
ple, Ag–Cu, Au–Cu, Fe–Mn, Pd–Ru, Ag–Cu, Co–Ni, Au–Ag, Au–Pt, Cu–Sn and Pd–Au
bimetallic nanoparticles have been used to fabricate sensors/biosensors that can sense
dimethoate [34], hydrazine [30] and detect Salmonella typhimurium in milk samples [275], as
well as an anti-cancer drug [276], anti-inflammatory drug 4-aminoantipyrine [277], lute-
olin [278], favipiravir [279], diclofenac [280], glucose in serum [281] and coal mine gases
sensor[131]. For detecting pesticide contaminants in the environment, many bimetallic
nanoparticles have been used including Ag–Au, Au–Pd, Au–Pt, Au–Ag for detecting
organophosphorus pesticides, carbamates nerve agents, and pesticides of leachate in con-
taminated groundwater [282–285]. Energy storage applications of bimetallic nanoparticles
include CuS nanochips [286], sheet-like Cu–Co supercapacitor [287], Ag–Cu [288], and
Co–Zn [289], respectively. Ni–Mo, Ag–TiO and Cu–Ag have also been used as nanocoating
for mild steel protection against corrosion [290], the self-cleaning of tellurite zinc–silicate
glass [291], and as conductive nano structure coating [292].

5.5. Bimetallic Application in Physics and Chemistry

In the field of chemistry and physics, bimetallic nanoparticles have been used for
various applications including catalysis and optics (Table 4). Catalysis is the process of
increasing the rate of a chemical reaction by adding a substance known as a catalyst
that can increase the rate of reaction by lowering the activation energy of the reaction.
This allows the reaction to occur at a faster rate, without the need for additional energy
input. Bimetallic nanoparticles have been used for such application. A study reported
the use of Mn–Cu catalytic agent for dye degradation [238]. The degradation activity was
tested against methyl red, methyl orange and eriochrome black T. The result shows good
degradation efficiency of bimetallic nanoparticles. Similarly, Ag–Pt catalysts were used for
the hydrolysis of NaBH4 [293]. Bimetallic nanoparticles were found to lower the activation
energy and yield high hydrogen under low temperature which suggest that the bimetallic
nanoparticle has a great potential for hydrogen storage application.

Table 4. Bimetallic application in physics and chemistry.

Types of BMNP Light Source Compound/Dosage Degradation%/Activation
Energy/Conversion Rate Reference

Mn–Cu visible light
240 µg/mL of methyl red 78.54 ± 0.16% degradation

[238]240 µg/mL of eriochrome black 87.67 ± 0.06% degradation
240 µg/mL of methyl orange

decayed 69.79 ± 0.36% degradation

Ag–Pt – – 25.61 kJ/mol activation energy [293]
Pd–Pt – – 13.93 kJ/mol activation energy [21]
Pd–Ag – NaBH4 27.01 kJ/mol activation energy [61]
Pt–Cu Sun light Toluene conversion 55% conversion rate [294]
Pd–Au – HDO of vanillin at room temp. 99% conversion rate [295]

Au–Pd – Hydrodechlorination of aryl
chlorides 95% conversion rate [296]

Ag–Pd – Alcohol oxidation up to 97% yield [297]
Au–Pd, – Oxidation of glycerol 42.9% yield [298]
Au–Pt – Oxidation of glycerol 29.4% yield [298]
Au–Pd – H2O2 production 99% yield [299]

Au/Pd–TiO2 – Alcohols oxidation to aldehydes 83.3% conversion rate [300]

As for physical application, a Au–Cu bimetallic nanocrystal with orthorhombic mor-
phology was successfully synthesized [301] and embedded in sodium borosilicate glass.
The microstructural investigation of bimetallic nanoparticles suggested that Au-Cu in-
termetallic nanostructure was generated in the glass. Z-scan technique was applied at
the wavelength of 800 nm to reveal the third-order nonlinear optical properties of the
obtained glass. Similarly, bimetallic nanoparticles have been used as self-cleaning and
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anti-reflective coatings on glass. TiO2–SiO2 was used to construct multifunctional antire-
flective coating [302]. TiO2–SiO2 coating presented an average transmittance of 97.7% and
a maximum transmittance of 98.4% over the visible light and near infrared region of electro-
magnetic spectrum. It demonstrated very high photocatalytic activity, good hydrophilicity
and favorable robustness which makes them extremely attractive for application in solar
photovoltaic cells and lenses. A similar application of SiO2–TiO2 double layer for solar
glass anti-reflective coating was also reported [303].

6. Challenges and Future Prospective

Bimetallic nanoparticles have gained significant attention in recent years due to their
unique properties and many potential applications. Looking forward, there are many
outlooks and future perspective of bimetallic nanoparticles. The development of new syn-
thesis techniques can enhance the production of bimetallic nanoparticles with controlled
morphology. This will give a provision for the tuning of activity and selectivity by enabling
them to be used in a wider range of applications. Additionally, bimetallic nanoparticles
have the potential to play a significant role in the development of sustainable and green
technologies. They can be used as a catalyst for various environmental applications such as
water treatment, energy conversion/storage and air pollution control. For instance, bimetal-
lic nanoparticles have been studied as catalysts for the conversion of biomass to biofuels,
which could contribute to the reduction of greenhouse gas emissions [304]. Subsequently,
the use of bimetallic nanoparticles for biomedical application could enhance the efficiency
and specificity of treatments while simultaneously reducing the side effects [305]. Likewise,
integrating bimetallic nanoparticles with emerging technologies such as nanosensors and
nanoelectronics can lead to the development of innovative and high-performance devices,
although safety and the regulation of nanoparticles is an important parameter which needs
to be considered for their future use. Since nanoparticles have shown an exponential
application, there is no doubt that these particles will be released into the environment
intentionally or unintentionally. The impact of the release of these nanoparticles is most
likely unknown and remains a major concern, although a number of toxicity assessments of
bimetallic nanoparticles using different cell/animal models have been carried out [235,306].
Thus, the toxicity of nanoparticles depends on the stabilizing agent, the dose used and
the ionic charge at the surface to the nanoparticles. Further research is highly needed to
determine the potential toxic effects of these nanoparticles and guidelines should be estab-
lished for their use and disposal. Overall, the future outlook for bimetallic nanoparticles is
promising, with potential applications in various fields and the development of advanced
synthesis techniques and integration with emerging technologies. Continued research and
collaboration between scientists, engineers and policymakers will be necessary to fully
realize the potential of bimetallic nanoparticles in the future.

7. Conclusions

The field of nanotechnology has witnessed considerable advancement over the last
decade. It has been applied in many areas, including biology, medicine, engineering,
environment, physics and chemistry. This is because of the fascinating and synergistic effect
between the two metals. This review comprehends the overview of bimetallic nanoparticles,
types, synthesis, characterization, application and toxicity. However, there is still much
work needed to be done to improve the biocompatibility of bimetallic nanoparticles because
of their toxicity and potentially hazardous effects. In addition, the green synthesis approach
is a promising method that can give rise to more biocompatible and less toxic bimetallic
nanoparticles due to increasing environmental pollution.
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