Micro-Raman Spectroscopy Study of Vertical GaN Schottky Diode
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. SIMS Characterization
3.2. Study of the E2h Peak Behavior
3.3. Study of the A1 (LO) Peak Behavior
3.4. Electrical Characterization
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Cao, Y.; Chu, R.; Li, R.; Chen, M.; Chang, R.; Hughes, B. High-voltage vertical GaN Schottky diode enabled by low-carbon metal-organic chemical vapor deposition growth. Appl. Phys. Lett. 2016, 108, 62103. [Google Scholar] [CrossRef]
- Yeluri, R.; Lu, J.; Hurni, C.A.; Browne, D.A.; Chowdhury, S.; Keller, S.; Speck, J.S.; Mishra, U.K. Design, fabrication, and performance analysis of GaN vertical electron transistors with a buried p/n junction. Appl. Phys. Lett. 2015, 106, 183502. [Google Scholar] [CrossRef]
- Amano, H.; Baines, Y.; Beam, E.; Borga, E.; Bouchet, T.; Chalker, P.R.; Charles, M.; Chen, K.J.; Chowdury, N.; Chu, R.; et al. The 2018 GaN power electronics roadmap. J. Phys. D Appl. Phys. 2018, 51, 163001. [Google Scholar] [CrossRef]
- Ren, B.; Liao, M.; Sumiya, M.; Wang, L.; Koide, Y.; Sang, L. Nearly ideal vertical GaN Schottky barrier diodes with ultralow turn-on voltage and on-resistance. Appl. Phys. Express 2017, 10, 51001. [Google Scholar] [CrossRef]
- Sang, L.; Ren, B.; Sumiya, M.; Liao, M.; Koide, Y.; Tanaka, A.; Cho, Y.; Harada, Y.; Nabatame, T.; Sekiguchi, T.; et al. Initial leakage current paths in the vertical-type GaN-on-GaN Schottky barrier diodes. Appl. Phys. Lett. 2017, 111, 122102. [Google Scholar] [CrossRef]
- Tompkins, R.P.; Walsh, T.A.; Derenge, M.A.; Kirchner, K.W.; Zhou, S.; Nguyen, C.B.; Jones, K.A. The effect of carbon impurities on lightly doped MOCVD GaN Schottky diodes. J. Mater. Res. 2011, 26, 2895–2900. [Google Scholar] [CrossRef]
- Fujikura, H.; Hayashi, K.; Horikiri, F.; Narita, Y.; Konno, T.; Yoshida, T.; Ohta, H.; Mishima, T. Elimination of macrostep-induced current flow nonuniformity in vertical GaN PN diode using carbon-free drift layer grown by hydride vapor phase epitaxy. Appl. Phys. Lett. Express 2018, 11, 45502. [Google Scholar] [CrossRef]
- Usami, S.; Ando, Y.; Tanaka, A.; Nagamatsu, K.; Deki, M.; Kushimoto, M.; Nitta, S.; Honda, Y.; Amano, H.; Sugawara, Y.; et al. Correlation between dislocations and leakage current of p-n diodes on a free-standing GaN substrate. Appl. Phys. Lett. 2018, 112, 182106. [Google Scholar] [CrossRef]
- Amilusik, M.; Wlodarczyk, D.; Suchocki, A.; Bockowski, M. Micro-Raman studies of strain in bulk GaN crystals grown by hydride vapor phase epitaxy on ammonothermal GaN seeds. Jpn. J. Appl. Phys. 2019, 58, SCCB32. [Google Scholar] [CrossRef]
- Kozawa, T.; Kachi, T.; Kano, H.; Taga, Y.; Hashimoto, M.; Koide, N.; Manabe, K. Raman scattering from LO phonon-plasmon coupled modes in gallium nitride. J. Appl. Phys. 1994, 75, 1098. [Google Scholar] [CrossRef]
- Gogova, D.; Larsson, H.; Kasic, A.; Yazdi, G.R.; Ivanov, I.; Yakimova, R.; Monemar, B.; Aujol, E.; Frayssinet, E.; Faurie, J.-P.; et al. High-Quality 2’’ Bulk-Like Free-Standing GaN Grown by HydrideVapour Phase Epitaxy on a Si-doped Metal Organic Vapour Phase Epitaxial GaN Template with an Ultra Low Dislocation Density. Jpn. J. Appl. Phys. 2005, 44, 3R. [Google Scholar] [CrossRef]
- Ngo, T.H.; Comyn, R.; Frayssinet, E.; Chauveau, H.; Chenot, S.; Damilano, B.; Tendille, F.; Cordier, Y. Cathodoluminescence and electrical study of vertical GaN-on-GaN Schottky diodes with dislocation clusters. J. Cryst. Growth 2020, 552, 125911. [Google Scholar]
- Vigneshwara Rajaa, P.; Raynaud, C.; Sonneville, C.; N’Dohi, A.E.; Morel, H.; Phung, L.V.; Ngo, T.H.; De Mierry, P.; Frayssinet, E.; Maher, H.; et al. Comprehensive characterization of vertical GaN-on-GaN Schottky barrier diode. Microelectron. J. 2022, 128, 105575. [Google Scholar] [CrossRef]
- Reshchikov, M.A.; Vorobiov, M.; Andrieiev, O.; Ding, K.; Izyumskaya, N.; Avrutin, V.; Usikov, A.; Helava, H.; Makarov, Y. Determination of the concentration of impurities in GaN from photoluminescence and secondary-ion mass spectrometry. Sci. Rep. 2020, 10, 2223. [Google Scholar] [CrossRef]
- Freitas, J.A., Jr.; Moore, W.J.; Shanabrook, B.V.; Braga, G.C.; Lee, S.K.; Park, S.S.; Han, J.Y.; Koleske, D.D. Donors in hydride-vapor-phase epitaxial GaN. J. Cryst. Growth 2002, 246, 307–314. [Google Scholar] [CrossRef]
- Popovici, G.; Kim, W.; Botchkarev, A.; Tang, H.; Morkoc, H. Impurity contamination of GaN epitaxial films from the sapphire, SiC and ZnO substrates. Appl. Phys. Lett. 1997, 71, 3385–3387. [Google Scholar] [CrossRef]
- Ciarkowski, T.; Allen, N.; Carlson, E.; McCarthy, R.; Youtsey, C.; Wang, J.; Fay, P.; Xie, J.; Guido, L. Connection between Carbon Incorporation and Growth Rate for GaN Epitaxial Layers Prepared by OMVPE. Materials 2019, 12, 2455. [Google Scholar] [CrossRef]
- Wagner, J.-M.; Bechstedt, F. Phonon deformation potentials of α-GaN and -AlN: An ab initio calculation. Appl. Phys. Lett. 2000, 77, 346–348. [Google Scholar] [CrossRef]
- Demangeot, F.; Frandon, J.; Baules, P.; Natali, F.; Semond, F.; Massies, J. Phonon deformation potentials in hexagonal GaN. Phys. Rev. B 2004, 69, 155215. [Google Scholar] [CrossRef]
- Wagner, J.-M.; Bechstedt, F. Properties of strained wurtzite GaN and AlN: Ab initio studies. Phys. Rev. B 2002, 66, 115202. [Google Scholar] [CrossRef]
- Kokubo, N.; Tsunooka, Y.; Fujie, F.; Ohara, J.; Onda, S.; Yamada, H.; Shimizu, M.; Harada, S.; Tagawa, M.; Ujihara, T. Nondestructive visualization of threading dislocations in GaN by micro raman mapping. Jpn. J. Appl. Phys. 2019, 58, SCCB06. [Google Scholar] [CrossRef]
- Belabbas, I.; Béré, A.; Chen, J.; Ruterana, P.; Nouet, G. Investigation of the atomic core structure of the (a and c)-mixed dislocation in wurtzite GaN. Phys. Stat. Solid C 2007, 4, 2940–2944. [Google Scholar] [CrossRef]
- Dadgar, A.; Poschenrieder, M.; Reiher, A.; Bläsing, J.; Christen, J.; Krtschil, A.; Finger, T.; Hempel, T.; Diez, A.; Krost, A. Reduction of stress at the initial stages of GaN growth on Si(111). Appl. Phys. Lett. 2003, 82, 28. [Google Scholar] [CrossRef]
- Nenstiel, C.; Bügler, M.; Callsen, G.; Nippert, F.; Kure, T.; Fritze, S.; Dadgar, A. Germanium–The superior dopant in n-type GaN. Phys. Stat. Solidi (RRL)–Rapid Res. Lett. 2015, 9, 716–721. [Google Scholar] [CrossRef]
- Artús, L.; Cusco, R.; Ibanez, J.; Blanco, N.; Gonzalez-Dıaz, G. Raman scattering by LO phonon-plasmon coupled modes in n-type InP. Phys. Rev. B 1999, 60, 5456–5463. [Google Scholar] [CrossRef]
- Kuball, M. Raman spectroscopy of GaN, AlGaN and AlN for process and growth monitoring/control. Surf. Interface Anal. 2001, 31, 987–999. [Google Scholar] [CrossRef]
- Peng, Y.; Xu, X.; Hu, X.; Jiang, K.; Song, S.; Gao, Y.; Xu, H. Raman spectroscopic study of the electrical properties of 6H–SiC crystals grown by hydrogen-assisted physical vapor transport method. J. Appl. Phys. 2010, 107, 93519. [Google Scholar] [CrossRef]
- N’Dohi, A.E.; Sonneville, C.; Phung, L.V.; Ngo, T.H.; De Mierry, P.; Frayssinet, E.; Maher, H.; Tasselli, J.; Isoird, K.; Morancho, F.; et al. Micro-Raman characterization of homo-epitaxial n doped GaN layers for vertical device applications. AIP Adv. 2022, 12, 25126. [Google Scholar] [CrossRef]
- Bandić, Z.Z.; Bridger, P.M.; Piquette, E.C.; McGill, T.C. The values of minority carrier diffusion lengths and lifetimes in GaN and their implications for bipolar devices. Solid-State Electron. 2000, 44, 221–228. [Google Scholar] [CrossRef]
- Pugatschow, A.; Heiderhoff, R.; Balk, L.J. Time resolved determination of electrical field distributions within dynamically biased power devices by spectral EBIC investigations. Microelectron. Reliab. 2007, 47, 1529–1533. [Google Scholar] [CrossRef]
- Sawada, M.; Sawada, T.; Yamagata, Y.; Imai, K.; Kimura, H.; Yoshino, M.; Iizuka, K.; Tomozawa, H. Electrical characterization of n-GaN Schottky and PCVD-SiO2/n-GaN interfaces. J. Cryst. Growth 1998, 189–190, 706–710. [Google Scholar] [CrossRef]
Frame Name | ||
---|---|---|
Frame 1 | 567.3 ± 0.1 | 3.6 ± 0.1 |
Frame 2 | 567.4 ± 0.1 | 3.6 ± 0.1 |
Frame 3 | 566.5 ± 0.1 | 3.7 ± 0.1 |
Frame 4 | 566.6 ± 0.1 | 3.7 ± 0.1 |
Frame Name | A1(LO) Position (Mean Value) (cm−1) | A1(LO) Width (Mean Value) (cm−1) |
---|---|---|
Frame 1 | 733.4 ± 0.1 | 7.1 × 1015 ± 10 |
Frame 2 | 733.4 ± 0.1 | 7.1× 1015 ± 10 |
Frame Name, Diode Size (µm) | Vr (V) | ||
---|---|---|---|
Frame 1, 200 | 1.08 | 0.74 | −110 V |
Frame 1, 100 | 1.03 | 0.80 | −125 V |
Frame 1, 50 (high) | 1.07 | 0.83 | −120 V |
Frame 1, 50 µm (low) | 1.11 | 0.83 | −150 V |
Frame 2, 200 | 1.17 | 0.72 | −70 V |
Frame 2, 100 | 1.09 | 0.78 | −125 V |
Frame 2, 50 (high) | 1.13 | 0.82 | NONE |
Frame 2, 50 (low) | 1.09 | 0.82 | −155 V |
Frame 3, 200 | 1.03 | 0.83 | −180 V |
Frame 3, 100 | 1.01 | 0.87 | −170 V |
Frame 3, 50 (high) | 1.08 | 0.88 | −175 V |
Frame 3, 50 µm (low) | 1.07 | 0.89 | −180 V |
Frame 4, 200 | 1.03 | 0.84 | −185 V |
Frame 4, 100 | 1.09 | 0.85 | −160 V |
Frame 4, 50 µm (high) | 1.00 | 0.91 | −180 V |
Frame 4, 50 µm (low) | 1.00 | 0.91 | −175 V |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
N’Dohi, A.J.E.; Sonneville, C.; Saidi, S.; Ngo, T.H.; De Mierry, P.; Frayssinet, E.; Cordier, Y.; Phung, L.V.; Morancho, F.; Maher, H.; et al. Micro-Raman Spectroscopy Study of Vertical GaN Schottky Diode. Crystals 2023, 13, 713. https://doi.org/10.3390/cryst13050713
N’Dohi AJE, Sonneville C, Saidi S, Ngo TH, De Mierry P, Frayssinet E, Cordier Y, Phung LV, Morancho F, Maher H, et al. Micro-Raman Spectroscopy Study of Vertical GaN Schottky Diode. Crystals. 2023; 13(5):713. https://doi.org/10.3390/cryst13050713
Chicago/Turabian StyleN’Dohi, Atse Julien Eric, Camille Sonneville, Soufiane Saidi, Thi Huong Ngo, Philippe De Mierry, Eric Frayssinet, Yvon Cordier, Luong Viet Phung, Frédéric Morancho, Hassan Maher, and et al. 2023. "Micro-Raman Spectroscopy Study of Vertical GaN Schottky Diode" Crystals 13, no. 5: 713. https://doi.org/10.3390/cryst13050713
APA StyleN’Dohi, A. J. E., Sonneville, C., Saidi, S., Ngo, T. H., De Mierry, P., Frayssinet, E., Cordier, Y., Phung, L. V., Morancho, F., Maher, H., & Planson, D. (2023). Micro-Raman Spectroscopy Study of Vertical GaN Schottky Diode. Crystals, 13(5), 713. https://doi.org/10.3390/cryst13050713