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Abstract: Pipeline steel is a special type of steel used for transporting, for example, oil and natural gas.
This study focuses on X80-grade pipeline steel modified with the addition of Nb and Nb-V at different
cooling rates (air cooling or quenching) after hot rolling and subjecting it to quenching and tempering
heat treatment. Based on multiscale characterization techniques, the effects of microalloying and
the cooling rate after hot rolling on the microstructure, precipitation behavior, and strengthening
mechanisms were studied. The results showed that the strengths of quenched steels were higher than
those of air-cooled steels, and the increase in strength was more pronounced with the addition of
Nb-V than with the addition of Nb alone in the steels. Under the same cooling condition, the strengths
of Nb-V-added steels were larger than those of Nb-added steels. Additionally, the Nb-V addition
promotes the formation of lath structures. The yield stress of the steels, calculated by using measured
microstructural parameters following the linear addition of strengthening, is in good agreement with
the measured values.

Keywords: pipeline steel; microalloying; quenching and tempering; precipitation strengthening;
Hall–Petch relationship

1. Introduction

Pipeline transportation, the most economical and efficient means of transportation, is
increasingly used as the demand for oil and thermal energy grows [1–5]. According to the
API 5L standard, the most common pipeline steel grades are X42, X52, X60, and X65 [6–8].
To improve the transportation efficiency, and to use pipelines under high pressure, high
temperature, low temperature, and other extreme environments, pipeline engineering has
shifted toward the direction of large diameter, high pressure development. The compre-
hensive properties of pipeline steel, such as strength, low temperature toughness, and
weldability, need to be further improved. It is urgent to research and develop new high-
strength pipeline steels [3,9–11].

The API 5L high grade of X80 pipeline steel is the most mature steel with the highest
strength level in the practical application field of natural gas and oil transmission world-
wide [12,13]. Microalloy additions are critical for obtaining optimum properties in pipeline
steel. For X80 pipeline steel, microalloying elements such as Ti, Nb, and V are used to obtain
excellent microstructures combined with thermal mechanical control processing (TMCP).
The comprehensive mechanical properties, such as high strength and high toughness, are
thus obtained at a lower carbon equivalent [14–16]. In the process of controlled rolling and
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controlled cooling, a large number of fine carbon–nitride precipitation containing Ti, Nb,
and V is precipitated and can improve the mechanical properties of steel by postponing
the recrystallization and grain growth of austenite grains to refine the grain, as well as
by increasing the precipitation strengthening. In addition to ferritic steels, the practice
of microalloying is also adopted in the case of austenitic alloys to improve their creep
life [17]. Therefore, the microstructure and properties of steel can be effectively improved
by controlling the precipitation behavior of Ti, Nb, and V microalloying elements through
optimized processing technology [16,18,19].

For example, Zhao et al. [20] showed that dendritic precipitates in the as-cast steel
slabs precipitate mainly at grain boundaries, and these dendritic precipitates dissolved and
re-precipitated into two kinds of carbonitrides: Ti and Nb-rich (Ti, Nb)(C, N) carbonitrides
during reheating. Wu et al. [14] reported the influence of finish rolling temperatures and
tempering temperatures on microstructure and mechanical properties, and found that
there were more granular bainite and strain-induced TiC precipitates in the quenched mi-
crostructure. Meanwhile, smaller sized polygonal ferrite grains were obtained in tempered
microstructure with decreasing finish rolling temperatures. Gomez et al. [21] studied the
effect of rolling temperature and austenite strengthening obtained at the end of thermome-
chanical processing on final microstructure and precipitation state, and found that ferrite
grains were finer and more equiaxed when the austenite was more severely deformed
during finishing. Lu et al. [15] investigated the microstructure features of a series of mi-
croalloyed steels using multiscale characterization techniques and adopted a chemical
dissolution technique to extract the precipitates in the steels to quantify the individual
strengthening contributions from grain size effects, solid-solution strengthening, and pre-
cipitation strengthening to understand fully the strengthening mechanisms for these steels.
Zhao et al. [16] obtained desirable microstructural constituents consisting of acicular fer-
rite (AF), bainitic ferrite (BF), and degenerate martensite/austenite (M/A) at the high
coiling temperature of 500 ◦C, and a high content of nano-sized (Nb, Ti)C precipitates
formed because of the higher coiling temperature and auto-tempering induced by the
re-reddening effect.

Nb element is widely used in the microalloying of pipeline steel. However, Nb-
microalloyed pipeline steel is generally rolled in the austenite non-recrystallization zone,
where the rolling temperature is low and the rolling reduction is large, which has higher re-
quirements of rolling mill equipment [22–24]. It was found that the V-microalloyed pipeline
steel could be rolled in the austenite recrystallization temperature area. The repeated recrys-
tallization of austenite at high temperatures can be used to obtain fully refined austenite
grains through multiple passes rolling, and the carbon–nitride precipitation formed in
austenite can be used to promote the ferritic nucleation in the grains. After the phase
transformation, a similar grain refinement as in Nb-microalloyed pipeline steel can be
obtained [14,25,26]. It was also found that the properties of V-microalloyed pipeline steel
can be significantly improved under quenching and tempering processing. To further
improve the mechanical properties, the compositely added Nb-V and TMCP-accompanied
tempering processes were used to achieve the sufficient precipitation strengthening of Nb
and V. This method can not only meet the requirements of strength, but can also improve
the shape of steel plate. In addition, the optimum microalloying composition design and
the suitable accelerated cooling after hot rolling will lead to a better toughness property of
X80 pipeline steel [27]. However, there are no detailed studies on the effects of microalloy-
ing and cooling rates on the precipitation behavior and strengthening mechanism of X80
pipeline steel after quenching and tempering treatment.

In this paper, two microalloying compositions of pipeline steels were designed, namely,
Nb- and Nb-V-microalloyed X80 pipeline steel. Two cooling conditions of air cooling or
quenching followed by quenching and tempering treatments respectively were adopted to
the steels after hot rolling. The microstructure, precipitation behavior, and strengthening
mechanism of the steels microalloyed with Nb and Nb-V with different cooling conditions
were studied.
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2. Materials and Methods

The components of two X80 pipeline steels microalloyed with Nb and Nb-V used in
this study are shown in Table 1: the Nb-microalloyed X80 pipeline steel, which contains
0.06 wt.% Nb element (hereinafter referred to as X6Nb), and the Nb-V microalloyed X80
pipeline steel, which is based on X6Nb chemical composition by adding 0.06 wt.% V
element (hereinafter referred to as X6Nb6V).

Table 1. Chemical composition of two experimental steels (mass fraction, %).

Samples C Si Mn Ni Cr Cu Ti Nb V Mo Al Fe

X6Nb 0.07 0.25 1.75 0.2 0.2 0.15 0.03 0.06 0 0.2 0.03 Bal.

X6Nb6V 0.07 0.25 1.75 0.2 0.2 0.15 0.03 0.06 0.06 0.2 0.03 Bal.

The two experimental steels were rolled at 1100 ◦C. Two slabs was rolled with thickness
reduction from 25 mm to 3 mm after 5 passes of rolling followed by air cooling or water
quenching, respectively, and the final size of the rolled plates was 3 mm × 50 mm × 200 mm.
Subsequently, samples were cut from the plates and were processed by quenching and
tempering. The quenching and tempering processing was as follows: the samples were
placed in a high-temperature box furnace, held at 950 ◦C for 8 min, then water quenched,
placed in a tube furnace, and held at 600 ◦C for 15 min. The hot-working process of
experimental steels is illustrated in Figure 1.
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Figure 1. Schematic diagram of the hot-working process of experimental steels.

The quenched and tempered X80 pipeline steels were cut into tensile samples parallel
to the rolling direction (gauge dimensions of 50 mm long, 12.5 mm wide and 1.8 mm thick).
Tensile tests were carried out at a constant strain rate of 1 × 10−3 s−1 on a Zwick Roell
Z250 tensile tester. To prevent potential damage when the tesing sample fractured, the
mechanical extensometer was removed when the tensile strain reached 1.5%. The yield
stress values (σy) were calculated with the 0.2% offset method or measured at the lower
yield point following the yield drop. The ultimate tensile stress (σUTS) is the maximum
stress during tensile.

The quenched and tempered samples were characterized by multiscale characteriza-
tion techniques with scanning electron microscope (SEM), electron backscatter diffraction
(EBSD), and transmission electron microscope (TEM). The compositions of Fe3C and pre-



Crystals 2023, 13, 714 4 of 15

cipitates were analyzed and deduced by energy dispersive spectroscopy (EDS) equipped
on the TEM. A D8-Advance X-ray diffraction (XRD) meter with Cu Kα radiation operating
at 40 kV and 150 mA was employed to measure the dislocation density. The glancing
angles ranged from 35◦ to 140◦ with a 0.02◦ scanning step timing 1 s per step. SEM samples
were ground from 320 to 2000 grit abrasive papers, then mechanically polished, and finally
eroded for about 30 s in a solution of nitric acid and ethyl alcohol (4:96 by volume). EBSD
samples were ground by 2000 grit abrasive papers, and then polished in a mixture of
perchloric acid and ethyl alcohol (6:94 by volume) at room temperature. The polishing
parameters were a voltage of 20 V and a polishing time of 30 s. TEM foils were prepared by
a conventional twin-jet technique in the solutions consistent with EBSD preparing at 253 K.
The foils were characterized in a JEOL-2100 TEM operating at 200 KV.

3. Results

Under air-cooling conditions, the microstructures in the X6Nb and X6Nb6V after
quenching and tempering (hereinafter referred to as X6Nb-air-cooled and X6Nb6V-air-
cooled samples) are shown in Figure 2. It can be found that the steels are tempered sorbite
after quenching and high-temperature tempering. The microstructures of both steels are
composed of polygonal ferrite (PF), residual laths, and dot-shaped carbides. There are
more large-size carbides and residual laths in the X6Nb6V-air-cooled sample compared to
the X6Nb-air-cooled sample.

Crystals 2023, 13, x FOR PEER REVIEW 4 of 15 
 

 

The quenched and tempered samples were characterized by multiscale characteriza-
tion techniques with scanning electron microscope (SEM), electron backscatter diffraction 
(EBSD), and transmission electron microscope (TEM). The compositions of Fe3C and pre-
cipitates were analyzed and deduced by energy dispersive spectroscopy (EDS) equipped 
on the TEM. A D8-Advance X-ray diffraction (XRD) meter with Cu Kα radiation operating 
at 40 kV and 150 mA was employed to measure the dislocation density. The glancing an-
gles ranged from 35° to 140° with a 0.02° scanning step timing 1 s per step. SEM samples 
were ground from 320 to 2000 grit abrasive papers, then mechanically polished, and fi-
nally eroded for about 30 s in a solution of nitric acid and ethyl alcohol (4:96 by volume). 
EBSD samples were ground by 2000 grit abrasive papers, and then polished in a mixture 
of perchloric acid and ethyl alcohol (6:94 by volume) at room temperature. The polishing 
parameters were a voltage of 20 V and a polishing time of 30 s. TEM foils were prepared 
by a conventional twin-jet technique in the solutions consistent with EBSD preparing at 
253 K. The foils were characterized in a JEOL-2100 TEM operating at 200 KV. 

3. Results 
Under air-cooling conditions, the microstructures in the X6Nb and X6Nb6V after 

quenching and tempering (hereinafter referred to as X6Nb-air-cooled and X6Nb6V-air-
cooled samples) are shown in Figure 2. It can be found that the steels are tempered sorbite 
after quenching and high-temperature tempering. The microstructures of both steels are 
composed of polygonal ferrite (PF), residual laths, and dot-shaped carbides. There are 
more large-size carbides and residual laths in the X6Nb6V-air-cooled sample compared 
to the X6Nb-air-cooled sample. 

 
Figure 2. SEM observations showing the ferrites, precipitated Fe3C and residual lath structures in 
the samples after quenching and tempering: (a) X6Nb-air-cooled sample, (b) X6Nb6V-air-cooled 
sample. 

Under quenching conditions, the microstructures in the X6Nb and X6Nb6V after 
quenching and tempering (hereinafter referred to as X6Nb-quenched and X6Nb6V-
quenched samples) are shown in Figure 3. The microstructures belong to tempered sor-
bite; however, the lath structures of the X6Nb-quenched sample and the X6Nb6V-
quenched sample, in the microstructures, increase significantly compared to the samples 
under air-cooling conditions. The structure of polygonal ferrite is also significantly re-
fined. 

Figure 2. SEM observations showing the ferrites, precipitated Fe3C and residual lath structures in the
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Under quenching conditions, the microstructures in the X6Nb and X6Nb6V after
quenching and tempering (hereinafter referred to as X6Nb-quenched and X6Nb6V-quenched
samples) are shown in Figure 3. The microstructures belong to tempered sorbite; how-
ever, the lath structures of the X6Nb-quenched sample and the X6Nb6V-quenched sample,
in the microstructures, increase significantly compared to the samples under air-cooling
conditions. The structure of polygonal ferrite is also significantly refined.

EBSD inverse pole figure (IPF) maps in the X6Nb-air-cooled sample and X6Nb6V-air-
cooled sample after quenching and tempering are shown in Figure 4. The grains are of a
typical polygonal shape. Under air-cooling conditions, the addition of V refines the grains
slightly. The grain sizes were calculated by EBSD (determined from the EBSD data using
a cut-off angle of 15◦) [28]. The grain size varies from submicron to dozens of microns
and thus the standard deviations are large. The average grain sizes of the X6Nb-air-cooled
sample and X6Nb6V-air-cooled sample are 1.9 ± 2.1 µm and 1.8 ± 2.0 µm, respectively.
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Figure 4. EBSD inverse pole figure (IPF) maps in the pipeline steels after quenching and tempering:
(a) X6Nb-air-cooled sample, (b) X6Nb6V-air-cooled sample.

The IPF maps in the X6Nb-quenched sample and X6Nb6V-quenched sample after
quenching and tempering are shown in Figure 5. Many grains were penetrated by the
lath structure, and the grain morphologies are not typical of polygonal ferrite. Under
air-cooling conditions, the addition of V still refines the grains slightly. The average grains
sizes of the X6Nb-quenched sample and the X6Nb6V-quenched sample are 1.5 ± 1.8 µm
and 1.4 ± 1.6 µm, respectively.

TEM foils of experimental steels were observed by high-resolution TEM. The observed
microstructures in the X6Nb-air-cooled sample after quenching and tempering are shown
in Figure 6. The microstructures are mainly lath structures, with high-density dislocations
in the lath structures. Sub-micron Fe3C exists in the microstructures, and the morphology
of Fe3C is a large block, which mostly exists at grain boundaries or the edge of laths.
The nanoscale precipitates are evenly distributed and dispersed, and the size range of
precipitates varies from a few nanometers to dozens of nanometers, and the precipitates’
morphology is mainly spherical. It can be deduced from EDS measurements that the small
precipitates consist mainly of (Nb, Ti)C.
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Microstructures in the X6Nb6V-air-cooled sample after quenching and tempering are
shown in Figure 7. Lath structures with high-density dislocations, nanoscale precipitates,
and sub-micron block Fe3C are found in the microstructures. Compared with the X6Nb-
air-cooled sample, the number of nanoscale precipitates has increased significantly, and
the nanoscale precipitates are distributed more evenly in the X6Nb6V-air-cooled sample.
The size variation range of precipitates is smaller, the precipitates’ morphology is mainly
spherical, and many precipitates can be observed precipitated along dislocations in the
X6Nb6V-air-cooled sample. There is an obvious interaction with dislocation (Figure 7b).
Such nanoscale precipitates can produce a nailing effect on dislocation, and effectively
hinder dislocation slip and thus improve the mechanical properties of the structure. The
small precipitates are mainly (Nb, Ti)C and VC deduced from EDS measurements.
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nanoscale precipitates, and (d) composition of precipitates.
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The observed microstructures in the X6Nb-quenched sample after quenching and
tempering are shown in Figure 8. Lath structures are the main features in the microstruc-
tures. The size range of precipitates varies from a few nanometers to dozens of nanometers,
and the morphology of precipitates is mainly spherical, as seen in Figure 6. The small
precipitates are mainly (Nb, Ti)C deduced from EDS measurements.
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Lath structures are still the main feature in the X6Nb6V-quenched sample after quench-
ing and tempering, as shown in Figure 9. The Fe3C, precipitates, and composition of
precipitates were deduced and analyzed.
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Figure 9. TEM-observed microstructures in the X6Nb6V-quenched sample after quenching and
tempering: (a) high-density dislocations in lath structures, (b) sub-micron block Fe3C, (c) nanoscale
precipitates, and (d) composition of precipitates.

4. Discussion

The morphology and size distribution of precipitates in the steels after quenching and
tempering were analyzed statistically by randomly selecting 20 fields of view at the same
multiple. The size distributions of nanoscale precipitates are shown in Figure 10 and the
average precipitate sizes are given in Table 2. According to statistics, it was found that
the number of precipitates increases obviously in the microstructure whether under the
conditions of air cooling or quenching when Nb-V is compositely added. The volume
fraction (f ) of precipitates can be calculated according to the McCall–Boyd method [29,30]:

f =

(
1.4π

6

)
×

(
Nd2

A

)
(1)

where the N is the amount of precipitates on the statistical fields of view, d is the average di-
ameter of precipitates, and A is the size of the statistical fields of view. The volume fraction
(f ) is also tabulated in Table 2. Under the air-cooling condition, the addition of Nb-V leads
to a decrease in the average diameter of precipitates, but the volume fraction increases sig-
nificantly, from 0.077% of the X6Nb-air-cooled sample to 0.2154% of the X6Nb6V-air-cooled
sample in the microstructure. This finding is the same under the quenching condition,
i.e., the addition of Nb-V decreases the average diameter of precipitates and increases the
volume fraction. When V element is added to steel, the tempering process will cause V
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atoms to participate during the diffusion and nucleate vanadium carbide at the matrix
and/or boundaries in the microstructure. In general, precipitates smaller than 20 nm are
generally vanadium carbide, and the vanadium carbide precipitates are usually spher-
ical or nearly spherical. In addition, for the same microalloying in experimental steels,
the volume fraction of precipitates is higher and the precipitates’ size is smaller under
quenching conditions.
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Table 2. Statistical results of precipitates of experimental steels after quenching and tempering.

Conditions Volume Fraction (f), % Average Size (d), nm

X6Nb-air-cooled 0.0770 12.244

X6Nb6V-air-cooled 0.2154 9.895

X6Nb-quenched 0.1510 8.127

X6Nb6V-quenched 0.2230 6.936

The mechanical properties of the two experimental steels are shown in Table 3. It can
be seen that the mechanical properties of both X6Nb and X6Nb6V meet the mechanical
properties requirements of X80 pipeline steel specified in the API 5L standard. Whether
under air cooling or quenching after hot rolling, it is obvious that the addition of Nb-V
increases the yield strength and tensile strength of the experimental steels after quench-
ing and tempering. For the same microalloying in the experimental steels, the tensile
strength and yield strength of quenched and tempered steel under quenching conditions
are both higher than those under air-cooling conditions. The strength of X6Nb6V increases
more significantly.
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Table 3. Mechanical properties of X80 pipeline steels after quenching and tempering.

Conditions σUTS (MPa) σy (MPa)

X6Nb-air-cooled 724 658

X6Nb6V-air-cooled 801 740

X6Nb-quenched 737 688

X6Nb6V-quenched 880 850

The strengthening mechanisms of present steels include precipitation strengthening,
grain boundary strengthening, solid solution strengthening, and dislocation strengthening.
Precipitation strengthening (σp) can be derived based on the Ashby–Orowan model [31]:

σP =
(

0.538Gb f 1/2/d
)

ln
(

d
2b

)
(2)

where f is the volume fraction of particles, d is the diameter of particles, G is the shear mod-
ulus (78 GPa), and b is the Burgers vector magnitude (0.248 nm). When a slip dislocation
is bypassing a non-deformable particle using the Orowan mechanism, the bending of the
dislocation will increase the linear tension of the dislocation. Therefore, more applied stress
is required to push the dislocation past the particle and continue to slip, resulting in the
strengthening of the material. According to Equation (2), the strengthening effect of the
particle is proportional to f 1/2 and decreases with the increase in the particle’s diameter
(d). Therefore, refining the size of the particles can significantly improve the precipitation
strengthening effect when the particles have the same volume fraction (f ).

Grain boundary strengthening is based on boundaries, as dislocation glide barriers
with a strength were found to be inversely proportional to the square root of the grain size,
as can be described by the classical Hall–Petch relationship [32,33]:

σGB = KHPD−1/2
av (3)

where KHP is the slope of the straight line relating to the flow stress of a polycrystalline
metal to the inverse square root of grain size, and Dav is the average grain size. For
microalloy steel and plain carbon steel, many studies have reported KHP values varying
in a very broad range: from 120 MPa·µm1/2 in interstitial free steel to 700 MPa·µm1/2 in
tempered steel [34–40]. These values are influenced by the content of alloying elements,
the dislocation density, and other parameters. However, the value of KHP as an indicator
with boundaries as dislocation glide barriers cannot depend on the intragranular structural
state. Therefore, it is necessary to accept the value typical for unalloyed and undeformed
ferrite. In this work, the value of 400 MPa·µm1/2 is adopted [37,38]. Note that this KHP
does not include the role of dislocation strengthening and other factors in grains.

The solid solution contents of Ti, Nb, and V in X80 pipeline steel after quenching
and tempering were calculated according to the solubility product combined with the
optimum chemical ratio. The results show that Ti, Nb, and V exist almost in the form
of precipitates, and their solid solution content can be ignored. In addition to TiC, NbC,
and VC, the C element in steel almost exists in the form of Fe3C particles during the
600 ◦C tempering process; the strengthening contribution of Fe3C is mainly precipitation
strengthening, which is less than 20 MPa. The strengthening contribution of other elements
in steel is assumed to be solid solution strengthening, and the calculation is consistent with
the chemical composition in Table 1. Solid solution strengthening is normally expressed by
the relationship:

σss = ∑n
i=1 KiCi (4)

where Ki is the intensity influencing factor of each individual element, and Ci represents
the concentration of the elements [41].
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As mentioned above, for the incomplete recrystallization structure, the strengthening
contribution of dislocation density within the grain cannot be ignored [42,43]. The sample
dislocation density was measured by XRD (Figure 11).
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(d) X6Nb6V-quenched sample.

The modified Williamson–Hall method was used to process the XRD results to obtain
the dislocation density:

∆Ktot =
0.9
Dav

+

(
πE2b2

2

) 1
2

ρ
1
2

(
KC1/2

)
(5)

where ∆Ktot is the width of the XRD diffraction peak, E is a dimensionless constant, K is a
constant taken equal to 0.9, and C is the average contrast factor of dislocation on the given
crystallographic plane. The following Taylor formula was used to calculate the dislocation
strengthening [41,44]:

σdis = MαGb
√

ρ (6)

where M is the Taylor factor (M = 2.9 for the random texture in bcc), α is a constant
taken to be 0.166, b is the Burgers vector magnitude, and G is the shear modulus. The
calculated results show that the dislocation density increases with the addition of Nb-V
compared to X6Nb. Under air-cooling conditions, the strengthening of the dislocation was
121 MPa and 132 MPa for X6Nb and X6Nb6V, respectively. Under quenching conditions,
the strengthening of the dislocation was 138 MPa and 198 MPa for X6Nb and X6Nb6V,
respectively. Based on additive law, where the total flow stress is calculated based on the
measured microstructural parameters utilizing linearly addition, as shown in [39,42,44],

σ = σ0 + σss + σdis + σGB + σP + σFe3C (7)

where σ0 is the friction stress, taken to be 50 MPa for bcc Fe [36]. The dislocation density and
calculated flow stress are shown in Table 4. The calculated results were in good agreement
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with the measured values, showing an excellent match within <10%. The stress calculation
method in this paper matches the tensile tests. The results in Table 4 for X80 pipeline steels
make clear the robustness of the use of the measured microstructural parameters to predict
flow stress. However, the calculation method can only predict the yield stress and does not
predict the ultimate tensile stress. It is worth noting that the choice of KHP is important
since it can vary in a very broad range. The KHP values are influenced by the content of
alloying elements, the dislocation density, and other parameters. Therefore, it must be
clarified what the KHP refers to, and the typical value of the unalloyed and undeformed
ferrite must be adopted. Based on this, the stress calculation can be more accurate.

Table 4. Calculated flow stresses utilizing the microstructure parameters and experimentally mea-
sured values from tensile tests.

Conditions σ0 (MPa) σss (MPa) σp (MPa) σFe3C (MPa) σGB (MPa) σdis (MPa) ρ (m−2) σcalculated (MPa) σy (MPa)

X6Nb-air-cooled 50 82 76 16 290 121 1.9×1014 635 658

X6Nb6V-air-cooled 50 82 146 13 298 132 2.3×1014 721 740

X6Nb-quenched 50 82 139 17 327 138 2.4×1014 753 688

X6Nb6V-quenched 50 82 187 14 338 198 5.0×1014 869 850

Under the air-cooling condition, the addition of Nb-V leads to the decrease in the
average diameter of precipitates, but the volume fraction increases significantly, from
0.077% of the X6Nb-air-cooled sample to 0.2154% of the X6Nb6V-air-cooled sample in the
quenched and tempered microstructures. Under the air-cooling condition, the addition of
Nb-V leads to precipitations providing an additional 70 MPa strengthening compared to
X6Nb after quenching and tempering, while the additional precipitation strengthening is
48 MPa under the quenching condition. Under the same cooling condition, the increase
in mechanical properties with the addition of Nb-V compared to the addition of Nb alone
in pipeline steel was mainly attributed to the increase in precipitation strengthening after
quenching and tempering. The precipitation and matrix microstructure jointly affected the
mechanical properties of the quenched and tempered steel with the same microalloying
under different cooling conditions.

5. Conclusions

Present X80 pipeline steels were modified with added Nb and Nb-V at different cooling
rates after hot rolling and subjected to quenching and tempering treatments. The effects
of microalloying and the cooling rate after hot rolling on the microstructure, precipitation
behavior, and strengthening mechanism were investigated. The following conclusions
were drawn:

(1) The ultimate tensile stress and yield stress of the quenching condition steels are both
higher than those of the air-cooling condition steels, and the increase in strength is
more pronounced with the addition of Nb-V than with the addition of Nb alone in
X80 pipeline steel.

(2) Under the same cooling condition, the mechanical properties of Nb-V-added steel
are better than those of Nb-added steel. Additionally, Nb-V-added steel has larger
proportion of lath structure in the microstructure.

(3) Based on measured microstructural parameters, the flow stress is rationalized utiliz-
ing linearly addition of the strengthening by solutes, precipitation, dislocation, and
boundaries. The calculated results are in good agreement with the measured values.
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