Novel Mixed-Phase α/γ-Fe2O3 Micro-Flower Assembled with Nanosheets for Enhancing Acetone Detection
Abstract
:1. Introduction
2. Experimental Section
2.1. Material and Chemicals
2.2. Synthesis of Hierarchical Fe2O3 Micro-Flower
2.3. Materials Characterization
2.4. Fabrication and Testing of Gas Sensor
3. Results and Discussion
3.1. Morphology and Structure
3.2. Gas-Sensing Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Amiri, V.; Roshan, H.; Mirzaei, A.; Neri, G.; Ayesh, A.I. Nanostructured metal oxide-based acetone gas sensors: A review. Sensors 2020, 20, 3096. [Google Scholar] [CrossRef] [PubMed]
- Broza, Y.Y.; Vishinkin, R.; Barash, O.; Nakhleh, M.K.; Haick, H. Synergy between nanomaterials and volatile organic compounds for non-invasive medical evaluation. Chem. Soc. Rev. 2018, 47, 4781–4859. [Google Scholar] [CrossRef]
- Baharuddin, A.A.; Ang, B.C.; Haseeb, A.S.M.A.; Wong, Y.C.; Wong, Y.H. Advances in chemiresistive sensors for acetone gas detection. Mater. Sci. Semicond. Process. 2019, 103, 104616. [Google Scholar] [CrossRef]
- Moon, Y.K.; Kim, K.B.; Jeong, S.-Y.; Lee, J.-H. Designing oxide chemiresistors for detecting volatile aromatic compounds: Recent progresses and future perspectives. Chem. Commun. 2022, 58, 5439–5454. [Google Scholar] [CrossRef] [PubMed]
- Mo, R.; Han, D.; Yang, C.; Tang, J.; Wang, F.; Li, C. MOF-derived porous Fe2O3 nanocubes combined with reduced graphene oxide for n-butanol room temperature gas sensing. Sens. Actuators B Chem. 2021, 330, 129326. [Google Scholar] [CrossRef]
- Guo, Y.; Tian, X.; Wang, X.; Sun, J. Fe2O3 nanomaterials derived from prussian blue with excellent H2S sensing properties. Sens. Actuators B Chem. 2019, 293, 136–143. [Google Scholar] [CrossRef]
- Wang, H.; Yan, L.; Li, S.; Li, Y.; Liu, L.; Du, L.; Duan, H.; Cheng, Y. Acetone sensors based on microsheet-assembled hierarchical Fe2O3 with different Fe3+ concentrations. Appl. Phys. A 2018, 124, 212. [Google Scholar] [CrossRef]
- Park, S.; Cai, Z.; Lee, J.; Yoon, J.I.; Chang, S.-P. Fabrication of a low-concentration H2S gas sensor using CuO nanorods decorated with Fe2O3 nanoparticles. Mater. Lett. 2016, 181, 231–235. [Google Scholar] [CrossRef]
- Fan, K.; Guo, J.; Cha, L.; Chen, Q.; Ma, J. Atomic layer deposition of ZnO onto Fe2O3 nanoplates for enhanced H2S sensing. J. Alloys Compd. 2017, 698, 336–340. [Google Scholar] [CrossRef]
- Jayababu, N.; Poloju, M.; Ramana Reddy, M.V. Facile synthesis of SnO2-Fe2O3 core-shell nanostructures and their 2-methoxyethanol gas sensing characteristics. J. Alloys Compd. 2019, 780, 523–533. [Google Scholar] [CrossRef]
- Zhang, S.; Song, P.; Liu, M.; Zheng, Y.; Wang, Q. Metal-organic framework-derived In-doped Fe2O3 spindles with enhanced acetone gas sensing performance. Inorg. Chem. Commun. 2022, 142, 109658. [Google Scholar] [CrossRef]
- Chen, L.; Song, Y.; Yu, Q.; Dong, H.; Pan, C.; Wang, D.; Liu, J.; Chen, X. High-performance acetone sensor based on electrospun Tb-doped α-Fe2O3 nanotubes. Ceram. Int. 2022, 48, 26828–26835. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, M.; Liang, K.; Turak, A.; Zhang, B.; Meng, D.; Wang, C.; Qu, F.; Cheng, W.; Yang, M. An acetone gas sensor based on nanosized Pt-loaded Fe2O3 nanocubes. Sens. Actuators B Chem. 2019, 290, 59–67. [Google Scholar] [CrossRef]
- Yang, C.; Yang, Y.; Zhang, C.; Yu, H.; Wang, T.; Shi, K.; Zhang, Z.; Wang, D.; Dong, X. High selectivity of Ag-doped Fe2O3 hollow nanofibers in H2S detection at room operating temperature. Sens. Actuators B Chem. 2021, 341, 129919. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Wu, S.; Yang, D.; Liu, P.; Zhang, H.; Wang, S.; Yao, X.; Zhu, G.; Zhao, H. Single crystal α-Fe2O3 with exposed {104} facets for high performance gas sensor applications. RSC Adv. 2012, 2, 6178–6184. [Google Scholar] [CrossRef]
- Ma, Y.; Yang, J.; Yuan, Y.; Zhao, H.; Shi, Q.; Zhang, F.; Pei, C.; Liu, B.; Yang, H. Enhanced gas sensitivity and sensing mechanism of network structures assembled from α-Fe2O3 nanosheets with exposed {104} facets. Langmuir 2017, 33, 8671–8678. [Google Scholar] [CrossRef]
- Ouyang, J.; Pei, J.; Kuang, Q.; Xie, Z.; Zheng, L. Supersaturation-controlled shape evolution of α-Fe2O3 nanocrystals and their facet-dependent catalytic and sensing properties. ACS Appl. Mater. Inter. 2014, 6, 12505–12514. [Google Scholar] [CrossRef]
- Sui, N.; Cao, S.; Zhang, P.; Zhou, T.; Zhang, T. The effect of different crystalline phases of In2O3 on the ozone sensing performance. J. Hazard. Mater. 2021, 418, 126290. [Google Scholar] [CrossRef]
- Hu, D.; Han, B.; Deng, S.; Feng, Z.; Wang, Y.; Popovic, J.; Nuskol, M.; Wang, Y.; Djerdj, I. Novel mixed phase SnO2 nanorods assembled with SnO2 nanocrystals for enhancing gas-sensing performance toward isopropanol gas. J. Phys. Chem. C 2014, 118, 9832–9840. [Google Scholar] [CrossRef]
- Wang, M.; Hou, T.; Shen, Z.; Zhao, X.; Ji, H. MOF-derived Fe2O3: Phase control and effects of phase composition on gas sensing performance. Sens. Actuators B Chem. 2019, 292, 171–179. [Google Scholar] [CrossRef]
- Xue, Y.; Wang, Y. A review of the α-Fe2O3 (hematite) nanotube structure: Recent advances in synthesis, characterization, and applications. Nanoscale 2020, 12, 10912–10932. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Li, J.; Wang, F.; Qin, J.; Lai, X.; Jiang, X. Highly sensitive acetone gas sensor based on ultrafine α-Fe2O3 nanoparticles. Sens. Actuators B Chem. 2017, 238, 923–927. [Google Scholar] [CrossRef]
- Zhuang, Z.; Zhang, L.; Huang, C.; Wang, X.; Guo, H.; Thomas, T.; Qu, F.; Wang, P.; Yang, M. A dimethyl disulfide gas sensor based on nanosized Pt-loaded tetrakaidecahedral α-Fe2O3 nanocrystals. Nanotechnology 2022, 33, 405502. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Chen, H.; Bao, S.; Xie, Z.; Kuang, Q.; Zheng, L. Nanosheet-assembled, hollowed-out hierarchical γ-Fe2O3 microrods for high-performance gas sensing. J. Mater. Chem. A 2020, 8, 3754–3762. [Google Scholar] [CrossRef]
- Zahmouli, N.; Hjiri, M.; Leonardi, S.G.; El Mir, L.; Neri, G.; Iannazzo, D.; Espro, C.; Aida, M.S. High performance Gd-doped γ-Fe2O3 based acetone sensor. Mater. Sci. Semicond. Process. 2020, 116, 105154. [Google Scholar] [CrossRef]
- Dang, S.; Zhu, Q.-L.; Xu, Q. Nanomaterials derived from metal–organic frameworks. Nat. Rev. Mater. 2017, 3, 17075. [Google Scholar] [CrossRef]
- Tang, B.; Wang, G.; Zhuo, L.; Ge, J.; Cui, L. Facile route to α-FeOOH and α-Fe2O3 nanorods and magnetic property of α-Fe2O3 nanorods. Inorg. Chem. 2006, 45, 5196–5200. [Google Scholar] [CrossRef]
- Liu, X.; Gong, M.; Deng, S.; Zhao, T.; Zhang, J.; Wang, D. Recent advances on metal alkoxide-based electrocatalysts for water splitting. J. Mater. Chem. A 2020, 8, 10130–10149. [Google Scholar] [CrossRef]
- Dong, C.; Tian, R.; Zhang, Y.; Liu, K.; Chen, G.; Guan, H.; Yin, Z. MOF-on-MOF nanoarchitecturing of Fe2O3@ZnFe2O4 radial-heterospindles towards multifaceted superiorities for acetone detection. Chem. Eng. J. 2022, 442, 136094. [Google Scholar] [CrossRef]
- Dong, C.; Tian, R.; Qu, H.; Tan, H.; Chen, G.; Guan, H.; Yin, Z. Anchoring Pt particles onto mesoporousized ZnO holey cubes for triethylamine detection with multifaceted superiorities. Small 2023, 19, 2300756. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, B.; Ju, C.; Han, X.; Du, Y.; Xu, P. Morphology-controlled synthesis and electromagnetic properties of porous Fe3O4 nanostructures from Iron Alkoxide Precursors. J. Phys. Chem. C 2011, 115, 12350–12357. [Google Scholar] [CrossRef]
- Zhong, L.-S.; Hu, J.-S.; Liang, H.-P.; Cao, A.-M.; Song, W.; Wan, L.-J. Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 2006, 18, 2426–2431. [Google Scholar] [CrossRef]
- Ma, X.-H.; Feng, X.-Y.; Song, C.; Zou, B.-K.; Ding, C.-X.; Yu, Y.; Chen, C.-H. Facile synthesis of flower-like and yarn-like α-Fe2O3 spherical clusters as anode materials for lithium-ion batteries. Electrochim. Acta 2013, 93, 131–136. [Google Scholar] [CrossRef]
- Machala, L.; Tuček, J.; Zbořil, R. Polymorphous transformations of nanometric iron(III) oxide: A review. Chem. Mater. 2011, 23, 3255–3272. [Google Scholar] [CrossRef]
- Song, H.; Yan, S.; Yao, Y.; Xia, L.; Jia, X.; Xu, J. 3D α-Fe2O3 nanorods arrays@graphene oxide nanosheets as sensing materials for improved gas sensitivity. Chem. Eng. J. 2019, 370, 1331–1340. [Google Scholar] [CrossRef]
- Huang, D.; Li, H.; Wang, Y.; Wang, X.; Cai, L.; Fan, W.; Chen, Y.; Wang, W.; Song, Y.; Han, G.; et al. Assembling a high-performance acetone sensor based on MOFs-derived porous bi-phase α-/γ-Fe2O3 nanoparticles combined with Ti3C2Tx nanosheets. Chem. Eng. J. 2022, 428, 131377. [Google Scholar] [CrossRef]
- Qu, F.; Zhou, X.; Zhang, B.; Zhang, S.; Jiang, C.; Ruan, S.; Yang, M. Fe2O3 nanoparticles-decorated MoO3 nanobelts for enhanced chemiresistive gas sensing. J. Alloys Compd. 2019, 782, 672–678. [Google Scholar] [CrossRef]
- Qu, F.; Jiang, H.; Yang, M. Designed formation through a metal organic framework route of ZnO/ZnCo2O4 hollow core–shell nanocages with enhanced gas sensing properties. Nanoscale 2016, 8, 16349–16356. [Google Scholar] [CrossRef]
- Geng, W.; Ge, S.; He, X.; Zhang, S.; Gu, J.; Lai, X.; Wang, H.; Zhang, Q. Volatile organic compound gas-sensing properties of bimodal porous α-Fe2O3 with ultrahigh sensitivity and fast response. ACS Appl. Mater. Inter. 2018, 10, 13702–13711. [Google Scholar] [CrossRef]
- Tan, J.; Huang, X. Ultra-thin nanosheets-assembled hollowed-out hierarchical α-Fe2O3 nanorods: Synthesis via an interface reaction route and its superior gas sensing properties. Sens. Actuators B Chem. 2016, 237, 159–166. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, X.; Gao, S.; Cheng, X.; Sui, L.; Xu, Y.; Zhao, X.; Zhao, H.; Huo, L. Superior acetone sensor based on single-crystalline α-Fe2O3 mesoporous nanospheres via [C12mim][BF4]-assistant synthesis. Sens. Actuators B Chem. 2017, 241, 967–977. [Google Scholar] [CrossRef]
- Van Minh Hai, H.; Cuong, N.D.; Mai, H.D.; Long, H.T.; Phuong, T.Q.; Dang, T.K.; Thong, L.V.; Viet, N.N.; Van Hieu, N. Superior detection and classification of ethanol and acetone using 3D ultra-porous γ-Fe2O3 nanocubes-based sensor. Sens. Actuators B Chem. 2022, 362, 131737. [Google Scholar] [CrossRef]
- Ji, H.; Zeng, W.; Li, Y. Gas sensing mechanisms of metal oxide semiconductors: A focus review. Nanoscale 2019, 11, 22664–22684. [Google Scholar] [CrossRef]
- Staerz, A.; Weimar, U.; Barsan, N. Current state of knowledge on the metal oxide based gas sensing mechanism. Sens. Actuators B Chem. 2022, 358, 131531. [Google Scholar] [CrossRef]
- Zhang, W.; Fan, Y.; Yuan, T.; Lu, B.; Liu, Y.; Li, Z.; Li, G.; Cheng, Z.; Xu, J. Ultrafine tungsten oxide nanowires: Synthesis and highly selective acetone sensing and mechanism analysis. ACS Appl. Mater. Inter. 2020, 12, 3755–3763. [Google Scholar] [CrossRef] [PubMed]
- Mane, A.A.; Moholkar, A.V. Effect of film thickness on NO2 gas sensing properties of sprayed orthorhombic nanocrystalline V2O5 thin films. Appl. Surf. Sci. 2017, 416, 511–520. [Google Scholar] [CrossRef]
- Liu, C.; Zhao, L.; Wang, B.; Sun, P.; Wang, Q.; Gao, Y.; Liang, X.; Zhang, T.; Lu, G. Acetone gas sensor based on NiO/ZnO hollow spheres: Fast response and recovery, and low (ppb) detection limit. J. Colloid Interface Sci. 2017, 495, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Fan, X.; Xu, Y.; Ma, C.; He, W. In-situ growth of Co3O4 nanoparticles based on electrospray for an acetone gas sensor. J. Alloys Compd. 2021, 854, 157234. [Google Scholar] [CrossRef]
- Tian, R.; Gao, Z.; Chen, G.; Guan, H.; Dong, C.; Comini, E. Functionalized Pt nanoparticles between α/γ-Fe2O3 and MXene for superior acetone sensing. Sens. Actuators B Chem. 2023, 383, 133584. [Google Scholar] [CrossRef]
Materials | T (°C) | C (ppm) | Response (β) | tres/trec (s) | LOD | Ref. |
---|---|---|---|---|---|---|
Porous α-Fe2O3 | 300 | 100 | 26.3 | 6/<100 | 10 | [39] |
Nanorods α-Fe2O3 | 280 | 100 | 32.5 | 0.4/2.4 | 10 | [40] |
Nanoparticles α-Fe2O3 | 340 | 100 | 9.1 | -- | 5 | [22] |
Nanospheres α-Fe2O3 | 170 | 100 | 16 | 2/50 | 0.1 | [41] |
Microrods γ-Fe2O3 | 220 | 100 | 125.5 | 0.9/15 | 10 | [24] |
Nanocubes γ-Fe2O3 | 350 | 100 | 161 | -- | 10 | [42] |
Flower-like α/γ-Fe2O3 | 160 | 200 | 353 | 22/14 | 0.5 ppm | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, R.; Tan, H.; Chen, G.; Guan, H.; Dong, C.; Yin, Z. Novel Mixed-Phase α/γ-Fe2O3 Micro-Flower Assembled with Nanosheets for Enhancing Acetone Detection. Crystals 2023, 13, 810. https://doi.org/10.3390/cryst13050810
Tian R, Tan H, Chen G, Guan H, Dong C, Yin Z. Novel Mixed-Phase α/γ-Fe2O3 Micro-Flower Assembled with Nanosheets for Enhancing Acetone Detection. Crystals. 2023; 13(5):810. https://doi.org/10.3390/cryst13050810
Chicago/Turabian StyleTian, Ruonan, Huai Tan, Gang Chen, Hongtao Guan, Chengjun Dong, and Zongyou Yin. 2023. "Novel Mixed-Phase α/γ-Fe2O3 Micro-Flower Assembled with Nanosheets for Enhancing Acetone Detection" Crystals 13, no. 5: 810. https://doi.org/10.3390/cryst13050810
APA StyleTian, R., Tan, H., Chen, G., Guan, H., Dong, C., & Yin, Z. (2023). Novel Mixed-Phase α/γ-Fe2O3 Micro-Flower Assembled with Nanosheets for Enhancing Acetone Detection. Crystals, 13(5), 810. https://doi.org/10.3390/cryst13050810