Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields
Abstract
:1. Introduction
2. Background Theory
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Tong, C.; Jagadish, C. Nanoscale Semiconductor Lasers, 1st ed.; Elsevier Science: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Verma, V.B.; Elarde, V.C. Nanoscale selective area epitaxy: From semiconductor lasers to single-photon sources. Prog. Quantum. Electron. 2021, 75, 100305. [Google Scholar] [CrossRef]
- Zhou, C.; Pina, J.M.; Zhu, T.; Parmar, D.H.; Chang, H.; Yu, J.; Yuan, F.; Bappi, G.; Hou, Y.; Zheng, X.; et al. Quantum dot self-assembly enables low-threshold lasing. Adv. Sci. 2021, 8, 2101125. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Lee, J.S.; Jang, J.; Hong, K.-H.; Lee, D.-K.; Song, S.; Kim, K.; Eo, Y.-J.; Yun, J.H.; Gwak, J.; et al. Robust nanoscale contact of silver nanowire electrodes to semiconductors to achieve high performance chalcogenide thin film solar cells. Nano Energy 2018, 53, 675–682. [Google Scholar] [CrossRef]
- Swarnkar, A.; Marshall, A.R.; Sanehira, E.M.; Chernomordik, B.D.; Moore, D.T.; Christians, J.A.; Chakrabarti, T.; Luther, J.M. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 2016, 354, 92–96. [Google Scholar] [CrossRef] [PubMed]
- Fox, M.; Ispasoiu, R. Quantum wells, superlattices, and band-gap engineering. In Springer Handbook of Electronic and Photonic Materials; Springer: Cham, Switzerland, 2017. [Google Scholar]
- Wu, J.; Fang, G.; Zhang, Y.; Biswas, N.; Ji, N.; Xu, W.; Dong, B.; Liu, N. Semiconductor nanomaterial-based polarized light emission: From materials to light emitting diodes. Sci. China Mater. 2023, 66, 1257–1282. [Google Scholar] [CrossRef]
- Kim, S.H.; Man, M.T.; Lee, J.W.; Park, K.D.; Lee, H.S. Influence of size and shape anisotropy on optical properties of CdSe quantum dots. Nanomaterials 2020, 10, 1589. [Google Scholar] [CrossRef]
- Torres-Gomez, N.; Garcia-Gutierrez, D.F.; Lara-Canche, A.R.; Triana-Cruz, L.; Arizpe-Zapata, J.A.; Garcia-Gutierrez, D.I. Absorption and emission in the visible range by ultra-small PbS quantum dots in the strong quantum confinement regime with S-terminated surfaces capped with diphenylphosphine. J. Alloys Compd. 2021, 860, 158443. [Google Scholar] [CrossRef]
- Heyn, C.; Strelow, C.; Hansen, W. Excitonic lifetimes in single GaAs quantum dots fabricated by local droplet etching. New J. Phys. 2012, 14, 053004. [Google Scholar] [CrossRef]
- Geuchies, J.J.; Brynjarsson, B.; Grimaldi, G.; Gudjonsdottir, S.; van der Stam, W.; Evers, W.H.; Houtepen, A.J. Quantitative electrochemical control over optical gain in quantum-dot solids. ACS Nano 2021, 15, 377–386. [Google Scholar] [CrossRef]
- Bisschop, S.; Geiregat, P.; Aubert, T.; Hens, Z. The impact of core/shell sizes on the optical gain characteristics of CdSe/CdS quantum dots. ACS Nano 2018, 12, 9011–9021. [Google Scholar] [CrossRef]
- Wu, K.; Park, Y.S.; Lim, J.; Klimov, V.I. Towards zero-threshold optical gain using charged semiconductor quantum dots. Nat. Nanotechnol. 2017, 12, 1140–1147. [Google Scholar] [CrossRef] [PubMed]
- Ji, Z.M.; Song, Z.G. Exciton radiative lifetime in CdSe quantum dots. J. Semicond. 2023, 44, 032702. [Google Scholar] [CrossRef]
- Goupalov, V.; Ivchenko, E.L.; Nestoklon, M.O. Optical transitions, exciton radiative decay, and valley coherence in lead chalcogenide quantum dots. Phys. Rev. B 2022, 106, 125301. [Google Scholar] [CrossRef]
- Naimi, Y. Comment on “Magnetic field effects on oscillator strength, dipole polarizability and refractive index changes in spherical quantum dot”. Phys. Lett. 2021, 767, 138380. [Google Scholar] [CrossRef]
- Makhlouf, D.; Choubani, M.; Saidi, F.; Maaref, H. Enhancement of transition lifetime, linear and nonlinear optical properties in laterally coupled lens-shaped quantum dots for Tera-Hertz range. Physica E 2018, 103, 87–92. [Google Scholar] [CrossRef]
- Lim, J.; Park, Y.S.; Klimov, V.I. Optical gain in colloidal quantum dots achieved with direct-current electrical pumping. Nat. Mater. 2018, 17, 42–49. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Park, Y.S.; Ahn, N.; Lim, J.; Fedin, I.; Livache, C.; Klimov, V.I. Two-band optical gain and ultrabright electroluminescence from colloidal quantum dots at 1000 A cm-1. Nat. Commun. 2022, 13, 3734. [Google Scholar] [CrossRef]
- Taghipour, N.; Delikanli, S.; Shendre, S.; Sak, M.; Li, M.; Isik, F.; Tanriover, I.; Guzelturk, B.; Sum, T.C.; Demir, H.V. Sub-single exciton optical gain threshold in colloidal semiconductor quantum wells with gradient alloy shelling. Nat. Commun. 2020, 11, 3305. [Google Scholar] [CrossRef]
- Yang, W.; Yang, Y.; Kaledin, A.L.; He, S.; Jin, T.; McBride, J.R.; Lian, T. Surface passivation extends single and biexciton lifetimes of InP quantum dots. Chem. Sci. 2020, 11, 5779–5789. [Google Scholar] [CrossRef]
- Yilmaz, S.; Safak, H. Oscillator strengths for the intersubband transitions in a CdS-SiO2 quantum dot with hydrogenic impurity. Physica E 2007, 36, 40–44. [Google Scholar] [CrossRef]
- Stobbe, S.; Schlereth, T.W.; Höfling, S.; Forchel, A.; Hvam, J.M.; Lodahl, P. Large quantum dots with small oscillator strength. Phys. Rev. B 2010, 82, 233302. [Google Scholar] [CrossRef]
- Liu, Y.; Bose, S.; Fan, W. Effect of size and shape on electronic and optical properties of CdSe quantum dots. Optik 2018, 155, 242–250. [Google Scholar] [CrossRef]
- Chen, Q.; Song, Z.; Zhang, D.; Sun, H.; Fan, W. Effect of size on the electronic structure and optical properties of cubic CsPbBr3 quantum dots. IEEE J. Quantum Electron. 2020, 56, 1–7. [Google Scholar] [CrossRef]
- Li, Q.; Lian, T. A model for optical gain in colloidal nanoplatelets. Chem. Sci. 2018, 9, 728–734. [Google Scholar] [CrossRef] [PubMed]
- Deng, Y.; Lin, X.; Fang, W.; Di, D.; Wang, L.; Friend, R.H.; Peng, X.; Jin, Y. Deciphering exciton-generation processes in quantum-dot electroluminescence. Nat. Commun. 2020, 11, 2309. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Sun, H.; Zhang, Q.; Feng, J.; Zhang, J.; Li, Y.; Ning, C.Z. Excitonic complexes and optical gain in two-dimensional molybdenum ditelluride well below the Mott transition. Light Sci. Appl. 2020, 9, 39. [Google Scholar] [CrossRef] [PubMed]
- Stachurski, J.; Tamariz, S.; Callsen, G.; Butté, R.; Grandjean, N. Single photon emission and recombination dynamics in self-assembled GaN/AlN quantum dots. Light Sci. Appl. 2022, 11, 114. [Google Scholar] [CrossRef]
- Bleyan, Y.Y.; Mantashyan, P.A.; Kazaryan, E.M.; Sarkisyan, H.A.; Accorsi, G.; Baskoutas, S.; Hayrapetyan, D.B. Non-linear optical properties of biexciton in ellipsoidal quantum dot. Nanomaterials 2022, 12, 1412. [Google Scholar] [CrossRef]
- Barjon, J. Luminescence spectroscopy of bound excitons in diamond. Phys. Status Solidi A 2017, 214, 1700402. [Google Scholar] [CrossRef]
- Große, J.; Mrowiński, P.; Srocka, N.; Reitzenstein, S. Quantum efficiency and oscillator strength of InGaAs quantum dots for single-photon sources emitting in the telecommunication O-band. Appl. Phys. Lett. 2021, 119, 061103. [Google Scholar] [CrossRef]
- Aghoutane, N.; El-Yadri, M.; El Aouami, A.; Feddi, E.; Dujardin, F.; El Haouari, M. Optical absorption of excitons in strained quasi 2D GaN quantum dot. Phys. Status Solidi B 2019, 256, 1800361. [Google Scholar] [CrossRef]
- Aghoutane, N.; Pérez, L.M.; Tiutiunnyk, A.; Laroze, D.; Baskoutas, S.; Dujardin, F.; El Fatimy, A.; El-Yadri, M.; Feddi, E. Adjustment of terahertz properties assigned to the first lowest transition of (D+, X) excitonic complex in a single spherical quantum dot using temperature and pressure. Appl. Sci. 2021, 11, 5969. [Google Scholar] [CrossRef]
- Kumar, D.; Negi, C.M.S.; Kumar, J. Temperature effect on optical gain of CdSe/ZnSe quantum dots. In Advances in Optical Science and Engineering; Springer Proceedings in Physics; Springer: New Delhi, India, 2015; Volume 163, pp. 563–569. [Google Scholar]
- Geiregat, P.; Rodá, C.; Tanghe, I.; Singh, S.; Di Giacomo, A.; Lebrun, D.; Grimaldi, G.; Maes, J.; Van Thourhout, D.; Moreels, I.; et al. Localization-limited exciton oscillator strength in colloidal CdSe nanoplatelets revealed by the optically induced stark effect. Light Sci. Appl. 2021, 10, 5969. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Mandelis, A.; Melnikov, A.; Hoogland, S.; Sargent, E.H. Exciton lifetime broadening and distribution profiles of PbS colloidal quantum dot thin films using frequency- and temperature-scanned photocarrier radiometry. J. Phys. Chem. C 2013, 117, 23333–23348. [Google Scholar] [CrossRef]
- Patra, S.K.; Wang, T.; Puchtler, T.J.; Zhu, T.; Oliver, R.A.; Taylor, R.A.; Schulz, S. Theoretical and experimental analysis of radiative recombination lifetimes in nonpolar InGaN/GaN quantum dots. Phys. Status Solidi B 2017, 254, 1600675. [Google Scholar] [CrossRef]
- Alén, B.; Bosch, J.; Granados, D.; Martínez-Pastor, J.; García, J.M.; González, L. Oscillator strength reduction induced by external electric fields in self-assembled quantum dots and rings. Phys. Rev. B 2007, 75, 045319. [Google Scholar] [CrossRef]
- Makhlouf, D.; Choubani, M.; Saidi, F.; Maaref, H. Applied electric and magnetic fields effects on the nonlinear optical rectification and the carrier’s transition lifetime in InAs/GaAs core/shel quantum dot. Mater. Chem. Phys. 2021, 267, 124660. [Google Scholar] [CrossRef]
- Niculescu, E.C.; Eseanu, N.; Spandonide, A. Laser field effects on the interband transitions in differently shaped quantum wells. UPB Sci. Bull. Ser. A 2008, 77, 281–292. [Google Scholar]
- Owji, E.; Keshavarz, A.; Mokhtari, H. The effects of temperature, hydrostatic pressure and size on optical gain for GaAs spherical quantum dot laser with hydrogen impurity. Superlattice Microst. 2016, 98, 276–282. [Google Scholar] [CrossRef]
- Saravanamoorthy, S.N.; Peter, A.J.; Lee, C.W. Optical peak gain in a PbSe/CdSe core-shell quantum dot in the presence of magnetic field for mid-infrared laser applications. Chem. Phys. 2017, 483-484, 1–6. [Google Scholar] [CrossRef]
- Burileanu, L.M. Photoionization cross-section of donor impurity in spherical quantum dots under electric and intense laser fields. J. Lumin. 2014, 145, 684–689. [Google Scholar] [CrossRef]
- Ehlotzky, F. Positronium decay in intense high frequency laser fields. Phys. Lett. A 1988, 126, 524–527. [Google Scholar] [CrossRef]
- Davies, J.H. The Physics of Low-Dimensional Semiconductors: An Introduction; Cambridge University Press: London, UK, 1996. [Google Scholar]
- Alén, B.; Bickel, F.; Karrai, K.; Warburton, R.J.; Petroff, P.M. Stark-shift modulation absorption spectroscopy of single quantum dots. Appl. Phys. Lett. 2003, 83, 2235. [Google Scholar] [CrossRef]
- Chuang, S.L. Physics of photonic devices. In Physics of Photonic Devices; Wiley: Hoboken, NJ, USA, 2009; pp. 365–372. [Google Scholar]
- Sugawara, M.; Mukai, K.; Nakata, Y.; Ishikawa, H.; Sakamoto, A. Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers. Phys. Rev. B 2000, 61, 7595–7603. [Google Scholar] [CrossRef]
- Sakamoto, A.; Sugawara, M. Theoretical calculation of lasing spectra of quantum-dot lasers: Effect of homogeneous broadening of optical gain. IEEE Photonics Technol. Lett. 2000, 12, 107–109. [Google Scholar] [CrossRef]
- Ashcroft, N.W.; Mermin, N.D. Solid State Physics; Saunders: Philadelphia, PA, USA, 1976. [Google Scholar]
- Stier, O.; Grundmann, M.; Bimberg, D. Electronic and optical properties of strained quantum dots modeled by 8-band k.p theory. Phys. Rev. B 1999, 59, 5688. [Google Scholar] [CrossRef]
- Warburton, R.J.; Gauer, C.; Wixforth, A.; Kotthaus, J.P. Intersubband resonances in InAs/AlSb quantum wells: Selection rules, matrix elements, and the depolarization field. Phys. Rev. B 1996, 53, 7903. [Google Scholar] [CrossRef]
- Gong, M.; Zhang, W.; Guo, G.C.; He, L. Atomistic pseudopotential theory of optical properties of exciton complexes in InAs/InP quantum dots. Appl. Phys. Lett. 2011, 99, 231106. [Google Scholar] [CrossRef]
0.023 | 0.41 | 15.15 | 0.418 | 21.5 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aghoutane, N.; Pérez, L.M.; Laroze, D.; Díaz, P.; Rivas, M.; El-Yadri, M.; Feddi, E.M. Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields. Crystals 2023, 13, 851. https://doi.org/10.3390/cryst13050851
Aghoutane N, Pérez LM, Laroze D, Díaz P, Rivas M, El-Yadri M, Feddi EM. Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields. Crystals. 2023; 13(5):851. https://doi.org/10.3390/cryst13050851
Chicago/Turabian StyleAghoutane, Noreddine, Laura M. Pérez, David Laroze, Pablo Díaz, Miguel Rivas, Mohamed El-Yadri, and El Mustapha Feddi. 2023. "Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields" Crystals 13, no. 5: 851. https://doi.org/10.3390/cryst13050851
APA StyleAghoutane, N., Pérez, L. M., Laroze, D., Díaz, P., Rivas, M., El-Yadri, M., & Feddi, E. M. (2023). Optical Gain of a Spherical InAs Quantum Dot under the Effects of the Intense Laser and Magnetic Fields. Crystals, 13(5), 851. https://doi.org/10.3390/cryst13050851