Crystal Structure, Thermal Expansion and Luminescence of Ca10.5−xNix(VO4)7
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Structure at Room Temperature as a Function of the Ni Content
3.1.1. Lattice Parameters
3.1.2. Solubility Limit
3.1.3. Occupancy
3.1.4. Interatomic Distances and Bond Valence Sum Analyses
3.2. Structural Study of Ca10.5−xNix(VO4)7 in the 300–1150 K Temperature Range
3.3. Band Gap, Luminescence Behaviour
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Site | x | |||||||
---|---|---|---|---|---|---|---|---|
0.16 | 0.33 | 0.5 | 0.66 | |||||
Interatomic Distances (Å) | BVS (v.u.) | Interatomic Distances (Å) | BVS (v.u.) | Interatomic Distances (Å) | BVS (v.u.) | Interatomic Distances (Å) | BVS (v.u.) | |
M1–O | 2.507(8) | 2.517(8) | 2.523(8) | 2.541(6) | ||||
2.453(13) | 2.438(12) | 2.424(13) | 2.455(11) | |||||
2.514(12) | 2.52(12) | 2.531(12) | 2.502(10) | |||||
2.598(9) | 2.02 | 2.602(9) | 2.01 | 2.592(9) | 1.99 | 2.603(7) | 1.99 | |
2.433(12) | 2.456(12) | 2.475(12) | 2.464(9) | |||||
2.233(11) | 2.246(11) | 2.245(11) | 2.235(9) | |||||
2.359(9) | 2.338(9) | 2.348(9) | 2.351(8) | |||||
M2–O | 2.372(9) | 2.364(9) | 2.398(9) | 2.381(7) | ||||
2.476(8) | 2.454(8) | 2.483(8) | 2.471(7) | |||||
2.45(10) | 2.456(10) | 2.47(10) | 2.418(9) | |||||
2.369(11) | 1.96 | 2.375(11) | 2.01 | 2.411(11) | 1.85 | 2.369(9) | 1.97 | |
2.795(12) | 2.795(12) | 2.811(12) | 2.793(10) | |||||
2.852(12) | 2.825(11) | 2.802(11) | 2.82(9) | |||||
2.415(13) | 2.429(13) | 2.438(13) | 2.462(10) | |||||
2.450(8) | 2.450(8) | 2.482(8) | 2.426(6) | |||||
M3–O | 2.962(11) | 2.939(11) | 2.905(11) | 2.899(8) | ||||
2.548(3) | 2.554(3) | 2.555(3) | 2.562(3) | |||||
2.617(7) | 2.629(7) | 2.620(7) | 2.61(6) | |||||
2.519(12) | 2.503(12) | 2.517(12) | 2.446(10) | |||||
2.419(9) | 1.71 | 2.421(9) | 1.72 | 2.416(9) | 1.76 | 2.425(8) | 1.77 | |
2.445(12) | 2.423(12) | 2.396(12) | 2.411(9) | |||||
2.724(10) | 2.754(10) | 2.776(10) | 2.829(9) | |||||
2.700(8) | 2.698(8) | 2.663(8) | 2.673(7) | |||||
2.554(12) | 2.557(12) | 2.557(11) | 2.548(10) | |||||
M4–O | 2.964(19) | 2.946(19) | 2.906(19) | 2.92(12) | ||||
2.964(20) | 2.946(20) | 2.906(19) | 2.92(12) | |||||
2.964(19) | 0.33 | 2.946(19) | 0.34 | 2.906(19) | 0.37 | 2.92(12) | 0.42 | |
2.657(10) | 2.652(10) | 2.617(11) | 2.545(8) | |||||
2.657(11) | 2.652(11) | 2.617(11) | 2.545(9) | |||||
2.657(7) | 2.652(7) | 2.617(8) | 2.545(6) | |||||
M5–O | 2.264(10) | 2.212(10) | 2.182(10) | 2.129(8) | ||||
2.264(11) | 2.212(11) | 2.182(11) | 2.129(8) | |||||
2.264(12) | 2.03 | 2.212(13) | 2.09 | 2.182(12) | 2.28 | 2.129(9) | 2.25 | |
2.311(11) | 2.273(11) | 2.199(10) | 2.196(8) | |||||
2.311(3) | 2.273(13) | 2.199(13) | 2.196(9) | |||||
2.311(12) | 2.273(11) | 2.199(11) | 2.196(8) |
References
- Gopal, R.; Calvo, C. The structure of Ca3(VO4)2. Z. Krist. 1973, 137, 67–85. [Google Scholar] [CrossRef]
- Grzechnik, A. Crystal structure of Ca3(VO4)2 synthesized at 11 GPa and 1373 K. Solid State Sci. 2002, 4, 523–527. [Google Scholar] [CrossRef]
- Sánchez-Martín, J.; Errandonea, D.; Mosafer, H.S.R.; Paszkowicz, W.; Minikayev, R.; Turnbull, R.; Berkowski, M.; Ibáñez-Insa, J.; Popescu, C.; Fitch, A.; et al. The pressure and temperature evolution of the Ca2V2O8 crystal structure using powder X-ray diffraction. CrystEngComm 2023, 25, 1240–1251. [Google Scholar] [CrossRef]
- Dickens, B.; Schroeder, L.W.; Brown, W.E. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. The crystal structure of pure β-Ca3(PO4)2. J. Solid State Chem. 1974, 10, 232–248. [Google Scholar] [CrossRef]
- Yashima, M.; Sakai, A.; Kamiyama, T.; Hoshikawa, A. Crystal structure analysis of β-tricalcium phosphate Ca3(PO4)2 by neutron powder diffraction. J. Solid State Chem. 2003, 175, 272–277. [Google Scholar]
- Rahimi Mosafer, H.S.; Paszkowicz, W.; Minikayev, R.; Kozłowski, M.; Diduszko, R.; Berkowski, M. The crystal structure and thermal expansion of novel substitutionally disordered Ca10TM0.5(VO4)7 (TM = Co, Cu) orthovanadates. Dalt. Trans. 2021, 50, 14762–14773. [Google Scholar] [CrossRef]
- Belik, A.A.; Yanov, O.V.; Lazoryak, B.I. Synthesis and crystal structure of Ca9Cu1.5(PO4)7 and reinvestigation of Ca9.5Cu(PO4)7. Mater. Res. Bull. 2001, 36, 1863–1871. [Google Scholar]
- Spaeth, K.; Goetz-Neunhoeffer, F.; Hurle, K. Cu2+ doped β-tricalcium phosphate: Solid solution limit and crystallographic characterization by rietveld refinement. J. Solid State Chem. 2020, 285, 121225. [Google Scholar] [CrossRef]
- Belik, A.; Morozov, V.; Khasanov, S.; Lazoryak, B. Crystal structures of new double calcium and cobalt phosphates. Mater. Res. Bull. 1998, 33, 987–995. [Google Scholar] [CrossRef]
- Legrouri, A.; Romdhane, S.S.; Lenzi, J.; Lenzi, M.; Bonel, G. Influence of preparation method on catalytic properties of mixed calcium-cobalt orthophosphates. J. Mater. Sci. 1996, 31, 2469–2473. [Google Scholar] [CrossRef]
- Zhang, M.; Wu, C.; Li, H.; Yuen, J.; Chang, J.; Xiao, Y. Preparation, characterization and in vitro angiogenic capacity of cobalt substituted β-tricalcium phosphate ceramics. J. Mater. Chem. 2012, 22, 21686–21694. [Google Scholar] [CrossRef]
- Belik, A.A.; Morozov, V.A.; Khasanov, S.S.; Lazoryak, B.I. Crystal structures of new triple Ca9CoM(PO4)7 (M = Li, Na, K) phosphates. Mater. Res. Bull. 1999, 34, 883–893. [Google Scholar] [CrossRef]
- Altomare, A.; Corriero, N.; Cuocci, C.; Falcicchio, A.; Moliterni, A.; Rizzi, R. OChemDb: The free online open chemistry database portal for searching and analyzing crystal structure information. J. Appl. Crystallogr. 2018, 51, 1229–1236. [Google Scholar] [CrossRef]
- Kawabata, K.; Yamamoto, T.; Kitada, A. Substitution mechanism of Zn ions in β-tricalcium phosphate. Phys. B Condens. Matter 2011, 406, 890–894. [Google Scholar] [CrossRef]
- Schroeder, L.; Dickens, B.; Brown, W. Crystallographic studies of the role of Mg as a stabilizing impurity in β-Ca3(PO4)2. II. Refinement of Mg-containing β-Ca3(PO4)2. J. Solid State Chem. 1977, 22, 253–262. [Google Scholar] [CrossRef]
- Britvin, S.N.; Galuskina, I.O.; Vlasenko, N.S.; Vereshchagin, O.S.; Bocharov, V.N.; Krzhizhanovskaya, M.G.; Shilovskikh, V.V.; Galuskin, E.V.; Vapnik, Y.; Obolonskaya, E.V. Keplerite, Ca9(Ca0.5□0.5)Mg(PO4)7, a new meteoritic and terrestrial phosphate isomorphous with merrillite, Ca9NaMg(PO4)7. Am. Mineral. 2021, 106, 1917–1927. [Google Scholar] [CrossRef]
- Belik, A.A.; Morozov, V.A.; Kotov, R.N.; Khasanov, S.S.; Lazoryak, B.I. Crystal structure of double vanadates Ca9R(VO4)7. II. R = Tb, Dy, Ho, and Y. Crystallogr. Rep. 2000, 45, 389–394. [Google Scholar] [CrossRef]
- Fan, J.; Wang, G.; Yuan, F. Growth and characterization of new laser crystal Nd3+:Ca2.85Gd0.1(VO4)2. J. Rare Earths 2012, 30, 335–338. [Google Scholar] [CrossRef]
- Zhuang, N.; Liu, X.; Xu, Q.; Chen, X.; Zhao, B.; Hu, X.; Chen, J. Crystal growth, nonlinear frequency-doubling and spectral characteristic of Nd:Ca9La(VO4)7 crystal. J. Alloys Compd. 2014, 595, 113–119. [Google Scholar] [CrossRef]
- Zhang, Z.; Loiko, P.; Wu, H.; Mateos, X.; Serres, J.M.; Lin, H.F.; Chen, W.D.; Zhang, G.; Zhang, L.Z.; Díaz, F.; et al. Disordered Tm:Ca9La(VO4)7: A novel crystal with potential for broadband tunable lasing. Opt. Mater. Express 2017, 7, 484. [Google Scholar] [CrossRef]
- Hu, P.N.; Wang, G.F. Growth and spectral properties of Er3+:Ca9La(VO4)7 crystal. Mater. Res. Innov. 2011, 15, 75–77. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, D.; Liu, L.; Yuan, F.; Huang, Y.; Zhang, L.; Lin, Z. Cr3+ doped Ca3(VO4)2: A new tunable laser crystal. J. Alloys Compd. 2023, 938, 168651. [Google Scholar]
- Schrandt, O.; Müller-Buschbaum, H. K+ auf einer mit Ca2+ unterbesetzten Punktlage in Ca3(VO4)2: Ein Beitrag über KCa10V7O28/K+ at an Deficient Ca2+ Point Position in Ca3(VO4)2: On KCa10V7O28. Zeitschrift für Naturforsch. B 1996, 51, 473–476. [Google Scholar] [CrossRef]
- Kosmyna, M.B.; Nazarenko, B.P.; Puzikov, V.M.; Shekhovtsov, A.N.; Paszkowicz, W.; Behrooz, A.; Romanowski, P.; Yasukevich, A.S.; Kuleshov, N.V.; Demesh, M.P.; et al. Ca10Li(VO4)7:Nd3+, a promising laser material: Growth, structure and spectral characteristics of a Czochralski-grown single crystal. J. Cryst. Growth 2016, 445, 101–107. [Google Scholar] [CrossRef]
- Khodasevich, I.A.; Voitikov, S.V.; Orlovich, V.A.; Kosmyna, M.B.; Shekhovtsov, A.N. Raman Spectra of Crystalline Double Calcium Orthovanadates Ca10M(VO4)7 (M = Li, K, Na) and Their Interpretation Based on Deconvolution Into Voigt Profiles. J. Appl. Spectrosc. 2016, 83, 555–561. [Google Scholar] [CrossRef]
- Voronina, I.S.; Dunaeva, E.E.; Papashvili, A.G.; Iskhakova, L.D.; Doroshenko, M.E.; Ivleva, L.I. High-temperature diffusion doping as a method of fabrication of Ca3(VO4)2:Mn single crystals. J. Cryst. Growth 2021, 563, 126104. [Google Scholar] [CrossRef]
- Kuz’micheva, G.M.; Ivleva, L.I.; Kaurova, I.A.; Lazarenko, V.A.; Khramov, E.V. Effect of cobalt content on point defects and local structure in activated Ca3(VO4)2 single-crystal solid solutions. J. Solid State Chem. 2023, 318, 123776. [Google Scholar]
- Glass, A.M.; Abrahams, S.C.; Ballman, A.A.; Loiacono, G. Calcium orthovanadate, Ca3(VO4)2—A new high-temperature ferroelectric. Ferroelectrics 1977, 17, 579–582. [Google Scholar] [CrossRef]
- Bechthold, P.; Liebertz, J.; Deserno, U. Linear and nonlinear optical properties of Ca3(VO4)2. Opt. Commun. 1978, 27, 393–398. [Google Scholar] [CrossRef]
- Matsushima, Y.; Koide, T.; Hiro-Oka, M.; Shida, M.; Sato, A.; Sugiyama, S.; Ito, M. Self-activated vanadate compounds toward realization of rare-earth-free full-color phosphors. J. Am. Ceram. Soc. 2015, 98, 1236–1244. [Google Scholar] [CrossRef]
- Hasegawa, T.; Abe, Y.; Koizumi, A.; Ueda, T.; Toda, K.; Sato, M. Bluish-White Luminescence in Rare-Earth-Free Vanadate Garnet Phosphors: Structural Characterization of LiCa3MV3O12 (M = Zn and Mg). Inorg. Chem. 2018, 57, 857–866. [Google Scholar] [CrossRef]
- Chukova, O.V.; Nedilko, S.G.; Slepets, A.A.; Nedilko, S.A.; Voitenko, T.A. Synthesis and Properties of the La1-x-yEuyCaxVO4 (0 ≤x, y≤ 0.2) Compounds. Nanoscale Res. Lett. 2017, 12, 340. [Google Scholar] [CrossRef]
- Chukova, O.; Nedilko, S.A.; Nedilko, S.G.; Voitenko, T.; Slepets, A.; Androulidaki, M.; Papadopoulos, A.; Stratakis, E.; Paszkowicz, W. Strong Eu3+ luminescence in La1-x-yErx/2Eux/2CayVO4 nanocrystals: The result of co-doping optimization. J. Lumin. 2022, 242, 118587. [Google Scholar] [CrossRef]
- Michalska, M.; Jasiński, J.; Pavlovsky, J.; Żurek-Siworska, P.; Sikora, A.; Gołȩbiewski, P.; Szysiak, A.; Matejka, V.; Seidlerova, J. Solid state-synthesized lanthanum orthovanadate (LaVO4) Co-doped with Eu as efficient photoluminescent material. J. Lumin. 2021, 233, 117934. [Google Scholar] [CrossRef]
- Zhou, J.; Huang, F.; Xu, J.; Chen, H.; Wang, Y. Luminescence study of a self-activated and rare earth activated Sr3La(VO4)3 phosphor potentially applicable in W-LEDs. J. Mater. Chem. C 2015, 3, 3023–3028. [Google Scholar] [CrossRef]
- Mi, X.; Shi, H.; Wang, Z.; Xie, L.; Zhou, H.; Su, J.; Lin, J. Luminescence properties ofM3(VO4)2:Eu3+ (M = Ca, Sr, Ba) phosphors. J. Mater. Sci. 2016, 51, 3545–3554. [Google Scholar] [CrossRef]
- Han, L.; Wang, Y.; Zhang, J.; Wang, Y. Enhancement of red emission intensity of Ca9Y(VO4)7:Eu3+ phosphor via Bi co-doping for the application to white LEDs. Mater. Chem. Phys. 2013, 139, 87–91. [Google Scholar] [CrossRef]
- Dai, M.; Qiu, K.; Zhang, P.; Zhang, W. Synthesis and luminescence properties of orange–red-emitting Ca9La(VO4)7:Sm3+ phosphors co-doped with alkali metal ions. J. Mater. Sci. Mater. Electron. 2019, 30, 9184–9193. [Google Scholar] [CrossRef]
- Lu, Y.; Chen, L.; Huang, Y.; Cheng, H.; Seo, H.J. Photocatalytic ability of vanadate garnet Ca5Ni4(VO4)6 under visible-light irradiation. J. Phys. D Appl. Phys. 2015, 48, 305107. [Google Scholar]
- Lu, Y.; Pu, Y.; Huang, Y.; Wang, J.; Lu, J. Synthesis, optical properties and photodegradation for methylene blue of Ni-vanadate K2Ni(VO3)4 nanoparticles. J. Nanopart. Res. 2015, 17, 1–10. [Google Scholar]
- Bhuvaneswari, M.; Selvasekarapandian, S.; Kamishima, O.; Kawamura, J.; Hattori, T. Vibrational analysis of lithium nickel vanadate. J. Power Sources 2005, 139, 279–283. [Google Scholar]
- Wang, C.; Fang, D.; Wang, H.; Cao, Y.; Xu, W.; Liu, X.; Luo, Z.; Li, G.; Jiang, M.; Xiong, C. Uniform nickel vanadate (Ni3V2O8) nanowire arrays organized by ultrathin nanosheets with enhanced lithium storage properties. Sci. Rep. 2016, 6, 20826. [Google Scholar]
- Khan, A.Z.; Khan, I.; Sufyan, A.; Anjum, D.; Qurashi, A. Activation of Ni2V2O7 to nonstoichiometric NiV3O8 for solar-driven photoelectrochemical water oxidation. J. Environ. Chem. Eng. 2021, 9, 105526. [Google Scholar]
- Parhi, P.; Manivannan, V.; Kohli, S.; Mccurdy, P. Synthesis and characterization of M3V2O8 (M = Ca, Sr and Ba) by a solid-state metathesis approach. Bull. Mater. Sci. 2008, 31, 885–890. [Google Scholar] [CrossRef]
- Singh, V.; Seshadri, M.; Pathak, M.S.; Singh, N. Sm 3+ doped calcium orthovanadate Ca3(VO4)2—A spectral study. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 217, 315–321. [Google Scholar] [CrossRef]
- Li, L.; Pan, Y.; Wang, W.; Zhang, W.; Wen, Z.; Leng, X.; Wang, Q.; Zhou, L.; Xu, H.; Xia, Q.; et al. O2−-V5+ charge transfer band, chemical bond parameters and R/O of Eu3+ doped Ca(VO3)2 and Ca3(VO4)2: A comparable study. J. Alloys Compd. 2017, 726, 121–131. [Google Scholar] [CrossRef]
- Ziȩba, A.; Da̧browski, W.; Czermak, A. Silicon Strip Detectors and the Prospects of Their Application in X-ray Crystallography. In Proceedings of the First Polish Meeting High-Resolution X-ray Diffractometry and Topography of Conferences Notes, Szklarska Porȩba, 14–17 September 1996. (In Polish). [Google Scholar]
- Paszkowicz, W. Application of a powder diffractometer equipped with a strip detector and Johansson monochromator to phase analysis and structure refinement. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2005, 551, 162–177. [Google Scholar] [CrossRef]
- Loopstra, B.O.; Rietveld, H.M. The structure of some alkaline-earth metal uranates. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969, 25, 787–791. [Google Scholar] [CrossRef]
- Rietveld, H.M. A profile refinement method for nuclear and magnetic structures. J. Appl. Crystallogr. 1969, 2, 65–71. [Google Scholar] [CrossRef]
- Rodriguez-Carvajal, J. FULLPROF: A program for Rietveld refinement and pattern matching analysis. In Proceedings of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France; 1990; Volume 127. [Google Scholar]
- Wang, N.; He, Z.; Cui, M.; Guo, W.; Zhang, S.; Yang, M.; Tang, Y. Syntheses, structure and magnetic properties of two vanadate garnets Ca5M4V6O24 (M = Co, Ni). J. Solid State Chem. 2015, 228, 245–249. [Google Scholar] [CrossRef]
- Inorganic Crystal Structure Database. Available online: https://icsd.fiz-karlsruhe.de/ (accessed on 29 April 2023).
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. Sect. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Kannan, S.; Goetz-Neunhoeffer, F.; Neubauer, J.; Ferreira, J.M. Synthesis and Structure Refinement of Zinc-Doped β-Tricalcium Phosphate Powders. J. Am. Ceram. Soc. 2009, 92, 1592–1595. [Google Scholar] [CrossRef]
- Enderle, R.; Götz-Neunhoeffer, F.; Göbbels, M.; Müller, F.; Greil, P. Influence of magnesium doping on the phase transformation temperature of β-TCP ceramics examined by Rietveld refinement. Biomaterials 2005, 26, 3379–3384. [Google Scholar] [CrossRef]
- Legrouri, A.; Lenzi, J.; Lenzi, M. Preparation and thermal properties of a series of mixed calcium-cobalt phosphates. J. Therm. Anal. 1994, 41, 1041–1052. [Google Scholar] [CrossRef]
- Leng, Z.; Li, R.; Li, L.; Xue, D.; Zhang, D.; Li, G.; Chen, X.; Zhang, Y. Preferential Neighboring Substitution-Triggered Full Visible Spectrum Emission in Single-Phased Ca10.5−xMgx(PO4)7:Eu2+ Phosphors for High Color-Rendering White LEDs. ACS Appl. Mater. Interfaces 2018, 10, 33322–33334. [Google Scholar] [CrossRef]
- Yoshida, K.; Hyuga, H.; Kondo, N.; Kita, H.; Sasaki, M.; Mitamura, M.; Hashimoto, K.; Toda, Y. Substitution model of monovalent (Li, Na, and K), divalent (Mg), and trivalent (Al) metal ions for β-tricalcium phosphate. J. Am. Ceram. Soc. 2006, 89, 688–690. [Google Scholar] [CrossRef]
- Dorbakov, N.G.; Grebenev, V.V.; Titkov, V.V.; Zhukovskaya, E.S.; Stefanovich, S.Y.; Baryshnikova, O.V.; Deyneko, D.V.; Morozov, V.A.; Belik, A.A.; Lazoryak, B.I. Influence of magnesium on dielectric properties of Ca9-xMgxBi(VO4)7 ceramics. J. Am. Ceram. Soc. 2018, 101, 4011–4022. [Google Scholar] [CrossRef]
- Dorbakov, N.G.; Titkov, V.V.; Stefanovich, S.Y.; Baryshnikova, O.V.; Morozov, V.A.; Belik, A.A.; Lazoryak, B.I. Barium-induced effects on structure and properties of β-Ca3(PO4)2-type Ca9Bi(VO4)7. J. Alloys Compd. 2019, 793, 56–64. [Google Scholar] [CrossRef]
- Fan, J.; Zhou, W.; Luo, J.; Zhang, J.; Wu, Z.c.; Dai, X.; Zhang, X. Efficient and tunable Mn2+ sensitized luminescence via energy transfer of a novel red phosphor Ca19Mn2(PO4)14:Eu2+ for white LED. Ceram. Int. 2022, 48, 15695–15702. [Google Scholar] [CrossRef]
- Khan, N.; Morozov, V.A.; Khasanov, S.S.; Lazoryak, B.I. Synthesis and crystal structure of calcium copper phosphate, s-Ca19Cu2(PO4)14. Mater. Res. Bull. 1997, 32, 1211–1220. [Google Scholar] [CrossRef]
- Debroise, T.; Colombo, E.; Belletti, G.; Vekeman, J.; Su, Y.; Papoular, R.; Hwang, N.S.; Bazin, D.; Daudon, M.; Quaino, P.; et al. One Step Further in the Elucidation of the Crystallographic Structure of Whitlockite. Cryst. Growth Des. 2020, 20, 2553–2561. [Google Scholar] [CrossRef]
- Matsunaga, K.; Kubota, T.; Toyoura, K.; Nakamura, A. First-principles calculations of divalent substitution of Ca2+ in tricalcium phosphates. Acta Biomater. 2015, 23, 329–337. [Google Scholar] [CrossRef]
- Mayer, I.; Cohen, S.; Gdalya, S.; Burghaus, O.; Reinen, D. Crystal structure and EPR study of Mn-doped β-tricalcium phosphate. Mater. Res. Bull. 2008, 43, 447–452. [Google Scholar] [CrossRef]
- Deyneko, D.V.; Aksenov, S.M.; Morozov, V.A.; Stefanovich, S.Y.; Dimitrova, O.V.; Barishnikova, O.V.; Lazoryak, B.I. A new hydrogen-containing whitlockite-type phosphate Ca9(Fe0.63Mg0.37)H0.37(PO4)7: Hydrothermal synthesis and structure. Z. Krist. Cryst. Mater. 2014, 229, 823–830. [Google Scholar] [CrossRef]
- Capitelli, F.; Bosi, F.; Capelli, S.C.; Radica, F.; Ventura, G.D. Neutron and xrd single-crystal diffraction study and vibrational properties of whitlockite, the natural counterpart of synthetic tricalcium phosphate. Crystals 2021, 11, 225. [Google Scholar] [CrossRef]
- Morozov, V.A.; Belik, A.A.; Stefanovich, S.Y.; Grebenev, V.V.; Lebedev, O.I.; Van Tendeloo, G.; Lazoryak, B.I. High-temperature phase transition in the whitlockite-type phosphate Ca9In(PO4)7. J. Solid State Chem. 2002, 165, 278–288. [Google Scholar] [CrossRef]
- Lazoryak, B.I.; Morozov, V.A.; Belik, A.A.; Stefanovich, S.Y.; Grebenev, V.V.; Leonidov, I.A.; Mitberg, E.B.; Davydov, S.A.; Lebedev, O.I.; Van Tendeloo, G. Ferroelectric phase transition in the whitlockite-type Ca9Fe(PO4)7; Crystal structure of the paraelectric phase at 923 K. Solid State Sci. 2004, 6, 185–195. [Google Scholar] [CrossRef]
- Benhamou, R.A.; Bessière, A.; Wallez, G.; Viana, B.; Elaatmani, M.; Daoud, M.; Zegzouti, A. New insight in the structure–luminescence relationships of Ca9Eu(PO4)7. J. Solid State Chem. 2009, 182, 2319–2325. [Google Scholar] [CrossRef]
- Lazoryak, B.I.; Aksenov, S.M.; Stefanovich, S.Y.; Dorbakov, N.G.; Belov, D.A.; Baryshnikova, O.V.; Morozov, V.A.; Manylov, M.S.; Lin, Z. Ferroelectric crystal Ca9Yb(VO4)7 in the series of Ca9R(VO4)7 non-linear optical materials (R = REE, Bi, Y). J. Mater. Chem. C 2017, 5, 2301–2310. [Google Scholar] [CrossRef]
- Belik, A.A.; Morozov, V.A.; Deyneko, D.V.; Savon, A.E.; Baryshnikova, O.V.; Zhukovskaya, E.S.; Dorbakov, N.G.; Katsuya, Y.; Tanaka, M.; Stefanovich, S.Y.; et al. Antiferroelectric properties and site occupations of R3+cations in Ca8MgR(PO4)7 luminescent host materials. J. Alloys Compd. 2017, 699, 928–937. [Google Scholar] [CrossRef]
- Fei, Y. Thermal Expansion. In Mineral Physics & Crystallography: A Handbook of Physical Constants; Ahrens, T.J., Ed.; American Geophysical Union: Washington, DC, USA, 1995; Volume 2, pp. 29–44. [Google Scholar] [CrossRef]
- Paszkowicz, W.; Shekhovtsov, A.; Kosmyna, M.; Loiko, P.; Vilejshikova, E.; Minikayev, R.; Romanowski, P.; Wierzchowski, W.; Wieteska, K.; Paulmann, C.; et al. Structure and thermal expansion of Ca9Gd(VO4)7: A combined powder-diffraction and dilatometric study of a Czochralski-grown crystal. Nucl. Instrum. Meth. Phys. Res. Sect. B Beam Interact. Matt Atoms 2017, 411, 100–111. [Google Scholar] [CrossRef]
- Kosyl, K.M.; Paszkowicz, W.; Shekhovtsov, A.N.; Kosmyna, M.B.; Antonowicz, J.; Olczak, A.; Fitch, A.N. Variation of cation distribution with temperature and its consequences on thermal expansion for Ca3Eu2(BO3)4. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2020, 76, 554–562. [Google Scholar] [CrossRef]
- Kosyl, K. Structure and Disorder in Rare Earth Borates Ca3RE2(BO3)4: Diffraction Studies under Ambient Conditions and as a Function of Temperature. Ph.D. Thesis, Polish Academy of Sciences, Warsaw, Poland, 2022. [Google Scholar]
- Kubelka, P. New Contributions to the Optics of Intensely Light-Scattering Materials. Part II: Nonhomogeneous Layers. J. Opt. Soc. Am. 1954, 44, 330–335. [Google Scholar] [CrossRef]
- Ronde, H.; Blasse, G. The nature of the electronic transitions of the vanadate group. J. Inorg. Nucl. Chem. 1978, 40, 215–219. [Google Scholar] [CrossRef]
- Nakajima, T.; Isobe, M.; Tsuchiya, T.; Ueda, Y.; Kumagai, T. A revisit of photoluminescence property for vanadate oxides AVO3 (A:K, Rb and Cs) and M3V2O8 (M:Mg and Zn). J. Lumin. 2009, 129, 1598–1601. [Google Scholar] [CrossRef]
- Nakajima, T.; Isobe, M.; Tsuchiya, T.; Ueda, Y.; Manabe, T. Correlation between luminescence quantum efficiency and structural properties of vanadate phosphors with chained, dimerized, and isolated VO4 tetrahedra. J. Phys. Chem. C 2010, 114, 5160–5167. [Google Scholar] [CrossRef]
- Min, X.; Huang, Z.; Fang, M.; Liu, Y.; Tang, C.; Wu, X. Luminescence properties of self-activated M3(VO4)2 (M = Mg, Ca, Sr, and Ba) phosphors synthesized by solid-state reaction method. J. Nanosci. Nanotechnol. 2016, 16, 3684–3689. [Google Scholar]
- Zannoni, E.; Cavalli, E.; Toncelli, A.; Tonelli, M.; Bettinelli, M. Optical spectroscopy of Ca3Sc2Ge3O12:Ni2+. J. Phys. Chem. Solids 1999, 60, 449–455. [Google Scholar] [CrossRef]
- Wang, S.F.; Gu, F.; Lü, M.K.; Song, C.F.; Xu, D.; Yuan, D.R.; Liu, S.W. Photoluminescence of sol–gel derived ZnTiO3:Ni2+ nanocrystals. Chem. Phys. Lett. 2003, 373, 223–227. [Google Scholar] [CrossRef]
- Ravikumar, R.V.; Chandrasekhar, A.V.; Ramamoorthy, L.; Reddy, B.J.; Reddy, Y.P.; Yamauchi, J.; Rao, P.S. Spectroscopic studies of transition metal doped sodium phosphate glasses. J. Alloys Compd. 2004, 364, 176–179. [Google Scholar] [CrossRef]
- Tauc, J.; Grigorovici, R.; Vancu, A. Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi 1966, 15, 627–637. [Google Scholar]
- Li, L.; Liu, X.G.; Noh, H.M.; Jeong, J.H. Chemical bond parameters and photoluminescence of a natural-white-light Ca9La(VO4)7:Tm3+, Eu3+ with one O2−→V5+ charge transfer and dual f-f transition emission centers. J. Solid State Chem. 2015, 221, 95–101. [Google Scholar] [CrossRef]
- Luo, Y.; Xia, Z.; Lei, B.; Liu, Y. Structural and luminescence properties of Sr2VO4Cland Sr5(VO4)3Cl: Self-activated luminescence and unusual Eu3+ emission. RSC Adv. 2013, 3, 22206–22212. [Google Scholar] [CrossRef]
Sample | x | a (Å) | c (Å) | V (Å) | () | Fractional Occupancy of Ni at M5 Site | Ref. | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
Nominal | EDX | Rietveld Refinement | |||||||||
0 | 0 | 10.809(1) | 38.028(9) | 3847.73 | 3.17 | 0 | - | - | [1] | ||
0 | 0 | 10.81221(8) | 38.02620(3) | 3849.840(5) | 3.171 | 0 | 3.07 | 4.46 | [3] | ||
S0 | 0 | 0 | 10.81388(4) | 38.02858(15) | 3851.269(25) | 3.170 | 0 | 3.14 | 4.26 | Present study | |
S1 | 0.16 | 0.16(2) | 0.28(3) | 10.80110(5) | 37.96817(20) | 3836.069(33) | 3.191 | 0.104(8) | 3.30 | 4.44 | |
S2 | 0.33 | 0.29(3) | 0.39(3) | 10.78838(5) | 37.89214(21) | 3819.375(34) | 3.213 | 0.144(8) | 3.33 | 4.56 | |
S3 | 0.5 | 0.48(2) | 0.48(2) | 10.77604(6) | 37.80589(21) | 3801.969(34) | 3.237 | 0.175(8) | 2.82 | 3.95 | |
S4 | 0.66 | 0.66(4) | 0.59(2) | 10.76527(4) | 37.71474(15) | 3785.225(25) | 3.258 | 0.214(7) | 3.33 | 4.51 | |
0.72(2) | 10.7622 | 37.6878 | 3780.39 | ||||||||
S5 | 0.83 | 0.71(4) | 0.65(2) | 10.76219(4) | 37.68766(18) | 3780.342(28) | 3.264 | 0.237(8) | 3.42 | 4.66 | |
S6 | 1 | 0.69(2) | 0.59(3) | 10.76227(6) | 37.68802(24) | 3780.435(38) | 3.264 | 0.217(10) | 3.58 | 5.34 |
Site | Wyckoff Position | Coordination | x | |||
---|---|---|---|---|---|---|
0.16 | 0.33 | 0.5 | 0.66 | |||
M1 | 18b | x | 0.1974(3) | 0.1975(3) | 0.1993(3) | 0.1975(3) |
y | 0.3938(3) | 0.3944(3) | 0.3954(3) | 0.3955(3) | ||
z | 0.0028(1) | 0.0025(1) | 0.0022(1) | 0.00275(9) | ||
M2 | 18b | x | 0.1582(3) | 0.1590(3) | 0.1600(3) | 0.1589(3) |
y | 0.2808(3) | 0.2813(3) | 0.2808(3) | 0.2805(2) | ||
z | 0.2009(1) | 0.20119(11) | 0.2014(1) | 0.20241(9) | ||
M3 | 18b | x | 0.1873(3) | 0.1864(3) | 0.1874(3) | 0.1860(3) |
y | 0.3988(2) | 0.3974(2) | 0.3973(2) | 0.3960(2) | ||
z | 0.1097(1) | 0.10983(11) | 0.1099(1) | 0.11087(9) | ||
M4 | 6a | x | 0 | 0 | 0 | 0 |
y | 0 | 0 | 0 | 0 | ||
z | 0.074(5) | 0.0766(5) | 0.0749(5) | 0.0766(3) | ||
M5 | 6a | x | 0 | 0 | 0 | 0 |
y | 0 | 0 | 0 | 0 | ||
z | 0.2658(2) | 0.2655(1) | 0.2651(1) | 0.2654(1) | ||
V1 | 6a | x | 0 | 0 | 0 | 0 |
y | 0 | 0 | 0 | 0 | ||
z | 0 | 0 | 0 | 0 | ||
V2 | 18b | x | 0.3103(2) | 0.3109(2) | 0.3119(2) | 0.3109(2) |
y | 0.1371(3) | 0.1371(3) | 0.1382(3) | 0.1378(2) | ||
z | 0.1323(1) | 0.1324(1) | 0.13213(1) | 0.1324(1) | ||
V3 | 18b | x | 0.3484(3) | 0.3479(3) | 0.3471(3) | 0.3466(2) |
y | 0.1498(3) | 0.1498(3) | 0.1483(3) | 0.1484(2) | ||
z | 0.2347(1) | 0.2350(1) | 0.2352(1) | 0.2361(1) | ||
O1 | 6a | x | 0.1558(8) | 0.1565(8) | 0.1542(7) | 0.1557(6) |
y | 0.0093(10) | 0.0106(10) | 0.0090(9) | 0.0121(8) | ||
z | 0.0123(3) | 0.0119(3) | 0.0110(3) | 0.0121(2) | ||
O2 | 18b | x | 0 | 0 | 0 | 0 |
y | 0 | 0 | 0 | 0 | ||
z | 0.4546(4) | 0.4543(4) | 0.4550(4) | 0.4555(3) | ||
O3 | 18b | x | 0.2683(9) | 0.2680(9) | 0.2624(9) | 0.2565(7) |
y | 0.0692(7) | 0.0715(7) | 0.0689(7) | 0.0665(6) | ||
z | 0.0911(2) | 0.0911(2) | 0.0916(2) | 0.09154(19) | ||
O4 | 18b | x | 0.2306(11) | 0.2304(11) | 0.2320(10) | 0.2308(8) |
y | 0.2257(10) | 0.2256(10) | 0.2235(10) | 0.2310(8) | ||
z | 0.1446(2) | 0.1445(2) | 0.1444(2) | 0.14583(19) | ||
O5 | 18b | x | 0.2805(10) | 0.2818(10) | 0.2825(10) | 0.2801(8) |
y | −0.0114(9) | −0.0105(8) | −0.0085(8) | −0.0089(7) | ||
z | 0.1561(2) | 0.1565(2) | 0.1559(2) | 0.15765(19) | ||
O6 | 18b | x | 0.0873(10) | 0.0857(10) | 0.0852(10) | 0.0808(8) |
y | 0.1843(8) | 0.1806(9) | 0.1792(8) | 0.1722(7) | ||
z | 0.3045(3) | 0.3032(3) | 0.3022(3) | 0.3025(2) | ||
O7 | 18b | x | 0.3998(9) | 0.3998(9) | 0.3999(8) | 0.4006(7) |
y | 0.0329(8) | 0.0309(8) | 0.0308(8) | 0.0300(7) | ||
z | 0.2240(3) | 0.2246(3) | 0.2252(3) | 0.2254(2) | ||
O8 | 18b | x | 0.0189(10) | 0.0223(9) | 0.0225(9) | 0.0275(7) |
y | 0.2331(10) | 0.2357(10) | 0.2361(10) | 0.2365(8) | ||
z | 0.3804(2) | 0.3800(2) | 0.3795(2) | 0.37923(20) | ||
O9 | 18b | x | 0.1705(8) | 0.1701(8) | 0.1697(8) | 0.1696(7) |
y | 0.0762(11) | 0.0749(11) | 0.0752(11) | 0.0717(8) | ||
z | 0.2219(3) | 0.2227(3) | 0.2249(3) | 0.2252(2) | ||
O10 | 18b | x | 0.3752(7) | 0.3757(7) | 0.3785(7) | 0.3788(6) |
y | 0.1826(10) | 0.1824(10) | 0.1831(9) | 0.1836(8) | ||
z | 0.2794(2) | 0.2797(2) | 0.2794(2) | 0.27974(19) |
T (K) | Volumetric Thermal Expansion Coefficient (MK) | ||||
---|---|---|---|---|---|
x | |||||
0.16 | 0.33 | 0.5 | 0.66 | 0.83 | |
300 | 41.80 | 40.73 | 40.22 | 39.24 | 38.92 |
400 | 46.58 | 44.61 | 44.85 | 44.08 | 43.92 |
46.44 | 45.38 | 44.93 | 44.37 | 44.26 | |
500 | 49.33 | 46.80 | 46.35 | 45.81 | 45.69 |
48.44 | 47.40 | 46.97 | 46.61 | 46.60 | |
600 | 48.54 | 47.77 | 47.47 | 47.41 | 47.48 |
49.41 | 48.37 | 47.96 | 47.71 | 47.75 | |
700 | 50.03 | 49.93 | 48.70 | 49.16 | 48.16 |
49.88 | 48.90 | 48.46 | 48.27 | 48.34 | |
750 | 50.56 | 50.90 | 49.22 | 49.16 | 49.99 |
50.02 | 49.00 | 48.60 | 48.44 | 48.52 | |
800 | 51.09 | 50.69 | 50.51 | 50.83 | 50.32 |
50.10 | 49.09 | 48.69 | 48.55 | 48.63 | |
850 | 50.78 | 50.69 | 50.99 | 52.91 | 52.08 |
900 | 51.11 | 51.88 | 51.76 | 52.55 | 54.58 |
950 | 53.94 | 53.48 | 52.97 | 54.36 | 56.13 |
1000 | 55.31 | 55.07 | 54.06 | 58.04 | 60.84 |
1050 | 71.15 | 56.40 | 56.53 | 60.47 | 62.44 |
1100 | 58.88 | 59.11 | 59.16 | 62.49 | 61.82 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mosafer, H.S.R.; Paszkowicz, W.; Minikayev, R.; Martin, C.; Kozłowski, M.; Chukova, O.; Zhydachevskyy, Y.; Nedilko, S. Crystal Structure, Thermal Expansion and Luminescence of Ca10.5−xNix(VO4)7. Crystals 2023, 13, 853. https://doi.org/10.3390/cryst13050853
Mosafer HSR, Paszkowicz W, Minikayev R, Martin C, Kozłowski M, Chukova O, Zhydachevskyy Y, Nedilko S. Crystal Structure, Thermal Expansion and Luminescence of Ca10.5−xNix(VO4)7. Crystals. 2023; 13(5):853. https://doi.org/10.3390/cryst13050853
Chicago/Turabian StyleMosafer, Houri S. Rahimi, Wojciech Paszkowicz, Roman Minikayev, Christine Martin, Mirosław Kozłowski, Oksana Chukova, Yaroslav Zhydachevskyy, and Serhii Nedilko. 2023. "Crystal Structure, Thermal Expansion and Luminescence of Ca10.5−xNix(VO4)7" Crystals 13, no. 5: 853. https://doi.org/10.3390/cryst13050853
APA StyleMosafer, H. S. R., Paszkowicz, W., Minikayev, R., Martin, C., Kozłowski, M., Chukova, O., Zhydachevskyy, Y., & Nedilko, S. (2023). Crystal Structure, Thermal Expansion and Luminescence of Ca10.5−xNix(VO4)7. Crystals, 13(5), 853. https://doi.org/10.3390/cryst13050853