Developing CeO2-CoAl2O4 Semiconductor Ionic Based Heterostructure Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells (SOFCs)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material Synthesis
2.2. Cell Preparation
2.3. Characterizations
3. Results
3.1. Structural and Morphological Analysis
3.2. XPS Analysis
3.3. Electrochemical Analysis
3.4. Optical Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Foger, K. Challenges in Commercialization of Ceramic Fuel Cells Highly Efficient Residential Generator BlueGen in Europe. Presented at The SOFC-XIII Satellite Seminar, Okinawa, Japan, October 2013.
- Ray, E. Westinghouse Tubular SOFC Technology; Westinghouse Electric Corp: Pittsburgh, PA, USA, 1992. [Google Scholar]
- Privette, R.; Perna, M.; Kneidel, K. Status of SOFC Technology Development; Fuel Cell Seminar Organizing Committee: Kissimmee, FL, USA, 1996. [Google Scholar]
- Singhal, S.C. SOFC Market and Commercialization: Overview. Presented at The SOFC-XIII Satellite Seminar, Okinawa, Japan, October 2013.
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
- Chen, Y.-Y.; Wei, W.-C. Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC. Solid State Ion. 2006, 177, 351–357. [Google Scholar] [CrossRef]
- Thangadurai, V.; Weppner, W. Recent progress in solid oxide and lithium ion conducting electrolytes research. Ionics 2006, 12, 81–92. [Google Scholar] [CrossRef] [Green Version]
- Kulyk, V.; Duriagina, Z.; Vasyliv, B.; Vavrukh, V.; Lyutyy, P.; Kovbasiuk, T.; Holovchuk, M. Effects of yttria content and sintering temperature on the microstructure and tendency to brittle fracture of yttria-stabilized zirconia. Arch. Mater. Sci. Eng. 2021, 109, 65–79. [Google Scholar] [CrossRef]
- Duan, C.; Tong, J.; Shang, M.; Nikodemski, S.; Sanders, M.; Ricote, S.; Almansoori, A.; O’Hayre, R. Readily processed protonic ceramic fuel cells with high performance at low temperatures. Science 2015, 349, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Wachsman, E.; Lee, K. Lowering the temperature of solid oxide fuel cells. Science 2011, 334, 935–939. [Google Scholar] [CrossRef]
- Goodenough, J.B. Oxide-ion conductors by design. Nature 2000, 404, 821–823. [Google Scholar] [CrossRef]
- Rivera, A.; Santamarıa, J.; Leon, C. Electrical conductivity relaxation in thin-film yttria-stabilized zirconia. Appl. Phys. Lett. 2001, 78, 610–612. [Google Scholar] [CrossRef] [Green Version]
- Kerman, K.; Lai, B.; Ramanathan, S. Nanoscale compositionally graded thin-film electrolyte membranes for low-temperature solid oxide fuel cells. Adv. Energy Mater. 2012, 2, 656–661. [Google Scholar] [CrossRef]
- Huang, H.; Nakamura, M.; Su, P.; Fasching, R.; Saito, Y.; Prinz, F. High-performance ultrathin solid oxide fuel cells for low-temperature operation. J. Electrochem. Soc. 2006, 154, B20. [Google Scholar] [CrossRef]
- Takagi, Y.; Lai, B.-K.; Kerman, K.; Ramanathan, S. Low temperature thin film solid oxide fuel cells with nanoporous ruthenium anodes for direct methane operation. Energy Environ. Sci. 2011, 4, 3473–3478. [Google Scholar] [CrossRef]
- Su, P.-C.; Chao, C.-C.; Shim, J.; Fasching, R.; Prinz, F. Solid oxide fuel cell with corrugated thin film electrolyte. Nano Lett. 2008, 8, 2289–2292. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Huang, X.; Zhu, R.; Lu, Z.; Sun, W.; Zhang, Y.; Ge, X.; Liu, Z.; Su, W. Optimization on technical parameters for fabrication of SDC film by screen-printing used as electrolyte in IT-SOFC. J. Phys. Chem. Solids 2008, 69, 2019–2024. [Google Scholar] [CrossRef]
- Shah, M.; Rauf, S.; Mushtaq, N.; Tayyab, Z.; Ali, N.; Yousaf, M.; Xing, Y.; Akbar, M.; Lund, P.; Yang, C. Semiconductor Fe-doped SrTiO3-δ perovskite electrolyte for low-temperature solid oxide fuel cell (LT-SOFC) operating below 520 °C. Int. J. Hydrogen Energy 2020, 45, 14470–14479. [Google Scholar] [CrossRef]
- Shah, M.; Lu, Y.; Mushtaq, N.; Rauf, S.; Yousaf, M.; Asghar, M.; Lund, P.; Zhu, B. Demonstrating the potential of iron-doped strontium titanate electrolyte with high-performance for low temperature ceramic fuel cells. Renew. Energy 2022, 196, 901–911. [Google Scholar] [CrossRef]
- Xia, C.; Mi, Y.; Wang, B.; Lin, B.; Chen, G.; Zhu, B. Shaping triple-conducting semiconductor BaCo0. 4Fe0. 4Zr0. 1Y0. 1O3-δ into an electrolyte for low-temperature solid oxide fuel cells. Nat. Commun. 2019, 10, 1707. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yousaf, M.; Akbar, M.; Shah, M.; Noor, A.; Lu, Y.; Akhtar, M.; Mushtaq, N.; Hu, E.; Yan, S.; Zhu, B. Enhanced ORR catalytic activity of rare earth-doped Gd oxide ions in a CoFe2O4 cathode for low-temperature solid oxide fuel cells (LT-SOFCs). Ceram. Int. 2022, 48, 28142–28153. [Google Scholar] [CrossRef]
- Zhu, B.; Fan, L.; Mushtaq, N.; Raza, R.; Sajid, M.; Wu, Y.; Lin, W.; Kim, J.-S.; Lund, P.; Yun, S. Semiconductor electrochemistry for clean energy conversion and storage. Electrochem. Energy Rev. 2021, 4, 757–792. [Google Scholar] [CrossRef]
- Zhu, B.; Yang, X.; Xu, J.; Zhu, Z.; Ji, S.; Sun, M.; Sun, J. Innovative low temperature SOFCs and advanced materials. J. Power Sources 2003, 118, 47–53. [Google Scholar] [CrossRef]
- Mushtaq, N.; Xia, C.; Dong, W.; Wang, B.; Raza, R.; Ali, A.; Afzal, M.; Zhu, B. Tuning the energy band structure at interfaces of the SrFe0. 75Ti0. 25O3−δ–Sm0. 25Ce0. 75O2−δ heterostructure for fast ionic transport. ACS Appl. Mater. Interfaces 2019, 11, 38737–38745. [Google Scholar] [CrossRef]
- Shah, M.; Mushtaq, N.; Rauf, S.; Xia, C.; Zhu, B. The semiconductor SrFe0.2Ti0.8O3-δ-ZnO heterostructure electrolyte fuel cells. Int. J. Hydrogren Energy 2019, 44, 30319–30327. [Google Scholar] [CrossRef]
- Lan, R.; Tao, S. Novel proton conductors in the layered oxide material LixlAl0.5Co0.5O2. Adv. Energy Mater. 2014, 44, 1301683. [Google Scholar] [CrossRef]
- Zhou, Y.; Guan, X.; Zhou, H.; Ramadoss, K.; Adam, S.; Liu, H.; Lee, S.; Shi, J.; Tsuchiya, M.; Fong, D. Strongly correlated perovskite fuel cells. Nature 2016, 534, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.; Zhu, B.; Rauf, S.; Mushtaq, N.; Yousaf, M.; Ali, N.; Tayyab, Z.; Akbar, N.; Yang, C.; Wang, B. Electrochemical properties of a co-doped SrSnO3−δ-based semiconductor as an electrolyte for solid oxide fuel cells. ACS Appl. Energy Mater. 2020, 3, 6323–6333. [Google Scholar] [CrossRef]
- Shah, M.; Tayyab, Z.; Rauf, S.; Yousaf, M.; Mushtaq, N.; Imran, M.; Lund, P.; Asghar, M.; Zhu, B. Interface engineering of bi-layer semiconductor SrCoSnO3-δ-CeO2-δ heterojunction electrolyte for boosting the electrochemical performance of low-temperature ceramic fuel cell. Int. J. Hydrogen Energy 2021, 46, 33969–33977. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.; Kim, S.; Kim, H.; Kim, K.; Jung, W.; Han, J. Dynamic Surface Evolution of Metal Oxides for Autonomous Adaptation to Catalytic Reaction Environments. Adv. Mater. 2022, 35, 2203370. [Google Scholar] [CrossRef]
- Yousaf, M.; Mushtaq, N.; Zhu, B.; Wang, B.; Akhtar, M.; Noor, A.; Afzal, M. Electrochemical properties of Ni0. 4Zn0. 6 Fe2O4 and the heterostructure composites (Ni–Zn ferrite-SDC) for low temperature solid oxide fuel cell (LT-SOFC). Electrochim. Acta 2020, 331, 135349. [Google Scholar] [CrossRef]
- Cai, Y.; Chen, Y.; Akbar, M.; Jin, B.; Tu, Z.; Mushtaq, N.; Wang, B.; Qu, X.; Xia, C.; Huang, Y. A Bulk-Heterostructure Nanocomposite Electrolyte of Ce0.8Sm0.2O2-δ–SrTiO3 for Low-Temperature Solid Oxide Fuel Cells. Nano-Micro Lett. 2021, 13, 46. [Google Scholar] [CrossRef]
- Akbar, M.; Qu, G.; Yang, W.; Gao, J.; Yousaf, M.; Mushtaq, N.; Wang, X.; Dong, W.; Wang, B.; Xia, C. Fast ionic conduction and rectification effect of NaCo0.5Fe0.5O2-CeO2 nanoscale heterostructure for LT-SOFC electrolyte application. J. Alloy. Compd. 2022, 924, 166565. [Google Scholar] [CrossRef]
- Fan, L.; Su, P.-C. Layer-structured LiNi0. 8Co0. 2O2: A new triple (H+/O2−/e−) conducting cathode for low temperature proton conducting solid oxide fuel cells. J. Power Sources 2016, 306, 369–377. [Google Scholar] [CrossRef]
- Xia, C.; Cai, Y.; Ma, Y.; Wang, B.; Zhang, W.; Karlsson, M.; Wu, Y.; Zhu, B. Natural mineral-based solid oxide fuel cell with heterogeneous nanocomposite derived from hematite and rare-earth minerals. ACS Appl. Mater. Interfaces 2016, 8, 20748–20755. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Zhang, G.; Wan, T.; Shi, T.; Wang, H.; Wu, M.; Wang, C.; Huang, S.; Guo, Y.; Yu, H. Evaluation of SrSc0.175Nb0.025Co0.8O3-δ perovskite as a cathode for proton-conducting solid oxide fuel cells: The possibility of in situ creating protonic conductivity and electrochemical performance. Electrochim. Acta 2018, 259, 559–565. [Google Scholar] [CrossRef]
- Wang, B.; Liu, X.; Bi, L.; Zhao, X. Fabrication of high-performance proton-conducting electrolytes from microwave prepared ultrafine powders for solid oxide fuel cells. J. Power Sources 2019, 412, 664–669. [Google Scholar] [CrossRef]
- Heidari, G.; Rabani, M.; Ramezanzadeh, B. Application of CuS–ZnS PN junction for photoelectrochemical water splitting. Int. J. Hydrogen Energy 2017, 42, 9545–9552. [Google Scholar] [CrossRef]
- Shah, M.; Lu, Y.; Mushtaq, N.; Singh, M.; Rauf, S.; Yousaf, M.; Zhu, B. ZnO/MgZnO heterostructure membrane with type II band alignment for ceramic fuel cells. Energy Mater 2022, 2, 200031. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dong, Y.; Yousaf, M.; Shah, M.A.K.Y.; Akbar, M.; Lu, Y.; Zhang, L.; Sial, Q.A.; Cao, P.; Deng, C. Developing CeO2-CoAl2O4 Semiconductor Ionic Based Heterostructure Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells (SOFCs). Crystals 2023, 13, 975. https://doi.org/10.3390/cryst13060975
Dong Y, Yousaf M, Shah MAKY, Akbar M, Lu Y, Zhang L, Sial QA, Cao P, Deng C. Developing CeO2-CoAl2O4 Semiconductor Ionic Based Heterostructure Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells (SOFCs). Crystals. 2023; 13(6):975. https://doi.org/10.3390/cryst13060975
Chicago/Turabian StyleDong, Yiwang, Muhammad Yousaf, Muhammad Ali Kamran Yousaf Shah, Muhammad Akbar, Yuzheng Lu, Lei Zhang, Qadeer Akbar Sial, Peng Cao, and Changhong Deng. 2023. "Developing CeO2-CoAl2O4 Semiconductor Ionic Based Heterostructure Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells (SOFCs)" Crystals 13, no. 6: 975. https://doi.org/10.3390/cryst13060975
APA StyleDong, Y., Yousaf, M., Shah, M. A. K. Y., Akbar, M., Lu, Y., Zhang, L., Sial, Q. A., Cao, P., & Deng, C. (2023). Developing CeO2-CoAl2O4 Semiconductor Ionic Based Heterostructure Composite Electrolyte for Low-Temperature Solid Oxide Fuel Cells (SOFCs). Crystals, 13(6), 975. https://doi.org/10.3390/cryst13060975