Comparison of the Electrochemical Performances of Solid Oxide Fuel Cells with Sputtered Thin Barrier Layers Fueled by Hydrogen or Ammonia
Abstract
:1. Introduction
2. Materials and Methods
- In the first step, we evaluated the performance of the above-described cell fueled by different hydrogen flowrates; the cell was tested at four different working temperatures (800 °C, 750 °C, 700 °C and 650 °C). For each temperature, different H2 feeding flowrates (3 NmL min−1cm−2, 6 NmL min−1cm−2, 9 NmL min−1cm−2, 12 NmL min−1cm−2 and 15 NmL min−1cm−2) were considered. The performance of the cell is evaluated by acquiring j-V curves and EIS spectra for each combination of temperature and flowrate feeding.
- In the second step, we evaluate how the performance of the cell changes according to fuel feeding; for each of the above-mentioned working temperatures and H2 feeding flowrates, the amount of hydrogen is substituted by NH3 at different percentages (0%, 25%, 50%, 75% and 100%). The complete study is composed of j-V curves acquired for each combination of working temperature, gas flowrate and NH3%. Moreover, EIS spectra were acquired for each investigated operating condition.
3. Results and Discussion
3.1. Evaluation of Diluted H2 Feeding Performance
3.2. NH3 Feeding Performance Evaluation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hagen, A.; Langnickel, H.; Sun, X. ScienceDirect Operation of solid oxide fuel cells with alternative hydrogen carriers. Int. J. Hydrogen Energy 2019, 44, 18382–18392. [Google Scholar] [CrossRef]
- Dekker, N.J.J.; Rietveld, G. Highly efficient conversion of ammonia in electricity by solid oxide fuel cells. J. Fuel Cell Sci. Technol. 2006, 3, 499–502. [Google Scholar] [CrossRef]
- Lucentini, I.; Garcia, X.; Vendrell, X.; Llorca, J. Review of the Decomposition of Ammonia to Generate Hydrogen. Ind. Eng. Chem. Res. 2021, 60, 18560–18611. [Google Scholar] [CrossRef]
- Humphreys, J.; Lan, R.; Tao, S. Development and Recent Progress on Ammonia Synthesis Catalysts for Haber–Bosch Process. Adv. Energy Sustain. Res. 2021, 2, 2000043. [Google Scholar] [CrossRef]
- Abdelkareem, M.A.; Elsaid, K.; Wilberforce, T.; Kamil, M.; Sayed, E.T.; Olabi, A. Environmental aspects of fuel cells: A review. Sci. Total Environ. 2021, 752, 141803. [Google Scholar] [CrossRef]
- Papurello, D.; Silvestri, S.; Modena, S. Biogas trace compounds impact on high-temperature fuel cells short stack performance. Int. J. Hydrogen Energy 2021, 46, 8792–8801. [Google Scholar] [CrossRef]
- Zhou, J.; Wang, Z.; Han, M.; Sun, Z.; Sun, K. Optimization of a 30 kW SOFC combined heat and power system with different cycles and hydrocarbon fuels. Int. J. Hydrogen Energy 2022, 47, 4109–4119. [Google Scholar] [CrossRef]
- Chen, Z.; Ristig, S.; Poschmann, M.; Folke, J.; Go, O.; Heumann, S.; Ruland, H. Ammonia Decomposition in the Process Chain for a Renewable Hydrogen Supply. Chem. Ing. Tech. 2022, 94, 1413–1425. [Google Scholar] [CrossRef]
- Cinti, G.; Desideri, U.; Penchini, D.; Discepoli, G. Experimental analysis of SOFC fuelled by ammonia. Fuel Cells 2014, 14, 221–230. [Google Scholar] [CrossRef]
- Mukherjee, S.; Devaguptapu, S.V.; Sviripa, A.; Lund, C.R.F.; Wu, G. Low-temperature ammonia decomposition catalysts for hydrogen generation. Appl. Catal. B Environ. 2018, 226, 162–181. [Google Scholar] [CrossRef]
- Hussain, S.; Yangping, L. Review of solid oxide fuel cell materials: Cathode, anode, and electrolyte. Energy Transit. 2020, 4, 113–126. [Google Scholar] [CrossRef]
- Mahato, N.; Banerjee, A.; Gupta, A.; Omar, S.; Balani, K. Progress in material selection for solid oxide fuel cell technology: A review. Prog. Mater. Sci. 2015, 72, 141–337. [Google Scholar] [CrossRef]
- Jacobson, A.J. Materials for solid oxide fuel cells. Chem. Mater. 2010, 22, 660–674. [Google Scholar] [CrossRef]
- Brett, D.J.L.; Atkinson, A.; Brandon, N.P.; Skinner, S.J. Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 2008, 37, 1568–1578. [Google Scholar] [CrossRef] [PubMed]
- Solovyev, A.; Shipilova, A.; Smolyanskiy, E.; Rabotkin, S.; Semenov, V. The Properties of Intermediate-Temperature Solid Oxide Fuel Cells with Thin Film Gadolinium-Doped Ceria Electrolyte. Membranes 2022, 12, 896. [Google Scholar] [CrossRef]
- Kwon, C.W.; Son, J.W.; Lee, J.H.; Kim, H.M.; Lee, H.W.; Kim, K.B. High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates. Adv. Funct. Mater. 2011, 21, 1154–1159. [Google Scholar] [CrossRef]
- Solovyev, A.A.; Sochugov, N.S.; Rabotkin, S.V.; Shipilova, A.V.; Ionov, I.V.; Kovalchuk, A.N.; Borduleva, A.O. Application of PVD methods to solid oxide fuel cells. Appl. Surf. Sci. 2014, 310, 272–277. [Google Scholar] [CrossRef]
- Coddet, P.; Liao, H.L.; Coddet, C. A review on high power SOFC electrolyte layer manufacturing using thermal spray and physical vapour deposition technologies. Adv. Manuf. 2014, 2, 212–221. [Google Scholar] [CrossRef]
- Barone, C.; Galdi, A.; Lampis, N.; Maritato, L.; Granozio, F.M.; Pagano, S.; Perna, P.; Radovic, M.; Uccio, U.S. Charge density waves enhance the electronic noise of manganites. Phys. Rev. B 2009, 80, 115128. [Google Scholar] [CrossRef] [Green Version]
- Orgiani, P.; Adamo, C.; Barone, C.; Galdi, A.; Pagano, S.; Petrov, A.Y.; Quaranta, O.; Aruta, C.; Ciancio, R.; Polichetti, M.; et al. Epitaxial growth of La0.7Ba0.3MnO3 thin films on MgO substrates: Structural, magnetic, and transport properties. J. Appl. Phys. 2008, 103, 093902. [Google Scholar] [CrossRef]
- Makous, J.L.; Maritato, L.; Falco, C.M.; Cronin, J.P.; Rajendran, G.P.; Uhlmann, E.V.; Uhlmann, D.R. Superconducting and structural properties of sputtered thin films of YBa2Cu3O7−x. Appl. Phys. Lett. 1987, 51, 2164–2166. [Google Scholar] [CrossRef]
- Andreone, A.; DiChiara, A.; Peluso, G.; Santoro, M.; Attanasio, C.; Maritato, L.; Vaglio, R. Surface impedance measurements of superconducting (NbTi)N films by a ring microstrip resonator technique. J. Appl. Phys. 1993, 73, 4500–4506. [Google Scholar] [CrossRef]
- Coppola, N.; Polverino, P.; Carapella, G.; Sacco, C.; Galdi, A.; Montinaro, D.; Maritato, L.; Pianese, C. Optimization of the electrical performances in Solid Oxide Fuel Cells with room temperature sputter deposited Gd0.1ce0.9o1.95 buffer layers by controlling their granularity via the in-air annealing step. Int. J. Hydrogen Energy 2020, 45, 12997–13008. [Google Scholar] [CrossRef]
- Coppola, N.; Polverino, P.; Carapella, G.; Sacco, C.; Galdi, A.; Ubaldini, A.; Vaiano, V.; Montinaro, D.; Maritato, L.; Pianese, C. Structural and electrical characterization of sputter-deposited Gd0.1Ce0.9O2−δ thin buffer layers at the Y-stabilized zirconia electrolyte interface for IT-solid oxide cells. Catalysts 2018, 8, 571. [Google Scholar] [CrossRef] [Green Version]
- Coppola, N.; Sami, H.; Rehman, U.; Carapella, G.; Polverino, P.; Montinaro, D.; Martinelli, F.; Granata, V.; Galdi, A.; Maritato, L.; et al. ScienceDirect Large area solid oxide fuel cells with room temperature sputtered barrier layers: Role of the layer thickness and uniformity in the enhancement of the electrochemical performances and durability. Int. J. Hydrogen Energy 2023, in press. [Google Scholar] [CrossRef]
- Coppola, N.; Polverino, P.; Carapella, G.; Ciancio, R.; Rajak, P.; Montinaro, D.; Martinelli, F.; Maritato, L.; Pianese, C. Large Area Deposition by Radio Frequency Sputtering of Gd0.1Ce0.9O1.95 buffer layers in Solid Oxide Fuel Cells: Structural, Morphological and Electrochemical Investigation. Materials 2021, 14, 5826. [Google Scholar] [CrossRef]
- Hagen, A.; Christensen, J.O.; Sudireddy, B.R.; Balomenou, S.; Tsiplakides, D.; Papazisi, K.-M.; Zaravelis, F.; Neofytidis, C.; Ioannidou, E.; Neophytides, S.; et al. Selection of Highlights of the European Project Next Generation Solid Oxide Fuel Cell and Electrolysis Technology—NewSOC. ECS Trans. 2021, 103, 2205–2216. [Google Scholar] [CrossRef]
- Laurencin, J.; Hubert, M.; Sanchez, D.F.; Pylypko, S.; Morales, M.; Morata, A.; Morel, B.; Montinaro, D.; Lefebvre-Joud, F.; Siebert, E. Degradation mechanism of La0.6Sr0.4Co0.2Fe0.8O3−δ/Gd0.1Ce0.9O2−δ composite electrode operated under solid oxide electrolysis and fuel cell conditions. Electrochim. Acta 2017, 241, 459–476. [Google Scholar] [CrossRef]
- Fardadi, M.; McLarty, D.F.; Brouwer, J.; Jabbari, F. Enhanced performance of counter flow SOFC with partial internal reformation. Int. J. Hydrogen Energy 2014, 39, 19753–19766. [Google Scholar] [CrossRef] [Green Version]
- Komatsu, Y.; Brus, G.; Kimijima, S.; Szmyd, J.S. The effect of overpotentials on the transient response of the 300W SOFC cell stack voltage. Appl. Energy 2014, 115, 352–359. [Google Scholar] [CrossRef]
- Brus, G.; Miyoshi, K.; Iwai, H.; Saito, M.; Yoshida, H. Change of an anode’s microstructure morphology during the fuel starvation of an anode-supported solid oxide fuel cell. Int. J. Hydrogen Energy 2015, 40, 6927–6934. [Google Scholar] [CrossRef]
- Baldi, F.; Wang, L.; Pérez-Fortes, M.; Maréchal, F. A cogeneration system based on solid oxide and proton exchange membrane fuel cells with hybrid storage for off-grid applications. Front. Energy Res. 2019, 6, 139. [Google Scholar] [CrossRef]
- Oryshchyn, D.; Harun, N.F.; Tucker, D.; Bryden, K.M.; Shadle, L. Fuel utilization effects on system efficiency in solid oxide fuel cell gas turbine hybrid systems. Appl. Energy 2018, 228, 1953–1965. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.C.; Zhao, F.; Virkar, A.V.; Fung, K.Z. Electrochemical characterization and performance evaluation of intermediate temperature solid oxide fuel cell with La0.75Sr0.25CuO2.5−δ cathode. J. Power Sources 2005, 152, 22–26. [Google Scholar] [CrossRef]
- Ahamer, C.; Opitz, A.K.; Rupp, G.M.; Fleig, J. Revisiting the Temperature Dependent Ionic Conductivity of Yttria Stabilized Zirconia (YSZ). J. Electrochem. Soc. 2017, 164, F790–F803. [Google Scholar] [CrossRef]
- Stern, M.; Geary, A.L. Electrochemical Polarization: I. A Theoretical Analysis of the Shape of Polarization Curves. J. Electrochem. Soc. 1957, 104, 56. [Google Scholar] [CrossRef]
- Besghaier, R.; Dhouibi, L.; Jeannin, M.; Safi, M.J. The Synergetic Effect of Flow Velocity and Exposing Time on the Electrochemical Behavior of Cu–Ni 90/10 Alloy in Simulating Conditions of Desalination Plant. Chem. Africa 2019, 2, 483–495. [Google Scholar] [CrossRef] [Green Version]
- Takahashi, A.; Fujitani, T. Kinetic analysis of decomposition of ammonia over Nickel and Ruthenium catalysts. J. Chem. Eng. Japan 2016, 49, 22–28. [Google Scholar] [CrossRef] [Green Version]
- Chellappa, A.S.; Fischer, C.M.; Thomson, W.J. Ammonia decomposition kinetics over Ni-Pt/Al2O3 for PEM fuel cell applications. Appl. Catal. A Gen. 2002, 227, 231–240. [Google Scholar] [CrossRef]
H2 (NmL min−1cm−2) | N2 (NmL min−1cm−2) |
---|---|
15 | 5 |
12 | 4 |
9 | 3 |
6 | 2 |
3 | 1 |
Substituted % | NH3 | H2 | N2 |
---|---|---|---|
0 | 0 | 150 | 50 |
25 | 25 | 113 | 38 |
50 | 50 | 75 | 25 |
75 | 75 | 38 | 13 |
100 | 100 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coppola, N.; Morel, B.; Carapella, G.; Montinaro, D.; Galdi, A.; Ur Rehman, H.S.; Polverino, P.; Pianese, C.; Mougin, J.; Maritato, L. Comparison of the Electrochemical Performances of Solid Oxide Fuel Cells with Sputtered Thin Barrier Layers Fueled by Hydrogen or Ammonia. Crystals 2023, 13, 1040. https://doi.org/10.3390/cryst13071040
Coppola N, Morel B, Carapella G, Montinaro D, Galdi A, Ur Rehman HS, Polverino P, Pianese C, Mougin J, Maritato L. Comparison of the Electrochemical Performances of Solid Oxide Fuel Cells with Sputtered Thin Barrier Layers Fueled by Hydrogen or Ammonia. Crystals. 2023; 13(7):1040. https://doi.org/10.3390/cryst13071040
Chicago/Turabian StyleCoppola, Nunzia, Bertrand Morel, Giovanni Carapella, Dario Montinaro, Alice Galdi, Hafiz Sami Ur Rehman, Pierpaolo Polverino, Cesare Pianese, Julie Mougin, and Luigi Maritato. 2023. "Comparison of the Electrochemical Performances of Solid Oxide Fuel Cells with Sputtered Thin Barrier Layers Fueled by Hydrogen or Ammonia" Crystals 13, no. 7: 1040. https://doi.org/10.3390/cryst13071040
APA StyleCoppola, N., Morel, B., Carapella, G., Montinaro, D., Galdi, A., Ur Rehman, H. S., Polverino, P., Pianese, C., Mougin, J., & Maritato, L. (2023). Comparison of the Electrochemical Performances of Solid Oxide Fuel Cells with Sputtered Thin Barrier Layers Fueled by Hydrogen or Ammonia. Crystals, 13(7), 1040. https://doi.org/10.3390/cryst13071040