Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gelinck, G.; Heremans, P.; Nomoto, K.; Anthopoulos, T.D. Organic Transistors in Optical Displays and Microelectronic Applications. Adv. Mater. 2010, 22, 3778–3798. [Google Scholar] [CrossRef] [PubMed]
- Forrest, S.R. The Path to Ubiquitous and Low-Cost Organic Electronic Appliances on Plastic. Nature 2004, 428, 911–918. [Google Scholar] [CrossRef] [PubMed]
- Lüssem, B.; Tietze, M.L.; Kleemann, H.; Hoßbach, C.; Bartha, J.W.; Zakhidov, A.; Leo, K. Doped Organic Transistors Operating in the Inversion and Depletion Regime. Nat. Commun. 2013, 4, 2775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Himmelberger, S.; Salleo, A. Engineering Semiconducting Polymers for Efficient Charge Transport. MRS Commun. 2015, 5, 383–395. [Google Scholar] [CrossRef]
- Nielsen, C.B.; Turbiez, M.; McCulloch, I. Recent Advances in the Development of Semiconducting DPP-Containing Polymers for Transistor Applications. Adv. Mater. 2013, 25, 1859–1880. [Google Scholar] [CrossRef] [Green Version]
- Stalder, R.; Mei, J.; Graham, K.R.; Estrada, L.A.; Reynolds, J.R. Isoindigo, a Versatile Electron-Deficient Unit for High-Performance Organic Electronics. Chem. Mater. 2014, 26, 664–678. [Google Scholar] [CrossRef]
- Kiefer, D.; Giovannitti, A.; Sun, H.; Biskup, T.; Hofmann, A.; Koopmans, M.; Cendra, C.; Weber, S.; Anton Koster, L.J.; Olsson, E.; et al. Enhanced N-Doping Efficiency of a Naphthalenediimide-Based Copolymer through Polar Side Chains for Organic Thermoelectrics. ACS Energy Lett. 2018, 3, 278–285. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Chien, S.C.; Chen, K.S.; Yip, H.L.; Sun, Y.; Davies, J.A.; Chen, F.C.; Jen, A.K.Y. Increased Open Circuit Voltage in Fluorinated Benzothiadiazole-Based Alternating Conjugated Polymers. Chem. Commun. 2011, 47, 11026–11028. [Google Scholar] [CrossRef]
- Nikolka, M.; Hurhangee, M.; Sadhanala, A.; Chen, H.; McCulloch, I.; Sirringhaus, H. Correlation of Disorder and Charge Transport in a Range of Indacenodithiophene-Based Semiconducting Polymers. Adv. Electron. Mater. 2018, 4, 1700410. [Google Scholar] [CrossRef]
- Liu, C.; Li, G.; Di Pietro, R.; Huang, J.; Noh, Y.Y.; Liu, X.; Minari, T. Device Physics of Contact Issues for the Overestimation and Underestimation of Carrier Mobility in Field-Effect Transistors. Phys. Rev. Appl. 2017, 8, 034020. [Google Scholar] [CrossRef]
- Waldrip, M.; Jurchescu, O.D.; Gundlach, D.J.; Bittle, E.G. Contact Resistance in Organic Field-Effect Transistors: Conquering the Barrier. Adv. Funct. Mater. 2020, 30, 1904576. [Google Scholar] [CrossRef]
- Bittle, E.G.; Basham, J.I.; Jackson, T.N.; Jurchescu, O.D.; Gundlach, D.J. Mobility Overestimation Due to Gated Contacts in Organic Field-Effect Transistors. Nat. Commun. 2016, 7, 10908. [Google Scholar] [CrossRef] [Green Version]
- Pesavento, P.V.; Chesterfield, R.J.; Newman, C.R.; Frisble, C.D. Gated Four-Probe Measurements on Pentacene Thin-Film Transistors: Contact Resistance as a Function of Gate Voltage and Temperature. J. Appl. Phys. 2004, 96, 7312–7324. [Google Scholar] [CrossRef]
- Baier, S.M.; Shur, M.S.; Lee, K.; Cirillo, N.C.; Hanka, S.A. FET Characterization Using Gated-TLM Structure. IEEE Trans. Electron Devices 1985, 32, 2824–2829. [Google Scholar] [CrossRef]
- Ghibaudo, G. New Method for the Extraction of MOSFET Parameters. Electron. Lett. 1988, 24, 543–545. [Google Scholar] [CrossRef]
- Natali, D.; Caironi, M. Charge Injection in Solution-Processed Organic Field-Effect Transistors: Physics, Models and Characterization Methods. Adv. Mater. 2012, 24, 1357–1387. [Google Scholar] [CrossRef]
- Natali, D.; Fumagalli, L.; Sampietro, M. Modeling of Organic Thin Film Transistors: Effect of Contact Resistances. J. Appl. Phys. 2007, 101, 014501. [Google Scholar] [CrossRef]
- Yoon, M.; Lee, J. Intrinsic Device Parameter Extraction Method for Zinc Oxide-Based Thin-Film Transistors. Appl. Phys. Express 2021, 14, 124003. [Google Scholar] [CrossRef]
- Bubel, S.; Chabinyc, M.L. Model for Determination of Mid-Gap States in Amorphous Metal Oxides from Thin Film Transistors. J. Appl. Phys. 2013, 113, 234507. [Google Scholar] [CrossRef]
- Campbell, A.J.; Rawcliffe, R.; Guite, A.; Faria, J.C.D.; Mukherjee, A.; McLachlan, M.A.; Shkunov, M.; Bradley, D.D.C. Charge-Carrier Density Independent Mobility in Amorphous Fluorene-Triarylamine Copolymers. Adv. Funct. Mater. 2016, 26, 3720–3729. [Google Scholar] [CrossRef] [Green Version]
- Jung, S.; Jin, J.W.; Mosser, V.; Bonnassieux, Y.; Horowitz, G. A Compact Model and Parameter Extraction Method for a Staggered OFET with Power-Law Contact Resistance and Mobility. IEEE Trans. Electron Devices 2019, 66, 4894–4900. [Google Scholar] [CrossRef]
- Stallinga, P. Electronic Transport in Organic Materials: Comparison of Band Theory with Percolation/(Variable Range) Hopping Theory. Adv. Mater. 2011, 23, 3356–3362. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.C.; Kim, S.H.; Lee, J.H.; Kim, M.K.; Kim, D.J.; Zyung, T. Surface-Treatment Effects on Organic Thin-Film Transistors. Synth. Met. 2005, 148, 75–79. [Google Scholar] [CrossRef]
- Pei, K.; Chen, M.; Zhou, Z.; Li, H.; Chan, P.K.L. Overestimation of Carrier Mobility in Organic Thin Film Transistors Due to Unaccounted Fringe Currents. ACS Appl. Electron. Mater. 2019, 1, 379–388. [Google Scholar] [CrossRef]
- Grant, A.J.; Davis, E.A. The Fermi Energy EF Is Sufficiently Re- Moved From. Semiconductors 1974, 15, 563–566. [Google Scholar]
- Majumdar, S.; Banerji, P. Hopping Conduction in Nitrogen Doped ZnO in the Temperature Range 10-300 K. J. Appl. Phys. 2010, 107, 063702. [Google Scholar] [CrossRef]
- Olivier, Y.; Lemaur, V.; Brédas, J.L.; Cornil, J. Charge Hopping in Organic Semiconductors: Influence of Molecular Parameters on Macroscopic Mobilities in Model One-Dimensional Stacks. J. Phys. Chem. A 2006, 110, 6356–6364. [Google Scholar] [CrossRef]
- Liu, C.; Huang, K.; Park, W.T.; Li, M.; Yang, T.; Liu, X.; Liang, L.; Minari, T.; Noh, Y.Y. A Unified Understanding of Charge Transport in Organic Semiconductors: The Importance of Attenuated Delocalization for the Carriers. Mater. Horizons 2017, 4, 608–618. [Google Scholar] [CrossRef] [Green Version]
- Saito, S.I.; Torii, K.; Shimamoto, Y.; Tonomura, O.; Hisamoto, D.; Onai, T.; Hiratani, M.; Kimura, S.; Manabe, Y.; Caymax, M.; et al. Remote-Charge-Scattering Limited Mobility in Field-Effect Transistors with SiO2 and Al2O3 SiO2 Gate Stacks. J. Appl. Phys. 2005, 98, 113706. [Google Scholar] [CrossRef]
- Ma, N.; Jena, D. Charge Scattering and Mobility in Atomically Thin Semiconductors. Phys. Rev. X 2014, 4, 011043. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Li, F.M.; Nathan, A. Influence of Surface Energy and Roughness on Hole Mobility in Solution-Processed Hybrid Organic Thin Film Transistors. IEEE J. Electron Devices Soc. 2018, 6, 653–657. [Google Scholar] [CrossRef]
- Kim, D.; Yoon, M.; Lee, J. Enhanced Performance of Cyclopentadithiophene-Based Donor-Acceptor-Type Semiconducting Copolymer Transistors Obtained by a Wire Bar-Coating Method. Polymers 2022, 14, 2. [Google Scholar] [CrossRef]
- Zheng, W.; Liu, J.; Guo, Y.; Han, G.; Yi, Y. Regulation of Molecular Orientations of A–D–A Nonfullerene Acceptors for Organic Photovoltaics: The Role of End-Group π–π Stacking. Adv. Funct. Mater. 2022, 32, 2108551. [Google Scholar] [CrossRef]
Semiconductors | Extraction Methods | μ (cm2 V−1) | Power Law Exponent | Rc at −40 V (Ω cm) |
---|---|---|---|---|
HMDS-treated PBTTT | Trans. method | 0.009 | Not available | Not available |
Four-probe method | 0.010 | Not available | 8.9 × 105 | |
Ids/gm method | 0.015 | 0.59 | 3.2 × 106 | |
Y-function method | 0.017 | Not available | 2.1 × 106 | |
HMDS-treated DPP-DTT | Trans. method | 0.023 | Not available | Not available |
Four-probe method | 0.029 | Not available | 1.6 × 106 | |
Ids/gm method | 0.028 | 0. 68 | 1.2 × 106 | |
OTS-treated DPP-DTT | Ids/gm method | 0.351 | 0.18 | 4.8 × 104 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, M. Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction. Crystals 2023, 13, 1075. https://doi.org/10.3390/cryst13071075
Yoon M. Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction. Crystals. 2023; 13(7):1075. https://doi.org/10.3390/cryst13071075
Chicago/Turabian StyleYoon, Minho. 2023. "Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction" Crystals 13, no. 7: 1075. https://doi.org/10.3390/cryst13071075
APA StyleYoon, M. (2023). Analyzing Transfer Characteristics of Disordered Polymer Field-Effect Transistors for Intrinsic Device Parameter Extraction. Crystals, 13(7), 1075. https://doi.org/10.3390/cryst13071075