A Theoretical Investigation of the Structural and Electronic Properties of P/SnBr2 Heterojunctions
Abstract
:1. Introduction
2. The Computational Details
3. Results and Discussion
3.1. The Atomic Structure of P/SnBr2 Heterojunctions
3.2. The Electronic Properties of P/SnBr2 Heterojunctions
3.3. The Regulation of the Electronic Structure Properties of P/SnBr2 Heterojunctions by Electric Fields
3.4. Effect and Regulation of Biaxial Strain on P/SnBr2 Heterojunctions
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geim, A.K.; Novoselov, K.S. The rise of graphene. Nat. Mater. 2007, 6, 183–191. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, R.; Fan, J.; Sun, M. Transition metal dichalcogenides (TMDCs) heterostructures: Optoelectric properties. Front. Phys. 2022, 17, 43202. [Google Scholar] [CrossRef]
- Cianci, S.; Blundo, E.; Felici, M.; Polimeni, A.; Pettinari, G. Tailoring the optical properties of 2D transition metal dichalcogenides by strain. Opt. Mater. 2022, 125, 112087. [Google Scholar] [CrossRef]
- Ashhadi, M.; Hadavi, M.S.; Sarri, Z. Electronic transport properties and first-principles study of graphene/h-BN and h-BN bilayers. Phys. E Low Dimens. Syst. Nanostruct. 2017, 87, 312–316. [Google Scholar] [CrossRef]
- Brent, J.R.; Savjani, N.; Lewis, E.A.; Haigh, S.J.; Lewis, D.J.; O’Brien, P. Production of few-layer phosphorene by liquid exfoliation of black phosphorus. Chem. Commun. 2014, 50, 13338–13341. [Google Scholar] [CrossRef] [Green Version]
- Carvalho, A.; Wang, M.; Zhu, X.; Rodin, A.S.; Su, H.; Neto, A.H.C. Phosphorene: From theory to applications. Nat. Rev. Mater. 2016, 1, 16061. [Google Scholar] [CrossRef]
- Novoselov, K.S.; Mishchenko, A.; Carvalho, A.; Neto, A.H.C. 2D materials and van der Waals heterostructures. Science 2016, 353, aac9439. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Wang, X.; Wu, G.; Wang, Z.; Fang, H.; Lin, T.; Sun, S.; Shen, H.; Hu, W.; Wang, J.; et al. High-performance photovoltaic detector based on MoTe2/MoS2 van der Waals heterostructure. Small 2018, 14, 1703293. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, Z. A two-dimensional MoS2/C3N broken-gap heterostructure, a first principles study. RSC Adv. 2019, 9, 19837–19843. [Google Scholar] [CrossRef]
- Cui, X.; Troadec, C.; Wee, A.T.S.; Huang, Y.L. Surface nanostructure formation and atomic-scale templates for nanodevices. ACS Omega 2018, 3, 3285–3293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, K.; He, D.; Fu, S.; Bai, Z.; Miao, Q.; Huang, M.; Wang, Y.; Zhang, X. Interfacial Coupling and Modulation of van der Waals Heterostructures for Nanodevices. Nanomaterials 2022, 12, 3418. [Google Scholar] [CrossRef]
- Zhang, J.L.; Han, C.; Hu, Z.; Wang, L.; Liu, L.; Wee, A.T.; Chen, W. 2D phosphorene: Epitaxial growth and interface engineering for electronic devices. Adv. Mater. 2018, 30, 1802207. [Google Scholar] [CrossRef] [PubMed]
- Tapia, M.A.; Gusmão, R.; Serrano, N.; Sofer, Z.; Ariño, C.; Díaz-Cruz, J.M.; Esteban, M. Phosphorene and other layered pnictogens as a new source of 2D materials for electrochemical sensors. TrAC Trends Anal. Chem. 2021, 139, 116249. [Google Scholar] [CrossRef]
- Zhang, W.; Li, F.; Hu, J.; Zhang, P.; Yin, J.; Tang, X.; Jiang, Y.; Wu, B.; Ding, Y. Strain engineering on transmission carriers of monolayer phosphorene. J. Phys. Condens. Matter 2017, 29, 465501. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.; Lu, Y. Optical properties of phosphorene. Chin. Phys. B 2017, 26, 034201. [Google Scholar] [CrossRef]
- Liang, J.; Hu, Y.; Zhang, K.; Wang, Y.; Song, X.; Tao, A.; Liu, Y.; Jin, Z. 2D layered black arsenic-phosphorus materials: Synthesis, properties, and device applications. Nano Res. 2022, 15, 3737–3752. [Google Scholar] [CrossRef]
- Jiang, Z.T.; Lv, Z.T.; Zhang, X.D. Electromechanical field effect transistors based on multilayer phosphorene nanoribbons. Phys. Lett. A 2017, 381, 1962–1966. [Google Scholar] [CrossRef]
- Luo, Y.; Xie, Y.; Ye, X.; Wang, Y. A self-powered phosphorene photodetector with excellent spin-filtering and spin-valve effects. Phys. Chem. Chem. Phys. 2019, 21, 7613–7617. [Google Scholar] [CrossRef]
- Li, J.; Guo, C.; Li, C.M. Recent Advances of Two-Dimensional (2D) MXenes and Phosphorene for High-Performance Rechargeable Batteries. ChemSusChem 2020, 13, 1047–1070. [Google Scholar] [CrossRef]
- Hao, F.; Stoumpos, C.C.; Cao, D.H.; Chang, R.P.H.; Kanatzidis, M.G. Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 2014, 8, 489–494. [Google Scholar] [CrossRef]
- Fu, P.; Huang, M.; Shang, Y.; Yu, N.; Zhou, H.-L.; Zhang, Y.-B.; Chen, S.; Gong, J.; Ning, Z. Organic-Inorganic layered and hollow tin bromide perovskite with tunable broadband emission. ACS Appl. Mater. Interfaces 2018, 10, 34363–34369. [Google Scholar] [CrossRef] [PubMed]
- Dorrell, W.; Pirie, H.; Gardezi, S.M.; Drucker, N.C.; Hoffman, J.E. van der Waals metamaterials. Phys. Rev. B 2020, 101, 121103. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Zhang, L.; Liu, X.; Li, S. Two-Dimensional Semiconductor Heterojunctions for Optoelectronics and Electronics. Front. Energy Res. 2021, 9, 802055. [Google Scholar] [CrossRef]
- Di Bartolomeo, A. Emerging 2D materials and their van der Waals heterostructures. Nanomaterials 2020, 3, 579–588. [Google Scholar] [CrossRef] [Green Version]
- Song, D.Y.; Chu, D.; Lee, S.K.; Pak, S.W.; Kim, E.K. High photoresponsivity from multilayer MoS2/Si heterojunction diodes formed by vertically stacking. J. Appl. Phys. 2017, 122, 124505. [Google Scholar] [CrossRef]
- Zhu, W.; Xue, Z.; Wang, G.; Zhao, M.; Chen, D.; Guo, Q.; Liu, Z.; Feng, X.; Ding, G.; Chu, P.K.; et al. Graphene quantum dot-decorated vertically oriented graphene/germanium heterojunctions for near-infrared photodetectors. ACS Appl. Nano Mater. 2020, 3, 6915–6924. [Google Scholar] [CrossRef]
- Zhou, J.; Kong, X.; Sekhar, M.C.; Lin, J.; Le Goualher, F.; Xu, R.; Wang, X.; Chen, Y.; Zhou, Y.; Zhu, C.; et al. Epitaxial synthesis of monolayer PtSe2 single crystal on MoSe2 with strong interlayer coupling. ACS Nano 2019, 13, 10929–10938. [Google Scholar] [CrossRef]
- He, C.; Han, F.S.; Zhang, J.H.; Zhang, W.X. The In 2 SeS/gC3N4 heterostructure: A new two-dimensional material for photocatalytic water splitting. J. Mater. Chem. C 2020, 8, 6923–6930. [Google Scholar] [CrossRef]
- Zhang, F.; Li, W.; Dai, X. Modulation of electronic structures of MoSe2/WSe2 van der Waals heterostructure by external electric field. Solid State Commun. 2017, 266, 11–15. [Google Scholar] [CrossRef]
- Barhoumi, M.; Lazaar, K.; Said, M. Electronic and vibrational properties of TMDs heterogeneous bilayers, nontwisted bilayers silicene/TMDs heterostructures and photovoltaic heterojunctions of fullerenes with TMDs monolayers. Phys. E Low Dimens. Syst. Nanostruct. 2018, 104, 155–164. [Google Scholar] [CrossRef]
- Cassabois, G.; Valvin, P.; Gil, B. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 2016, 10, 262–266. [Google Scholar] [CrossRef] [Green Version]
- Liu, H.; Neal, A.T.; Zhu, Z.; Luo, Z.; Xu, X.; Tomanek, D.; Ye, P.D. Phosphorene: An unexplored 2D semiconductor with a high hole mobility. ACS Nano 2014, 8, 4033–4041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, C.; Tian, Y.; Wang, M.; Rose, A.; Besara, T.; Doyle, N.K.; Yuan, Z.; Wang, J.C.; Clark, R.; Hu, Y.; et al. Low-dimensional organic tin bromide perovskites and their photoinduced structural transformation. Angew. Chem. Int. Ed. 2017, 56, 9018–9022. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jiang, K.-J.; Wang, P.; Gu, W.-M.; Yu, G.-H.; Zhou, X.; Song, Y. Highly oriented quasi-2D layered tin halide perovskites with 2-thiopheneethylammonium iodide for efficient and stable tin perovskite solar cells. New J. Chem. 2022, 46, 2259–2265. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 1993, 47, 558–561. [Google Scholar] [CrossRef]
- Ma, Y.; Zhao, X.; Niu, M.; Dai, X.; Li, W.; Wang, X.; Zhao, M.; Wang, T.; Tang, Y. Modulation of interfacial electronic properties in PbI2 and BN van der Waals heterobilayer via external electric field. Appl. Surf. Sci. 2017, 411, 46–52. [Google Scholar] [CrossRef]
- Su, J.; Liu, H.; Jia, Z. Electric field tunable electronic properties of antimonene/graphyne van der Waals heterostructure. J. Alloys Compd. 2022, 909, 164653. [Google Scholar] [CrossRef]
- Sharma, N.K.; Sahoo, S.; Sahu, M.C.; Mallik, S.K.; Jena, A.K.; Sharma, H.; Gupta, S.K.; Ahuja, R.; Sahoo, S. Electronic bandstructure modulation of MoX2/ZnO (X: S, Se) heterostructure by applying external electric field. Surf. Interfaces 2022, 29, 101817. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, F.; Zhang, W.; Zhang, X. The electric field modulation of electronic properties in a type-II phosphorene/PbI2 van der Waals heterojunction. Phys. Chem. Chem. Phys. 2019, 21, 7765–7772. [Google Scholar] [CrossRef] [PubMed]
- Baskoutas, S.; Paspalakis, E.; Terzis, A.F. Electronic structure and nonlinear optical rectification in a quantum dot: Effects of impurities and external electric field. J. Phys. Condens. Matter 2007, 19, 395024. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, B.; Huang, R.; Gao, B.; Kong, F.; Zhang, Q. First-principles study of transition-metal atoms adsorption on MoS2 monolayer. Phys. E Low Dimens. Syst. Nanostruct. 2014, 63, 276–282. [Google Scholar] [CrossRef]
- Li, X.H.; Wang, B.J.; Cai, X.L.; Zhang, L.W.; Wang, G.D.; Ke, S.H. Tunable electronic properties of arsenene/GaS van der Waals heterostructures. RSC Adv. 2017, 7, 28393–28398. [Google Scholar] [CrossRef] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Ding, Z.; Hu, Q.; Sun, J.; Li, Q. A Theoretical Investigation of the Structural and Electronic Properties of P/SnBr2 Heterojunctions. Crystals 2023, 13, 1077. https://doi.org/10.3390/cryst13071077
Yang K, Ding Z, Hu Q, Sun J, Li Q. A Theoretical Investigation of the Structural and Electronic Properties of P/SnBr2 Heterojunctions. Crystals. 2023; 13(7):1077. https://doi.org/10.3390/cryst13071077
Chicago/Turabian StyleYang, Kun, Zongling Ding, Qi Hu, Jin Sun, and Qiuju Li. 2023. "A Theoretical Investigation of the Structural and Electronic Properties of P/SnBr2 Heterojunctions" Crystals 13, no. 7: 1077. https://doi.org/10.3390/cryst13071077
APA StyleYang, K., Ding, Z., Hu, Q., Sun, J., & Li, Q. (2023). A Theoretical Investigation of the Structural and Electronic Properties of P/SnBr2 Heterojunctions. Crystals, 13(7), 1077. https://doi.org/10.3390/cryst13071077