Processing and Investigation of Cd0.5Zn0.5Fe2−xCrxO4 (0 ≤ x ≤ 2) Spinel Nanoparticles
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials Synthesis
2.2. Materials Characterization Technics
3. Results and Discussions
3.1. SEM Micrographs
3.2. Structural Properties and Cation Distributions
3.3. FTIR Spectra
3.4. Magnetic Properties
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Adam, J.D.; Davis, L.E.; Dionne, G.F.; Schloemann, E.F.; Stitzer, S.N. Ferrite Devices and Materials. IEEE Trans. Microw. Theory Tech. 2002, 50, 721–737. [Google Scholar] [CrossRef] [Green Version]
- Kulikowski, J. Soft Magnetic Ferrites—Development or Stagnation? J. Magn. Magn. Mater. 1984, 41, 56–62. [Google Scholar] [CrossRef]
- Harris, V.G.; Geiler, A.; Chen, Y.; Yoon, S.D.; Wu, M.; Yang, A.; Chen, Z.; He, P.; Parimi, P.V.; Zuo, X. Recent Advances in Processing and Applications of Microwave Ferrites. J. Magn. Magn. Mater. 2009, 321, 2035–2047. [Google Scholar] [CrossRef]
- Mazarío, E.; Herrasti, P.; Morales, M.P.; Menéndez, N. Synthesis and Characterization of CoFe2O4 Ferrite Nanoparticles Obtained by an Electrochemical Method. Nanotechnology 2012, 23, 355708. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Jia, L.; Yu, X.; Zhang, H. A Low Loss NiZnCo Ferrite, Prepared Using a Hydrothermal Method, for Antenna Applications. J. Appl. Phys. 2014, 115, 17A520. [Google Scholar] [CrossRef]
- Rahman, S.; Nadeem, K.; Anis-ur-Rehman, M.; Mumtaz, M.; Naeem, S.; Letofsky-Papst, I. Structural and Magnetic Properties of ZnMg-Ferrite Nanoparticles Prepared Using the Co-Precipitation Method. Ceram. Int. 2013, 39, 5235–5239. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, R.; Ni, Q.; Cao, E.; Hao, W.; Zhang, Y.; Ju, L. Magnetic and Dielectric Properties of MgxCo1−XFe2O4 Ferrites Prepared by the Sol-Gel Method. Phys. B Condens. Matter 2018, 545, 4–11. [Google Scholar] [CrossRef]
- Safari, A.; Gheisari, K.; Farbod, M. Structural, Microstructural, Magnetic and Dielectric Properties of Ni-Zn Ferrite Powders Synthesized by Plasma Arc Discharge Process Followed by Post-Annealing. J. Magn. Magn. Mater. 2019, 488, 165369. [Google Scholar] [CrossRef]
- Soibam, I.; Phanjoubam, S.; Prakash, C. Mössbauer and Magnetic Studies of Cobalt Substituted Lithium Zinc Ferrites Prepared by Citrate Precursor Method. J. Alloys Compd. 2009, 475, 328–331. [Google Scholar] [CrossRef]
- Singh, C.; Jauhar, S.; Kumar, V.; Singh, J.; Singhal, S. Synthesis of Zinc Substituted Cobalt Ferrites via Reverse Micelle Technique Involving in Situ Template Formation: A Study on Their Structural, Magnetic, Optical and Catalytic Properties. Mater. Chem. Phys. 2015, 156, 188–197. [Google Scholar] [CrossRef]
- Hankare, P.P.; Jadhav, S.D.; Sankpal, U.B.; Chavan, S.S.; Waghmare, K.J.; Chougule, B.K. Synthesis, Characterization and Effect of Sintering Temperature on Magnetic Properties of MgNi Ferrite Prepared by Co-Precipitation Method. J. Alloys Compd. 2009, 475, 926–929. [Google Scholar] [CrossRef]
- Ebrahimi, S.A.S.; Masoudpanah, S.M. Effects of PH and Citric Acid Content on the Structure and Magnetic Properties of MnZn Ferrite Nanoparticles Synthesized by a Sol–Gel Autocombustion Method. J. Magn. Magn. Mater. 2014, 357, 77–81. [Google Scholar] [CrossRef]
- Kouki, N.; Hcini, S.; Boudard, M.; Aldawas, R.; Dhahri, A. Microstructural Analysis, Magnetic Properties, Magnetocaloric Effect, and Critical Behaviors of Ni0.6Cd0.2Cu0.2Fe2O4 Ferrites Prepared Using the Sol–Gel Method under Different Sintering Temperatures. RSC Adv. 2019, 9, 1990–2001. [Google Scholar] [CrossRef] [PubMed]
- Hcini, S.; Kouki, N.; Omri, A.; Dhahri, A.; Bouazizi, M.L. Effect of Sintering Temperature on Structural, Magnetic, Magnetocaloric and Critical Behaviors of Ni-Cd-Zn Ferrites Prepared Using Sol-Gel Method. J. Magn. Magn. Mater. 2018, 464, 91–102. [Google Scholar] [CrossRef]
- Mane, D.R.; Patil, S.; Birajdar, D.D.; Kadam, A.B.; Shirsath, S.E.; Kadam, R.H. Sol–Gel Synthesis of Cr3+ Substituted Li0.5Fe2.5O4: Cation Distribution, Structural and Magnetic Properties. Mater. Chem. Phys. 2011, 126, 755–760. [Google Scholar] [CrossRef]
- Mitra, S.; Bidyananda, M.; Samanta, A.K. Cation Distribution in Cr-Spinels from the Sittampundi Layered Complex and Their Intracrystalline Thermodynamics. Curr. Sci. 2006, 90, 435–439. [Google Scholar]
- Lee, S.H.; Yoon, S.J.; Lee, G.J.; Kim, H.S.; Yo, C.H.; Ahn, K.; Lee, D.H.; Kim, K.H. Electrical and Magnetic Properties of NiCrxFe2−XO4 Spinel (0 ≤ X ≤ 0.6). Mater. Chem. Phys. 1999, 61, 147–152. [Google Scholar] [CrossRef]
- Ikehara, T.; Yamaguchi, H.; Hosokawa, K.; Miyamoto, H.; Aizawa, K. Effects of ELF Magnetic Field on Membrane Protein Structure of Living HeLa Cells Studied by Fourier Transform Infrared Spectroscopy. Bioelectromagn. J. Bioelectromagn. Soc. Soc. Phys. Regul. Biol. Med. Eur. Bioelectromagn. Assoc. 2003, 24, 457–464. [Google Scholar] [CrossRef]
- Gismelseed, A.M.; Yousif, A.A. Mössbauer Study of Chromium-Substituted Nickel Ferrites. Phys. B Condens. Matter 2005, 370, 215–222. [Google Scholar] [CrossRef]
- Singhal, S.; Sharma, R.; Namgyal, T.; Jauhar, S.; Bhukal, S.; Kaur, J. Structural, Electrical and Magnetic Properties of Co0.5Zn0.5AlxFe2−XO4 (X = 0, 0.2, 0.4, 0.6, 0.8 and 1.0) Prepared via Sol–Gel Route. Ceram. Int. 2012, 38, 2773–2778. [Google Scholar] [CrossRef]
- Singhal, S.; Jauhar, S.; Singh, J.; Chandra, K.; Bansal, S. Investigation of Structural, Magnetic, Electrical and Optical Properties of Chromium Substituted Cobalt Ferrites (CoCrxFe2−XO4, 0 ≤ X ≤ 1) Synthesized Using Sol Gel Auto Combustion Method. J. Mol. Struct. 2012, 1012, 182–188. [Google Scholar] [CrossRef]
- Valan, M.F.; Manikandan, A.; Antony, S.A. Microwave Combustion Synthesis and Characterization Studies of Magnetic Zn1−xCdxFe2O4 (0 ≤ X ≤ 0.5) Nanoparticles. J. Nanosci. Nanotechnol. 2015, 15, 4543–4551. [Google Scholar] [CrossRef] [PubMed]
- Harish, K.N.; Naik, H.S.B.; Viswanath, R. Synthesis, Enhanced Optical and Photocatalytic Study of Cd–Zn Ferrites under Sunlight. Catal. Sci. Technol. 2012, 2, 1033–1039. [Google Scholar] [CrossRef]
- Gupta, M.; Gupta, M.; Mudsainiyan, R.K.; Randhawa, B.S. Physico-Chemical Analysis of Pure and Zn Doped Cd Ferrites (Cd1−XZnxFe2O4) Nanofabricated by Pechini Sol–Gel Method. J. Anal. Appl. Pyrolysis 2015, 116, 75–85. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Sanyal, D.; Chakrabarti, A. Preparation of Zn(1−x)CdxFe2O4 (X = 0.0, 0.1, 0.3, 0.5, 0.7 and 1.0) Ferrite Samples and Their Characterization by Mössbauer and Positron Annihilation Techniques. J. Phys. Condens. Matter 2007, 19, 236210. [Google Scholar] [CrossRef]
- Siddique, M.; Anwar-ul-Islam, M.; Butt, N.M.; Abbas, T. Composition Dependence of Quadrupole Splitting in Cd—Zn Ferrites. Phys. Status Solidi 1999, 216, 1069–1072. [Google Scholar] [CrossRef]
- Arean, C.O.; Diaz, E.G.; Gonzalez, J.M.R.; Garcia, M.A.V. Crystal Chemistry of Cadmium-Zinc Ferrites. J. Solid State Chem. 1988, 77, 275–280. [Google Scholar] [CrossRef]
- Weil, L.; Bertaut, F.; Bochirol, L. Propriétés Magnétiques et Structure de La Phase Quadratique Du Ferrite de Cuivre. J. Phys. le Radium 1950, 11, 208–212. [Google Scholar] [CrossRef]
- Mane, D.R.; Birajdar, D.D.; Shirsath, S.E.; Telugu, R.A.; Kadam, R.H. Structural and Magnetic Characterizations of Mn—Ni—Zn Ferrite Nanoparticles. Phys. Status Solidi 2010, 207, 2355–2363. [Google Scholar] [CrossRef]
- Cvejic, Z.; Rakic, S.; Kremenovic, A.; Antic, B.; Jovalekic, C.; Colomban, P. Nanosize Ferrites Obtained by Ball Milling: Crystal Structure, Cation Distribution, Size-Strain Analysis and Raman Investigations. Solid State Sci. 2006, 8, 908–915. [Google Scholar] [CrossRef]
- Hakim, M.A.; Nath, S.K.; Sikder, S.S.; Maria, K.H. Cation Distribution and Electromagnetic Properties of Spinel Type Ni–Cd Ferrites. J. Phys. Chem. Solids 2013, 74, 1316–1321. [Google Scholar] [CrossRef]
- Khalaf, K.A.M.; Al Rawas, A.D.; Gismelssed, A.M.; Al Jamel, A.; Al Ani, S.K.J.; Shongwe, M.S.; Al Riyami, K.O.; Al Alawi, S.R. Influence of Cr Substitution on Debye-Waller Factor and Related Structural Parameters of ZnFe2−XCrxO4 Spinels. J. Alloys Compd. 2017, 701, 474–486. [Google Scholar] [CrossRef]
- Hossain, A.K.M.A.; Mahmud, S.T.; Seki, M.; Kawai, T.; Tabata, H. Structural, Electrical Transport, and Magnetic Properties of Ni1−XZnxFe2O4. J. Magn. Magn. Mater. 2007, 312, 210–219. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallogr. Sect. A Cryst. Phys. Diffr. Theor. Gen. Crystallogr. 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Patange, S.M.; Shirsath, S.E.; Lohar, K.S.; Algude, S.G.; Kamble, S.R.; Kulkarni, N.; Mane, D.R.; Jadhav, K.M. Infrared Spectral and Elastic Moduli Study of NiFe2−XCrxO4 Nanocrystalline Ferrites. J. Magn. Magn. Mater. 2013, 325, 107–111. [Google Scholar] [CrossRef]
- Kumar, G.; Kotnala, R.K.; Shah, J.; Kumar, V.; Kumar, A.; Dhiman, P.; Singh, M. Cation Distribution: A Key to Ascertain the Magnetic Interactions in a Cobalt Substituted Mg–Mn Nanoferrite Matrix. Phys. Chem. Chem. Phys. 2017, 19, 16669–16680. [Google Scholar] [CrossRef]
- Sharma, R.; Thakur, P.; Kumar, M.; Thakur, N.; Negi, N.S.; Sharma, P.; Sharma, V. Improvement in Magnetic Behaviour of Cobalt Doped Magnesium Zinc Nano-Ferrites via Co-Precipitation Route. J. Alloys Compd. 2016, 684, 569–581. [Google Scholar] [CrossRef]
- Hemeda, O.M.; Amer, M.A.; Aboul-Enein, S.; Ahmed, M.A. Effect of Sintering on X-Ray and IR Spectral Behaviour of the MnAlxFe2-xO4 Ferrite System. Phys. Status Solidi 1996, 156, 29–38. [Google Scholar] [CrossRef]
- Williamson, G.K.; Hall, W.H. X-Ray Line Broadening from Filed Aluminium and Wolfram. Acta Metall. 1953, 1, 22–31. [Google Scholar] [CrossRef]
- AlArfaj, E.; Hcini, S.; Mallah, A.; Dhaou, M.H.; Bouazizi, M.L. Effects of Co Substitution on the Microstructural, Infrared, and Electrical Properties of Mg0.6−xCoxZn0.4Fe2O4 Ferrites. J. Supercond. Nov. Magn. 2018, 31, 4107–4116. [Google Scholar] [CrossRef]
- Waldron, R.D. Infrared Spectra of Ferrites. Phys. Rev. 1955, 99, 1727. [Google Scholar] [CrossRef]
- Amer, M.A.; Ahmed, M.A.; El-Nimr, M.K.; Mostafa, M.A. Mössbauer and Infrared Studies of the Cu-Cr Ferrites. Hyperfine Interact. 1995, 96, 91–98. [Google Scholar] [CrossRef]
- Shaeel, A.; Al-Thabaiti. Communications de la Facult´e des Sciences de l’Universit´e d’Ankara B; La Faculté: Leiden, The Netherlands, 2003; Volume 49, pp. 5–14. [Google Scholar]
- Mohammed, K.A.; Al-Rawas, A.D.; Gismelseed, A.M.; Sellai, A.; Widatallah, H.M.; Yousif, A.; Elzain, M.E.; Shongwe, M. Infrared and Structural Studies of Mg1−XZnxFe2O4 Ferrites. Phys. B Condens. Matter 2012, 407, 795–804. [Google Scholar] [CrossRef]
- Khalaf, K.A.M.; Al-Rawas, A.D.; Widatallah, H.M.; Al-Rashdi, K.S.; Sellai, A.; Gismelseed, A.M.; Hashim, M.; Jameel, S.K.; Al-Ruqeishi, M.S.; Al-Riyami, K.O. Influence of Zn2+ Ions on the Structural and Electrical Properties of Mg1−XZnxFeCrO4 Spinels. J. Alloys Compd. 2016, 657, 733–747. [Google Scholar] [CrossRef]
- Yoon, S.J.; Lee, S.H.; Kim, K.H.; Ahn, K.S. Electrical and Magnetic Properties of Spinel ZnCr2−XFexO4 (0 ≤ X ≤ 1.0). Mater. Chem. Phys. 2002, 73, 330–334. [Google Scholar] [CrossRef]
- Pradeep, A.; Priyadharsini, P.; Chandrasekaran, G. Sol–Gel Route of Synthesis of Nanoparticles of MgFe2O4 and XRD, FTIR and VSM Study. J. Magn. Magn. Mater. 2008, 320, 2774–2779. [Google Scholar] [CrossRef]
- Shokrollahi, H.; Janghorban, K. Soft Magnetic Composite Materials (SMCs). J. Mater. Process. Technol. 2007, 189, 1–12. [Google Scholar] [CrossRef]
- Chakrabarti, P.K.; Nath, B.K.; Brahma, S.; Das, S.; Das, D.; Ammar, M.; Mazaleyrat, F. Magnetic and Hyperfine Properties of Chemically Synthesized Nanocomposites of (Al2O3)x(Ni0.2Zn0.6Cu0.2Fe2O4)(1−x) (X = 0.15, 0.30, 0.45). Solid State Commun. 2007, 144, 305–309. [Google Scholar] [CrossRef]
- Modak, S.; Ammar, M.; Mazaleyrat, F.; Das, S.; Chakrabarti, P.K. XRD, HRTEM and Magnetic Properties of Mixed Spinel Nanocrystalline Ni–Zn–Cu-Ferrite. J. Alloys Compd. 2009, 473, 15–19. [Google Scholar] [CrossRef]
- Kambale, R.C.; Shaikh, P.A.; Bhosale, C.H.; Rajpure, K.Y.; Kolekar, Y.D. The Effect of Mn Substitution on the Magnetic and Dielectric Properties of Cobalt Ferrite Synthesized by an Autocombustion Route. Smart Mater. Struct. 2009, 18, 115028. [Google Scholar] [CrossRef]
- Coey, J.M.D. Rare Earth Permanent Magnetism; John Wiley and Sons: Hoboken, NJ, USA, 1996. [Google Scholar] [CrossRef]
- Patange, S.M.; Shirsath, S.E.; Jadhav, S.S.; Jadhav, K.M. Cation Distribution Study of Nanocrystalline NiFe2−XCrxO4 Ferrite by XRD, Magnetization and Mössbauer Spectroscopy. Phys. Status Solidi 2012, 209, 347–352. [Google Scholar] [CrossRef]
- Patange, S.M.; Shirsath, S.E.; Toksha, B.G.; Jadhav, S.S.; Jadhav, K.M. Electrical and Magnetic Properties of Cr3+ Substituted Nanocrystalline Nickel Ferrite. J. Appl. Phys. 2009, 106, 023914. [Google Scholar] [CrossRef]
- Néel, L. Magnetism and Local Molecular Field. Science 1971, 174, 985–992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torkian, S.; Ghasemi, A.; Razavi, R.S. Cation Distribution and Magnetic Analysis of Wideband Microwave Absorptive CoxNi1− XFe2O4 Ferrites. Ceram. Int. 2017, 43, 6987–6995. [Google Scholar] [CrossRef]
- Satyanarayana, G.; Nageswara Rao, G.; Babu, K.V.; Santosh Kumar, G.V.; Dinesh Reddy, G. Effect of Cr3+ Substitution on the Structural, Electrical and Magnetic Properties of Ni0.7Zn0.2Cu0.1Fe2−xCrxO4 Ferrites. J. Korean Phys. Soc. 2019, 74, 684–694. [Google Scholar] [CrossRef]
Cr Content | 0 | 0.5 | 1 | 1.5 | 2 | |||
---|---|---|---|---|---|---|---|---|
Space group | ||||||||
Cell parameters | a (Å) | 8.5113 (4) | 8.4745 (4) | 8.4586 (4) | 8.4395 (4) | 8.4207 (4) | ||
V (Å3) | 616.59 (4) | 608.61 (5) | 605.20 (4) | 601.10 (4) | 597.09 (4) | |||
Atoms | Tetrahedral A-site (Cd/Zn) | Wyckoff positions | 4c | 4c | 4c | 4c | 4c | |
Site symmetry | −43m | −43m | −43m | −43m | −43m | |||
Atomic positions | x = y = z | 1/8 | 1/8 | 1/8 | 1/8 | 1/8 | ||
Occupancy factors | 0.50 (1)/ 0.49 (1) | 0.51 (1)/ 0.50 (1) | 0.50 (1)/ 0.50 (1) | 0.49 (1)/ 0.50 (1) | 0.50 (1)/ 0.50 (1) | |||
Biso (Å2) | 1.19 | 1.22 | 1.35 | 1.18 | 1.27 | |||
Octahedral B-site [Fe/Cr] | Wyckoff positions | 16d | 16d | 16d | 16d | 16d | ||
Site symmetry | −3m | −3m | −3m | −3m | −3m | |||
Atomic positions | x = y = z | 1/2 | 1/2 | 1/2 | 1/2 | 1/2 | ||
Occupancy factors | 2.01 (2)/ 0 | 1.51 (2)/0.49 (2) | 1.01 (2)/1.02 (2) | 0.50 (2)/1.48 (2) | 0/2.02(2) | |||
Biso (Å2) | 1.46 | 1.14 | 1.22 | 0.94 | 1.34 | |||
O | Wyckoff positions | 32e | 32e | 32e | 32e | 32e | ||
Site symmetry | 3m | 3m | 32e | 32e | 32e | |||
Atomic positions | x = y = z | 0.2553 (1) | 0.2551 (8) | 0.2548 (8) | 0.2545 (8) | 0.2541 (8) | ||
Occupancy factors | 4 | 4 | 4 | 4 | 4 | |||
Biso (Å2) | 1.42 | 1.54 | 1.42 | 1.65 | 1.58 | |||
Structural parameters | dA-O (Å) | 1.905 (8) | 1.903 (7) | 1.901 (9) | 1.898 (7) | 1.896 (8) | ||
dB-O (Å) | 2.058 (9) | 2.053 (7) | 2.045 (8) | 2.041 (7) | 2.036 (7) | |||
φA-O-B (°) | 124.8 (5) | 124.5 (3) | 123.7 (4) | 123.4 (3) | 123.1 (3) | |||
φB-O-B (°) | 92.4 (5) | 91.2 (3) | 91.0 (4) | 90.8 (3) | 90.3 (3) | |||
dx (g. cm−3) | 5.7004 | 5.7331 | 5.7443 | 5.7622 | 5.7795 | |||
Agreement factors | Rp (%) | 6.41 | 5.47 | 5.44 | 5.63 | 5.48 | ||
Rwp (%) | 8.25 | 7.52 | 7.35 | 7.42 | 7.25 | |||
Rexp (%) | 7.14 | 7.33 | 7.47 | 7.12 | 7.04 | |||
RBragg (%) | 3.83 | 3.34 | 3.83 | 2.94 | 2.72 | |||
χ2 (%) | 1.13 | 1.19 | 1.23 | 1.32 | 1.18 |
x | ν1 | ν2 | KT × 105 (dyne cm−1) | KO × 105 (dyne cm−1) |
---|---|---|---|---|
0 | 524 | 423 | 1.86 | 1.06 |
0.5 | 569 | 424 | 2.19 | 1.05 |
1 | 584 | 421 | 2.31 | 1.02 |
1.5 | 586 | 420 | 2.33 | 1.01 |
2 | 586 | 420 | 2.33 | 1.00 |
x. | Mr (emu/g) | Ms (emu/g) | Hc (Oe) | Hs | K (erg/cm3) |
---|---|---|---|---|---|
0 | 3.5 | 55 | 82 | 4950 | 4602 |
0.5 | 8.2 | 37.8 | 237 | 4500 | 9141 |
1 | 9 | 27.45 | 311.35 | 4478 | 8536 |
1.5 | 10.8 | 17 | 402 | 4423 | 6973 |
2 | 6.27 | 10.8 | 422.15 | 4387 | 4652 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alharbi, R.K.; Kouki, N.; Mallah, A.; Beji, L.; Tar, H.; Algreiby, A.; Alnafisah, A.S.; Hcini, S. Processing and Investigation of Cd0.5Zn0.5Fe2−xCrxO4 (0 ≤ x ≤ 2) Spinel Nanoparticles. Crystals 2023, 13, 1121. https://doi.org/10.3390/cryst13071121
Alharbi RK, Kouki N, Mallah A, Beji L, Tar H, Algreiby A, Alnafisah AS, Hcini S. Processing and Investigation of Cd0.5Zn0.5Fe2−xCrxO4 (0 ≤ x ≤ 2) Spinel Nanoparticles. Crystals. 2023; 13(7):1121. https://doi.org/10.3390/cryst13071121
Chicago/Turabian StyleAlharbi, Reem Khalid, Noura Kouki, Abdulrahman Mallah, Lotfi Beji, Haja Tar, Azizah Algreiby, Abrar S. Alnafisah, and Sobhi Hcini. 2023. "Processing and Investigation of Cd0.5Zn0.5Fe2−xCrxO4 (0 ≤ x ≤ 2) Spinel Nanoparticles" Crystals 13, no. 7: 1121. https://doi.org/10.3390/cryst13071121
APA StyleAlharbi, R. K., Kouki, N., Mallah, A., Beji, L., Tar, H., Algreiby, A., Alnafisah, A. S., & Hcini, S. (2023). Processing and Investigation of Cd0.5Zn0.5Fe2−xCrxO4 (0 ≤ x ≤ 2) Spinel Nanoparticles. Crystals, 13(7), 1121. https://doi.org/10.3390/cryst13071121