Preparation and Characterization of Nano-Sized Co(II), Cu(II), Mn(II) and Ni(II) Coordination PAA/Alginate Biopolymers and Study of Their Biological and Anticancer Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of the Crosslinked Polymeric Ligand (Poly-PAA/AG)
2.2. Synthesis of Metal Polymeric Complexes Nanoparticles
2.2.1. [Co(AG-PAA)Cl(H2O)3]
2.2.2. [Cu(AG-PAA)Cl(H2O)3]
2.2.3. [Mn(AG-PAA)Cl(H2O)3]
- Step 1: In a beaker, 0.8 g (0.2 mmol) of AG-PAA was dissolved in 20 mL of methanol, and the mixture was heated for five minutes. Next, 20 mL of distilled water was added, and the mixture was stirred and heated for another 20 min.
- Step 2: We added the metal solution (0.68 g, 0.2 mmol) of tetra-hydrated manganese chloride, which was dissolved in 10 mL of distilled water. After allowing it to cool down a bit, we stirred it until the light brown precipitate formed and then dried it in calcium chloride anhydrous. Anal. Calc. for C9H15MnClO10: C, 28.93; H, 4.04. Found: C, 29.10; H, 4.47. IR data: ν(OH) 3444, ν(C-H) 2931, ν(COO)sym 1696, ν(C=O) 1696, ν(COO)asym 1419, ν(CO) 1103, ν(C-O-C) 1027, ν(M-O) 523 cm−1, m.p. 210 °C and molar conductance 14.18 S cm2 mol−1.
2.2.4. [Ni(AG-PAA)Cl(H2O)3]
2.3. Physical Measurements
- (i)
- Refinement of overall Scale factor + background coefficients (all other parameters are kept fixed);
- (ii)
- The same + refinement of detector zero offsets (or sample displacement in Bragg-Brentano geometry) + refinement of lattice parameters;
- (iii)
- The same + refinement of shape parameters + refinement of asymmetry parameters;
- (iv)
- The same + refinement of atomic positions + refinement of global DebyeWaller parameter or thermal agitation factors;
- (v)
- The same + refinement of site occupancy rate. In our refinements, we have taken care to respect this sequence of steps to release the different parameters. This ensures the stability of the refinement with all the parameters released.
2.4. Microbial Species and Culture Media
2.5. Antimicrobial Activity
2.6. Antioxidant Assays
DPPH Radical Scavenging Assay
2.7. Cell Viability and Anticancer Assays
3. Results and Discussion
3.1. Elemental Analyses
3.2. Molar Conductance
3.3. Fourier Transform Infrared Spectra
3.4. Electronic Spectra
3.5. Magnetic Moment Analysis
3.6. Thermal Analysis
3.6.1. [Co(AG-PAA)Cl(H2O)3] Complex
3.6.2. [Cu(AG-PAA)Cl(H2O)3] Complex
3.6.3. [Mn(AG-PAA)Cl(H2O)3] Complex
3.6.4. [Ni(AG-PAA)Cl(H2O)3] Complex
3.7. X-ray Powder Diffraction
3.8. SEM Morphological Analysis
3.9. Antimicrobial and Antioxidant Assays
3.10. In Vitro Anticancer Assay
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ezeoha, S.L. Production of Biodegradable Plastic Packaging Film from Cassava Starch. IOSR J. Eng. 2013, 3, 14–20. [Google Scholar] [CrossRef]
- Rebelo, R.; Fernandes, M.; Fangueiro, R. Biopolymers in medical implants: A brief review. Procedia Eng. 2017, 200, 236–243. [Google Scholar] [CrossRef]
- Bala, I.A.; Abdullahi, M.R.; Bashir, S.S. A review on formulation of enzymatic solution for biopolymer hydrolysis. J. Chem. 2017, 6, 9–13. [Google Scholar]
- Pattanashetti, N.A.; Heggannavar, G.B.; Kariduraganavar, M.Y. Smart biopolymers and their biomedical applications. Procedia Manuf. 2017, 12, 263–279. [Google Scholar] [CrossRef]
- Qasim, U.; Osman, A.I.; Al-Muhtaseb, A.H.; Farrell, C.; Al-Abri, M.; Ali, M.; Vo, D.V.N.; Jamil, F.; Rooney, D.W. Renewable cellulosic nanocomposites for food packaging to avoid fossil fuel plastic pollution: A review. Environ. Chem. Lett. 2021, 19, 613–641. [Google Scholar] [CrossRef]
- Nessi, V.; Falourd, X.; Maigret, J.-E.; Cahier, K.; D’Orlando, A.; Descamps, N.; Gaucher, V.; Chevigny, C.; Lourdin, D. Cellulose nanocrystals-starch nanocomposites produced by extrusion: Structure and behavior in physiological conditions. Carbohydr. Polym. 2019, 225, 115123. [Google Scholar] [CrossRef]
- Barclay, T.G.; Day, C.M.; Petrovsky, N.; Garg, S. Review of polysaccharide particle-based functional drug delivery. Carbohydr. Polym. 2019, 221, 94–112. [Google Scholar] [CrossRef]
- Reis, A.V.; Guilherme, M.R.; Cavalcanti, O.A.; Rubira, A.F.; Muniz, E.C. Synthesis and characterization of pH-responsive hydrogels based on chemically modified Arabic gum polysaccharide. Polymer 2006, 47, 2023–2029. [Google Scholar] [CrossRef]
- Farooqi, Z.U.R.; Qadeer, A.; Hussain, M.M.; Zeeshan, N.; Ilic, P. Characterization and physicochemical properties of nanomaterials. In Nanomaterials: Synthesis, Characterization, Hazards and Safety; Elsevier: Amsterdam, The Netherlands, 2021; pp. 97–121. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, A. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: An Overview. Biol. Trace Elem. Res. 2021, 199, 344–370. [Google Scholar] [CrossRef]
- Nikalje, A.P. Nanotechnology and its applications in medicine. Med. Chem. 2015, 5, 081–089. [Google Scholar] [CrossRef]
- Barik, T.K.; Maity, G.C.; Gupta, P.; Mohan, L.; Santra, T.S. Nanomaterials: An Introduction. Nanomater. Their Biomed. Appl. 2021, 16, 1–11. [Google Scholar]
- Singh, B.K.; Lee, S.; Na, K. An overview on metal-related catalysts: Metal oxides, nanoporous metals and supported metal nanoparticles on metal organic frameworks and zeolites. Rare Metals 2020, 39, 751–766. [Google Scholar] [CrossRef]
- Salem, S.S.; Fouda, M.M.G.; Fouda, A.; Awad, M.A.; Al-Olayan, E.M.; Allam, A.A.; Shaheen, T.I. Antibacterial, Cytotoxicity and Larvicidal Activity of Green Synthesized Selenium Nanoparticles Using Penicillium corylophilum. J. Clust. Sci. 2021, 32, 351–361. [Google Scholar] [CrossRef]
- Khan, S.; Mansoor, S.; Rafi, Z.; Kumari, B.; Shoaib, A.; Saeed, M.; Alshehri, S.; Ghoneim, M.M.; Rahamathulla, M.; Hani, U.; et al. A review on nanotechnology: Properties, applications, and mechanistic insights of cellular uptake mechanisms. J. Mol. Liquids 2021, 347, 118008. [Google Scholar] [CrossRef]
- Pérez-Hernández, H.; Pérez-Moreno, A.; Sarabia-Castillo, C.; García-Mayagoitia, S.; Medina-Pérez, G.; López-Valdez, F.; Campos-Montiel, R.; Jayanta-Kumar, P.; Fernández-Luqueño, F. Ecological Drawbacks of Nanomaterials Produced on an Industrial Scale: Collateral Effect on Human and Environmental Health. Water Air Soil Pollut. 2021, 232, 435. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.; Singh, S. Nanomanipulation of consumer goods: Effects on human health and environment. In Nanotechnology in Modern Animal Biotechnology; Springer: Berlin/Heidelberg, Germany, 2019; pp. 221–254. [Google Scholar] [CrossRef]
- Pathakoti, K.; Goodla, L.; Manubolu, M.; Hwang, H.-M. Nanoparticles and Their Potential Applications in Agriculture, Biological Therapies, Food, Biomedical, and Pharmaceutical Industry: A Review. In Nanotechnology and Nanomaterial Applications in Food, Health, and Biomedical Sciences; Apple Academic Press: Palm Bay, FL, USA, 2019; pp. 121–162. ISBN 9780429425660. [Google Scholar]
- Elkodous, M.A.; El-Husseiny, H.M.; El-Sayyad, G.S.; Hashem, A.H.; Doghish, A.S.; Elfadil, D.; Radwan, Y.; El-Zeiny, H.M.; Bedair, H.; Ikhdair, O.A.; et al. Recent advances in waste-recycled nanomaterials for biomedical applications: Waste-to-wealth. Nanotechnol. Rev. 2021, 10, 1662–1739. [Google Scholar] [CrossRef]
- Parker, G. Measuring the environmental performance of food packaging: Life cycle assessment. In Environmentally Compatible Food Packaging; Elsevier: Amsterdam, The Netherlands, 2008; pp. 211–237. [Google Scholar]
- Shankar, S.; Rhim, J.-W. Bionanocomposite films for food packaging applications. In Reference Module in Food Science; Elsevier: Amsterdam, The Netherlands, 2018; pp. 1–10. [Google Scholar]
- Hassan, M.E.; Bai, J.; Dou, D.Q. Biopolymers; Definition, classification and applications. Egypt. J. Chem. 2019, 62, 1725–1737. [Google Scholar] [CrossRef]
- Soldo, A.; Mileti’c, M.; Auad, M.L. Biopolymers as a sustainable solution for the enhancement of soil mechanical properties. Sci. Rep. 2020, 10, 267. [Google Scholar] [CrossRef] [Green Version]
- Song, J.; Winkeljann, B.; Lieleg, O. Biopolymer-based coatings: Promising strategies to improve the biocompatibility and functionality of materials used in biomedical engineering. Adv. Mater. Interfaces 2020, 7, 2000850. [Google Scholar] [CrossRef]
- Jummaat, F.; Yahya, E.B.; Khalil H.P.S., A.; Adnan, A.S.; Alqadhi, A.M.; Abdullah, C.K.; A.K., A.S.; Olaiya, N.G.; Abdat, M. The Role of Biopolymer-Based Materials in Obstetrics and Gynecology Applications: A Review. Polymers 2021, 13, 633. [Google Scholar] [CrossRef] [PubMed]
- Reddy, M.S.B.; Ponnamma, D.; Choudhary, R.; Sadasivuni, K.K. A Comparative Review of Natural and Synthetic Biopolymer Composite Scaffolds. Polymers 2021, 13, 1105. [Google Scholar] [CrossRef]
- Olivia, M.; Jingga, H.; Toni, N.; Wibisono, G. Biopolymers to improve physical properties and leaching characteristics of mortar and concrete: A review. In IOP Conference Series: Materials Science and Engineering; Institute of Physics Publishing: Bristol, UK, 2018; Volume 345, p. 012028. [Google Scholar]
- Darge, H.F.; Andrgie, A.T.; Tsai, H.C.; Lai, J.Y. Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. Int. J. Biol. Macromol. 2019, 133, 545–563. [Google Scholar] [CrossRef]
- Mohammed, A.S.A.; Naveed, M.; Jost, N. Polysaccharides; classification, chemical properties, and future perspective applications in fields of pharmacology and biological medicine (a review of current applications and upcoming potentialities). J. Polym. Environ. 2021, 29, 2359–2371. [Google Scholar] [CrossRef]
- Grasdalen, H.; Larsen, B.; Smidsrød, O. 13C-NMR studies of alginate. Carbohydr. Res. 1977, 56, C11–C15. [Google Scholar] [CrossRef]
- Grasdalen, H.; Larsen, B.; Smidsrød, O. A pmr study of the composition and sequence of uronate residues in alginates. Carbohydr. Res. 1979, 68, 23–31. [Google Scholar] [CrossRef]
- Kothale, D.; Verma, U.; Dewangan, N.; Jana, P.; Jain, A.; Jain, D. Alginate as Promising Natural Polymer for Pharmaceutical, Food, and Biomedical Applications. Curr. Drug Deliv. 2020, 17, 755–775. [Google Scholar] [CrossRef]
- EL-Ghoul, Y.; Al-Fakeh, M.S.; Al-Subai, N. Synthesis and Characterization of a New Alginate/Carrageenan crosslinked biopolymer and Study of the Antibacterial, Antioxidant, and Anticancer Performance of its Mn(II), Fe(III), Ni(II), and Cu(II) polymeric complexes. Polymers 2023, 15, 2511. [Google Scholar] [CrossRef]
- da Silva, T.L.; Vidart, J.M.M.; da Silva, M.G.C.; Gimenes, M.L.; Vieira, M.G.A. Alginate and sericin: Environmental and pharmaceutical applications. Biol. Act. Appl. Mar. Polysacch. 2017, 57–86. [Google Scholar] [CrossRef] [Green Version]
- Draget, K.I.; Taylor, C. Chemical, physical and biological properties of alginates and their biomedical implications. Food Hydrocolloids 2011, 25, 251–256. [Google Scholar] [CrossRef]
- Gheorghita Puscaselu, R.; Lobiuc, A.; Dimian, M.; Covasa, M. Alginate: From food industry to biomedical applications and management of metabolic disorders. Polymers 2020, 12, 2417. [Google Scholar] [CrossRef]
- Orwoll, R.A.; Chong, Y.S. Poly(acrylic acid). In Polymer Data Handbook; James, M., Ed.; Oxford University Press: Oxford, UK, 1999; pp. 252–253. [Google Scholar]
- Zhuo, W. Synthesis, Characterization, and Self-Assembly of Amphiphilic Copolymer Based on Poly (Acrylic Acid); National University of Singapore: Singapore, 2015. [Google Scholar]
- Arkaban, H.; Barani, M.; Akbarizadeh, M.R.; Pal Singh Chauhan, N.; Jadoun, S.; Dehghani Soltani, M.; Zarrintaj, P. Polyacrylic Acid Nanoplatforms: Antimicrobial, Tissue Engineering, and Cancer Theranostic Applications. Polymers 2022, 14, 1259. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhu, J.; Wang, F.; Xiong, Y.; Wu, Y.; Wang, Q.; Weng, J.; Zhang, Z.; Chen, W.; Liu, S. Improved in vitro and in vivo biocompatibility of graphene oxide through surface modification: Poly (acrylic acid)-functionalization is superior to PEGylation. ACS Nano 2016, 10, 3267–3281. [Google Scholar] [CrossRef] [PubMed]
- Mahon, R.; Balogun, Y.; Oluyemi, G.; Njuguna, J. Swelling performance of sodium polyacrylate and poly(acrylamide-co-acrylic acid) potassium salt. SN Appl. Sci. 2020, 2, 117–132. [Google Scholar] [CrossRef] [Green Version]
- Dumitrașcu, A.-M.; Caraș, I.; Țucureanu, C.; Ermeneanu, A.-L.; Tofan, V.-C. Nickel (II) and Cobalt (II) Alginate Biopolymers as a “Carry and Release” Platform for Polyhistidine-Tagged Proteins. Gels 2022, 8, 66. [Google Scholar] [CrossRef] [PubMed]
- 43. Sharafshadeh, M.S.; Tafvizi, F.; Khodarahmi, P.; Ehtesham, S. Preparation and physicochemical properties of cisplatin and doxorubicin encapsulated by niosome alginate nanocarrier for cancer therapy. Int. J. Biol. Macromol. 2023, 235, 123686. [Google Scholar] [CrossRef]
- Mahdhi, A.; Leban, N.; Chakroun, I.; Chaouch, M.A.; Hafsa, J.; Fdhila, K.; Mahdouani, K.; Majdoub, H. Extracellular polysaccharide derived from potential probiotic strain with antioxidant and antibacterial activities as a prebiotic agent to control pathogenic bacterial biofilm formation. Microb. Pathogenesis 2017, 109, 214–220. [Google Scholar] [CrossRef]
- Ammar, C.; Alminderej, F.M.; EL-Ghoul, Y.; Jabli, M.; Shafiquzzaman, M. Preparation and Characterization of a New Polymeric Multi-Layered Material Based K-Carrageenan and Alginate for Efficient Bio-Sorption of Methylene Blue Dye. Polymers 2021, 13, 411. [Google Scholar] [CrossRef]
- Deacon, G.B.; Phillips, R.J. Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination. Coord. Chem. Rev. 1980, 33, 227–250. [Google Scholar] [CrossRef]
- Al-Fakeh, M.S.; Alsikhan, M.A.; Alnawmasi, J.S. Physico-Chemical Study of Mn(II), Co(II), Cu(II), Cr(III), and Pd(II) Complexes with Schiff-Base and Aminopyrimidyl Derivatives and Anti-Cancer, Antioxidant, Antimicrobial Applications. Molecules 2023, 28, 2555. [Google Scholar] [CrossRef]
- Al-Fakeh, M.S.; Messaoudi, S.; Alresheedi, F.I.; Albadri, A.E.; El-Sayed, W.A.; Saleh, E.E. Preparation, Characterization, DFT Calculations, Antibacterial and Molecular Docking Study of Co(II), Cu(II), and Zn(II) Mixed Ligand Complexes. Crystals 2023, 13, 118. [Google Scholar] [CrossRef]
- Yue, W.; Zhang, H.H.; Yang, Z.N.; Xie, Y. Preparation of low-molecular-weight sodium alginate by ozonation. Carbohydr. Polym. 2021, 251, 117104. [Google Scholar] [CrossRef] [PubMed]
- Vetriselvi, V.; Santhi Raj, R.J.J. Synthesis and characterization of poly acrylic acid modified with dihydroxy benzene-redox polymer. Res. J. Chem. Sci. 2014, 4, 78–86. [Google Scholar]
- Parihari, R.K.; Patel, R.K.; Patel, R.N. Synthesis and characterization of metal complexes of manganese-, cobalt-and zinc (II) with Schiff base and some neutral ligand. J. Indian Chem. Soc. 2000, 77, 339. [Google Scholar]
- Mohanan, K.; Murukan, B. Complexes of manganese (II), iron (II), cobalt (II), nickel (II), copper (II), and zinc (II) with a bishydrazone. Synth. React. Inorg. Met. Org. Nano Met. Chemistry 2005, 35, 837–844. [Google Scholar] [CrossRef]
- Gupta, L.K.; Bansal, U.; Chandra, S. Spectroscopic and physicochemical studies on nickel(II) complexes of isatin-3,2′-quinolylhydrazones and their adducts. Spectrochim. Acta Part A Mol. Biomol. Spectro. 2007, 66, 972–975. [Google Scholar] [CrossRef]
- Ajaykumar, D. Kulkarni, et, Synthesis, spectral, electrochemical and biological studies of Co(II), Ni(II) and Cu(II) complexes with Schiff bases of 8-formyl-7-hydroxy-4-methyl coumarin. J. Coord. Chem. 2009, 62, 481–492. [Google Scholar]
- Al-Fakeh, M.S.; Allazzam, G.A.; Yarkandi, N.H. Ni (II), Cu (II), Mn (II), and Fe (II) Metal Complexes Containing 1, 3-Bis (diphenylphosphino) propane and Pyridine Derivative: Synthesis, Characterization, and Antimicrobial Activity. Int. J. Biomater. 2021, 2021, 4981367. [Google Scholar] [CrossRef]
- Al-Fakeh, M.S.; Alsaedi, R.O. Synthesis, characterization, and antimicrobial activity of CoO nanoparticles from a Co (II) complex derived from polyvinyl alcohol and aminobenzoic acid derivative. Sci. World J. 2021, 2021, 6625216. [Google Scholar] [CrossRef]
- Al-Fakeh, M.S. Synthesis, characterization and anticancer activity of NiO nanoparticles from a Ni (II) complex derived from chitosan and pyridine derivative. Bulg. Chem. Commun. 2021, 53, 321–326. [Google Scholar]
- Al-Fakeh, M.S. Synthesis, thermal stability and kinetic studies of copper (II) and cobalt (II) complexes derived from 4-aminobenzohydrazide and 2-mercaptobenzothiazole. Eur. Chem. Bulletin 2020, 9, 403–409. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, J.; Ao, Q. Preparation of Alginate-Based Biomaterials and Their Applications in Biomedicine. Mar. Drugs 2021, 19, 264. [Google Scholar] [CrossRef] [PubMed]
- Geetha Bai, R.; Tuvikene, R. Potential Antiviral Properties of Industrially Important Marine Algal Polysaccharides and Their Significance in Fighting a Future Viral Pandemic. Viruses 2021, 13, 1817. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Jiang, F.; Xing, Z.; Fan, L.; Li, Y.; Wang, S.; Ling, J.; Ouyang, X.-K. Efficient Delivery of Curcumin by Alginate Oligosaccharide Coated Aminated Mesoporous Silica Nanoparticles and In Vitro Anticancer Activity against Colon Cancer Cells. Pharmaceutics 2022, 14, 1166. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez-Rodríguez, A.G.; Juárez-Portilla, C.; Olivares-Bañuelos, T.; Zepeda, R.C. Anticancer activity of seaweeds. Drug Discov. Today 2018, 23, 434–447. [Google Scholar] [CrossRef]
Microbe Type | Strain | Reference |
---|---|---|
Gram-positive bacteria | S1 | Staphylococcus aureus ATCC 25923 |
S4 | Micrococcus luteus NCIMB 8166 | |
Gram-negative bacteria | S5 | Escherichia coli ATCC 35218 |
S10 | Salmonella thyphimurium ATCC 14028 | |
Yeast | 9C | Candida albicans ATCC 90028 |
Compound | ν(O-H) | ν(C-H) | ν(COO)sym | ν(COO)asym | υ∆ | ν(C=C) | ν(CO) | ν(C-O-C) | ν(M-O) | ν(M-Cl) |
---|---|---|---|---|---|---|---|---|---|---|
AG-PAA | 3222 | 2922 | 1725 | 1413 | 312 | 1600 | 1263 | 1025 | - | - |
Co(II) complex | 3225 | 2930 | 1715 | 1415 | 300 | 1599 | 1157 | 1022 | 519 | 417 |
Cu(II) complex | 3199 | 2932 | 1703 | 1421 | 282 | 1592 | 1273 | 1026 | 582 | 471 |
Mn(II) complex | 3444 | 2931 | 1696 | 1419 | 277 | 1595 | 1103 | 1027 | 523 | 409 |
Ni(II) complex | 3216 | 2925 | 1700 | 1414 | 286 | 1604 | 1164 | 1018 | 515 | 422 |
Ligands and the Complexes | λmax. (nm) | ῡ (cm−1) | Assignment | µeff (B.M.) | Geometry |
---|---|---|---|---|---|
PAA | 270 | 37,037 | n→π* | - | - |
AG | 254 | 39,370 | π→π* | - | - |
Co(II) complex | 560 | 17,857 | 4T1g (F)→4T1g (P) | 4.82 | Octahedral |
273 | 36,630 | n→π* | |||
258 | 38,759 | π→π* | |||
Cu(II) complex | 690 | 14,490 | 2Eg →2T2g | 1.74 | Octahedral |
277 | 36,101 | n→π* | |||
263 | 38,022 | π→π* | |||
Mn(II) complex | 510 | 19,607 | 6A1g →4Eg, 4A1g | 5.94 | Octahedral |
278 | 35,971 | n→π* | |||
263 | 38,022 | π→π* | |||
Ni(II) complex | 512 | 19,531 | 3A2g(F)→3T1g(P)(υ3) | 2.88 | Octahedral |
580 | 17,241 | 3A2g(F)→3T1g(F)(υ2) | |||
286 | 34,965 | n→π* | |||
251 | 39,840 | π→π* |
Compounds | Stage | Temp. Range (°C) | TGA (Wt. Loss) (%) Found Calcd. | Assignment | ||
---|---|---|---|---|---|---|
Co(II) complex | 1st 2nd 3rd 4th | 65–150 152–220 | 13.94 9.05 59.83 | 14.32 9.38 60.94 | Loss of three water molecules Loss of chloride atom Decomposition rest of the organic ligand AG-PAA with the formation of cobalt oxide | |
222–350 352–500 | ||||||
Cu(II) complex | 1st 2nd 3rd 4th | 60–118 120–205 | 13.98 9.18 59.32 | 14.15 9.27 60.20 | Loss of three water molecules Loss of chloride atom Decomposition rest of the organic ligand AG-PAA with the formation of copper oxide | |
207–326 328–500 | ||||||
Mn(II) complex | 1st 2nd 3rd 4th | 70–142 144–202 | 13.90 9.12 59.88 | 14.46 9.48 61.59 | Loss of three water molecules Loss of chloride atom Decomposition rest of the organic ligand AG-PAA with the formation of manganese oxide | |
204–295 297–500 | ||||||
Ni(II) complex | 1st 2nd 3rd 4th | 64–138 | 13.65 9.08 59.72 | 14.31 9.39 60.98 | Loss of three water molecules Loss of chloride atom Decomposition rest of the organic ligand AG-PAA with the formation of nickel oxide | |
140–230 232–368 | ||||||
370–500 |
Parameters | Crosslinked Polymeric Ligand (Poly-PAA/AG) | Co(II) Complex | Cu(II) Complex | Mn(II) Complex | Ni(II) Complex |
---|---|---|---|---|---|
Empirical formula | C9H10O7 | C9H15CoClO10 | C9H15CuClO10 | C9H15MnClO10 | C9H15NiClO10 |
Formula Weight | 230.12 | 377.60 | 382.21 | 373.60 | 377.36 |
a (Å) | 20.22 | 7.967 | 7.8447 | 7.4014 | 5.673 |
b (Å) | 11.58 | 7.967 | 7.8447 | 8.7901 | 5.655 |
c (Å) | 20.74 | 7.967 | 26.358 | 3.6889 | 8.004 |
Alfa (◦) | 90.00 | 90.00 | 90.00 | 90.00 | 90.35 |
Beta (◦) | 110.64 | 90.00 | 90.00 | 98.165 | 90.72 |
gamma (◦) | 90.00 | 90.00 | 120.00 | 90.00 | 89.99 |
Crystal system | Monoclinic | Cubic | Hexagonal | Monoclinic | Triclinic |
Space group | C12/m1 | Fm-3m | R-3m | C2/m | I-1 |
Volume of unit cell (Å3) | 4498 | 505.8 | 1404.7 | 237.57 | 256.7 |
Particle size (nm) | 171 | 14 | 38 | 33 | 68 |
Compound | Antimicrobial | Antioxidant | ||||
---|---|---|---|---|---|---|
S1 | S4 | S5 | S10 | 9C | ||
Co(II) complex | 2.1 | 1.3 | 2.2 | 1.4 | 3.1 | 71 ± 1.4 |
Cu(II) complex | 5.4 | 1.4 | 1.7 | 2.9 | 4.1 | 82 ± 1.4 |
Mn(II) complex | 1 | 1.65 | 1.4 | 1.4 | 1.3 | 61 ± 0.6 |
Ni(II) complex | 1.9 | 1.3 | 1.9 | 1.2 | 1.35 | 70.5 ± 0.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Fakeh, M.S.; Alazmi, M.S.; EL-Ghoul, Y. Preparation and Characterization of Nano-Sized Co(II), Cu(II), Mn(II) and Ni(II) Coordination PAA/Alginate Biopolymers and Study of Their Biological and Anticancer Performance. Crystals 2023, 13, 1148. https://doi.org/10.3390/cryst13071148
Al-Fakeh MS, Alazmi MS, EL-Ghoul Y. Preparation and Characterization of Nano-Sized Co(II), Cu(II), Mn(II) and Ni(II) Coordination PAA/Alginate Biopolymers and Study of Their Biological and Anticancer Performance. Crystals. 2023; 13(7):1148. https://doi.org/10.3390/cryst13071148
Chicago/Turabian StyleAl-Fakeh, Maged S., Munirah S. Alazmi, and Yassine EL-Ghoul. 2023. "Preparation and Characterization of Nano-Sized Co(II), Cu(II), Mn(II) and Ni(II) Coordination PAA/Alginate Biopolymers and Study of Their Biological and Anticancer Performance" Crystals 13, no. 7: 1148. https://doi.org/10.3390/cryst13071148
APA StyleAl-Fakeh, M. S., Alazmi, M. S., & EL-Ghoul, Y. (2023). Preparation and Characterization of Nano-Sized Co(II), Cu(II), Mn(II) and Ni(II) Coordination PAA/Alginate Biopolymers and Study of Their Biological and Anticancer Performance. Crystals, 13(7), 1148. https://doi.org/10.3390/cryst13071148