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Abstract: Half-Heusler alloys are among the most promising thermoelectric materials. In the present
review, thermoelectric properties (at 300 K and 800 K) of more than 1100 compositions from more
than 220 publications between 1998 and 2023 were collected and evaluated. The dependence of the
peak figure of merit, ZTmax, of p- and n-type half-Heusler alloys on the publishing year and the peak
temperature is displayed in several figures. Furthermore, plots of ZT vs. the electrical resistivity,
the Seebeck coefficient and the thermal conductivity at 300 K and 800 K are shown and discussed.
Especially thermal conductivity vs. power factor leads to a good overview of ZT. For both p- and
n-type individually separated into systems, ZTs and peak ZTs in dependence on the composition are
displayed and discussed. This overview can help to find the ideal half-Heusler alloy for practical use.

Keywords: half-Heusler alloys; physical properties; figure of merit (ZT)

1. Introduction

Thermoelectric (TE) modules and generators have the ability to directly convert
waste heat into electric power and thus can be considered alternative, sustainable and
“green” energy sources. There exist various classes of TE materials such as tellurides,
selenides, clathrates, silicides, oxides, Zintl phases, antimonides, skutterudites, organic
semiconductors, Heusler and half-Heusler alloys, etc., each of them qualifying in a defined
temperature range. To judge the TE quality, the figure of merit, ZT = S2T/ρ(λe + λph),
is used, where S is the Seebeck coefficient, ρ is the electrical resistivity, λ is the thermal
conductivity, consisting of an electronic part, λe, and a phonon (lattice) part, λph, and T
is the temperature. To arrive at a high ZT, the power factor, pf = S2/ρ, should be high,
whereas λ should be low.

Half-Heusler (HH) alloys are promising TE materials intended for mid-to-high temper-
ature power generation applications with already high ZT values. In addition, the starting
materials are available, abundant, and, if hafnium and noble metals are avoided, cheap, a
fact very important in respect of mass production.

Half-Heusler (HH) alloys are named after Friedrich Heusler (1866–1947), a German
chemist and mining engineer. Half-Heusler alloys are members of the vast family of Heusler
alloys with the general composition X2YZ, consisting of three interpenetrating face-centered
cubic (fcc) sublattices (space group Fm3m). Reduction of symmetry (non-centrosymmetric
space group F-43m) splits the X2 sublattice of multiplicity eight into two sublattices of
multiplicity four, of which one is empty, resulting in the formula XYZ of the so-called
HH phases. The big advantage in the optimization of thermoelectric properties of HH
compounds is the opportunity to dope each of the four sublattices individually. Besides
that, HH alloys tend from metallic to half-metallic alloys, exhibit interesting magnetic
properties and are small band gap semiconductors. Generally, one can divide HH alloys
into the following main groups: MNiSn, MCoSb (M = Ti, Zr, Hf), MFeSb (M = V, Nb, Ta),
the 19-electron system and other HH alloys not covered by these four systems.

Crystals 2023, 13, 1152. https://doi.org/10.3390/cryst13071152 https://www.mdpi.com/journal/crystals

https://doi.org/10.3390/cryst13071152
https://doi.org/10.3390/cryst13071152
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://orcid.org/0000-0002-8056-5006
https://orcid.org/0000-0002-7733-1612
https://doi.org/10.3390/cryst13071152
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/article/10.3390/cryst13071152?type=check_update&version=1


Crystals 2023, 13, 1152 2 of 27

Reviews as papers, chapters in a book, or even a book have been published [1–8]
focusing mainly on the crystal structure, magneto-optical properties, electron–phonon
interactions, mobility, ways to enhance the power factor, new advances, applications and
so on. Freer et al. [9] recently published tables of TE materials: the chapter about HH
alloys was handled by S. Han, C. Fu and T. Zhu. They collected TE parameters from
about 90 publications of p- and n-type HH alloys, however, from each publication for the
compound with the highest ZT only (for room temperature and the temperature of the
peak ZT). These peak ZTs were also displayed as a figure.

In the current review, measured data of the Seebeck coefficient, the electrical resistivity
and the thermal conductivity of all compositions in each published paper were collected,
as well as the calculated power factor and ZT (at 300 K and 800 K) and particularly the
peak ZT. As more than 220 papers were evaluated, this adds up to about 300 p-type and
810 n-type compositions. These data were plotted and evaluated to gain a deeper insight,
e.g., ZT vs. Seebeck coefficient, resistivity, thermal conductivity, composition and pf vs.
thermal conductivity.

2. Experimental Production Methods

There exist various methods to produce half-Heusler alloys, the basics of the most
popular ones will be described as follows.

The historically favored route, and still the mostly used one, is the melting-annealing
one. With some variations, the essential steps are to arc-melt the defined amounts of
high-purity elemental pieces under argon, flip the reguli and remelt them several times
for good homogenization. Oxygen contamination must be avoided; therefore, a certain
vacuum level must be kept in combination with high-purity argon (the use of oxygen-getter
material, such as Zr or Ti, which is melted prior to the actual samples, can further improve
the sample quality). In some cases, the samples are additionally melted in a high-frequency
induction furnace several times. Between the melting steps, it is possible to frequently
break them into pieces and turn them upside down and outside-inside. As a last step, they
are wrapped into protective Mo foils, vacuum sealed in a quartz ampulla and annealed at
high temperatures, usually between 900–1000 ◦C for at least 48 h to equilibrate the samples
and to further increase homogeneity.

This method is also suitable for big quantities (ingots with a weight of >1 kg) when
stoichiometric amounts of pure elements are synthesized together in a vacuum induction
furnace, and the melt is cast into a mold.

A similar production method is levitation melting (e.g., [10–12]), which is becoming
more and more popular in recent years. The main advantage of levitation melting is that
(i) the sample has no contact with the environment as well as (ii) the eddy currents, which
improve the homogeneity of the melt.

All these above-described methods are followed by breaking the solidified samples
and pulverizing them manually or, in recent years more often practiced, ball-mill (BM)
or high-energy ball-mill (HBM) and consolidating them either via hot-pressing (HP) or
spark plasma sintering (SPS). For half-Heusler alloys containing materials with a high
vapor pressure at elevated temperatures, such as antimony, it is necessary to compensate
for antimony vaporization losses before HP.

Mechanical alloying (MA) is a fast method (e.g., [13–16]) to prepare homogeneous
powder mixtures prior to consolidation in HP or spark plasma sintering devices.

In the so-called solid-state reaction process (e.g., [17]), the powder mixture of high-
purity constituents is heated (almost 1000 ◦C) under a flowing argon atmosphere for up to
a week, usually followed by SPS.

Self-propagation high-temperature synthesis (SHS) or combustion synthesis (CS) is a
scalable, rapid preparation method. It is based on a propagating self-sustained exothermic
reaction in consolidated elemental powders of the desired composition, and it yields a
homogeneous product similar to the ones obtained by the well-known zone melting process.
In addition, the SHS process is so fast that evaporation of low-melting-point elements is



Crystals 2023, 13, 1152 3 of 27

dramatically suppressed, leading to a precisely controlled composition (for details, see,
e.g., [18–20]).

In some cases, SHS is combined with the selective laser melting (SLM) method. For
SLM, a laser beam is used to melt a single-layer powder bed that rapidly solidifies as soon
as the laser moves away. Layer upon layer, a three-dimensional object can be formed.

Microwave preparation (e.g., [21–24]) is another fast way to prepare half-Heusler
alloys. Stoichiometric amounts of metal powders are cold-pressed into bar-shaped pellets,
directly sealed into evacuated quartz tubes and placed into a crucible filled with some
granular carbon, which acts as the microwave susceptor material. The sample is surrounded
by alumina insulation foam to minimize heat loss. Finally, the whole set-up is placed into a
commercial microwave reactor with a rotating plate. The reactions are allowed to run at
100% power (e.g., 700 W) for 1 min.

In some cases, the bulk HH alloy is processed by high-pressure torsion to further
improve the TE performance by severe plastic deformation resulting in a drastic reduc-
tion towards ultra-low thermal conductivity, which occurs due to grain refinement and
deformation-induced defects (for details, see references [25–27]).

Whenever the phonon part of the thermal conductivity was not published, it was
calculated by the authors: λph = λ−λe with λ as the total thermal conductivity and λe
as the electron part; λe = LT/ρ (Wiedemann–Franz law) with L as the Lorenz number
(calculated as suggested by Kim et al. [28]) and ρ is the electrical resistivity. In all cases
where the power factor and/or ZT were not published, it was calculated by the authors from
pf = S2/ρ and ZT = S2T/(ρλ), respectively.

3. Results and Discussion
3.1. General Overview

In this chapter, all data from references [10–27,29–218] were used for figures and
discussions. The references [29–218] are numbered by the publication year, within one year,
in alphabetical order.

Looking at the highest ZTs published during the last 25 years, one can see in Figure 1
that, as already mentioned in the introduction, considerably more n-type half-Heusler
alloys were investigated than p-type (this review comprises 294 p-type compounds and
816 n-type compounds). It is also clearly visible that the trend of high peak ZTs increases
almost linearly from 2004 to 2018. There are exceptions for the n-type, such as (i) the work
of Sakurada et al. [43], who published already in 2005 outstanding high values (ZT = 1.25
to 1.5) for Ti0.5Zr0.25Hf0.25NiSn doped with small amounts of antimony, or (ii) from Shen
et al. [17,33] and Kawasaki et al. [37], who reached almost ZTs = 1 at 800 K in 2001 and
2004 for ZrNiSn0.99Sb0.01. It is also worth mentioning that Yu et al. [150] reached ZT = 1.6 at
1200 K for his p-type HH series (Nb1−xTax)0.8Ti0.2FeSb. Furthermore, it seems that after a
boom during 2015–2020, the number of half-Heusler publications has dropped significantly.

Figure 2 displays the highest ZTs as a function of temperature. It is necessary to point
out that in some cases ZTmax is not really the peak ZT of the respective sample but the ZT
at the highest measured temperature. This is especially the case for publications earlier
than 2005. Besides that, in most cases ZTmax is published for temperatures between 700 K
and 1000 K; the highest temperatures for ZTmax for p- as well as n-type are around 1200 K.

Figures 3 and 4 depict the dependence of the power factor on the thermal conductivity
at 300 K and 800 K, respectively. Figure 3 shows that at 300 K, almost all power factor
values for the n-type are within the range of 4 mW/mK2 for thermal conductivities up to
250 mW/cmK, whereas the p-type displays much higher power factors, reaching values
higher than 10 mW/mK2 for thermal conductivities up to about 150 mW/cmK, e.g., for the
Nb1−xTixFeSb-series of He et al. [131] or for Nb0.95Hf0.05FeSb and Nb0.95Zr0.05FeSb of Ren
and colleagues [160].
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The situation has changed comparing this figure now with the one for 800 K (Figure 4),
and as for p- and n-type, all data are mainly evenly distributed within a power factor–
thermal conductivity window of almost 0–5.5 mW/mK2 by 20–80 mW/cmK.

Lines for the resulting ZT values are drawn in both Figures 3 and 4, revealing that
at 300 K, no compound exceeds ZT = 0.5. Whilst many of the p-type compounds range
between ZT = 0.1 and 0.25 or have values as low as almost 0, one can find the values for the
n-type all over, the very low values due to high thermal conductivities. At 800 K, both p- and
n-type exceed the ZT = 1.5 line. The majority of data can be found for thermal conductivities
between 20 and 80 mW/cmK, representing ZTs from almost 0 to ZT = 1.5. This figure also
illustrates that p-type HH materials generally exhibit lower thermal conductivities than the
n-type.

Figures 5 and 6 depict the relation between electrical resistivity and ZT at 300 K and
800 K, respectively. It shows that, especially in the 300 K temperature region, individual
specimens have very high resistivities, resulting, as a consequence, in very low ZTs. Gener-
ally, the electrical resistivity decreases with increasing temperature. Figure 6 displays lower
resistivity values. Still, here one can find ZTs in the range of 10−3 or even lower. The insert,
a cutout, in each ZT-resistivity figure, gives a better overview, indicating that, especially
for 800 K, most data can be found between 500 and 2500 µΩcm. In this region are also the
highest ZTs.
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Figures 7 and 8 present the dependence of ZT on the Seebeck coefficient. Especially at
300 K, the area of Seebeck values is much wider for the n- than for the p-type. Generally, it
seems that an absolute Seebeck value of 200 ± 20 µV/cm leads to high ZTs, a great finding
for the production of new half-Heuslers.
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Whereas for the high-temperature regime (Figure 9), the data ZT vs. λ are more or
less evenly mixed at 300 K (insert in Figure 9), most p-type half-Heuslers have thermal
conductivities between 20 and 70 mW/cmK. Of course, in both regions, ZTs are high for
low thermal conductivities. Comparing the total and the lattice thermal conductivities in
Figures 9 and 10, the distribution of the data looks very similar, indicating that the electron
part of the thermal conductivity is rather low, and, as a consequence, the phonon part is in
the range of the total thermal conductivity.
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In this chapter, it was only distinguished between p- and n-type half-Heusler alloys. In
the following paragraphs for p- and n-type half-Heusler alloys, in addition, the various sys-
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tems, i.e., the (Ti,Zr,Hf)NiSn-system, the (Ti,Zr,Hf)CoSb-system, the (V,Nb,Ta)FeSb-system,
the 19-electron system and other p- and n-type HH materials (see also Tables 1 and 2) will
be discussed separately.

Table 1. N-type half-Heusler alloys.

N-Type Half-Heusler Alloys
(Ti,Zr,Hf)NiSn-System X Z References (Marked with *: Not Measured above RT)

TiNiSn [19,21–23], [31] *, [30,34,39,58,75,83,88,90,99,139,143,144,152,178,210,213]

TiNiSn/Z Sb [24,39,58]

Si [34]

(Ti,X)NiSn Nb [66]

Ta [178,212]

Ti(Ni,X)Sn Mn [138,139,144]

Pd [17]

Pt [34]

Cu [152]

Ti(Ni,X)Sn/Z Co Sb [48,67,179,198,207,208]

ZrNiSn
[6,7,10,12,14,17], [29,31,32] *,
[33,35–37,42,57,66,70,71,85,99,106,108,110,119,122,123,129,153–
155,166,171,174,196,203,210,212]

ZrNiSn/Z In [32] *

Si [181]

Ge [181,196]

Sb [10,17,19], [32] *, [37,123,195]

Bi [145]

(Zr,X)NiSn Sc [122]

Y [57,114]

V [155]

Nb [66]

Ta [203,212]

Zr(Ni,X)Sn Pd [33,34]

Cu [36]

Co + Cu [36]

Zr(Ni,X)Sn/Z Pd Sb [33]

HfNiSn [12], [31] *, [99,119,129,195]

HfNiSn/Z Sb [129]

(Ti,Zr)NiSn [25–27,31,34,65,69,90,99,100,129,161]

(Ti,Zr)NiSn/Z Sb [25–27,90,99,100,149,161,201,210]

(Ti,Zr,X)NiSn/Z V Sb [146]

Nb Sb [146]

(Ti,Hf)NiSn [31] *, [34,58,65,69,90,102,124,129,134,143]

(Ti,Hf)NiSn/Z Sb [58,143]

(Ti,Hf,X)NiSn Nb [31] *

(Ti,Hf)(Ni,X)Sn Pd [58]
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Table 1. Cont.

N-Type Half-Heusler Alloys
(Ti,Zr,Hf)NiSn-System X Z References (Marked with *: Not Measured above RT)

(Zr,Hf)NiSn [11], [31,32] *, [65,77,78,80,81,84,87,90,93,99,109,137,154,156,190]

(Zr,Hf)NiSn/Z Sb [11,12,18,43,49,50,73,76,77,79,89,93,95,98,111,119,124,127,129,132,133,135,
138,140,146,172,187,201,204]

(Zr,Hf,X)NiSn V [81]

Nb [31] *

Ta [203,212]

(Zr,Hf)(Ni,X)Sn Pd [17], [29] *, [33,49,50]

Pt [95]

(Zr,Hf,X)NiSn/Z Y Sb [73]

V Sb [140]

Nb Sb [137,140]

Ta Sb [140]

(Zr,Hf)(Ni,X)Sn/Z Pd Sb [33]

(Ti,Zr,Hf)NiSn [40,41,43,47], [49] *, [105,129,146,170,183]

(Ti,Zr,Hf)NiSn/Z Sb [43,127,189]

Bi [77,93]

Te [93]

(Ti,Zr,Hf,X)NiSn Nb [105]

(Ti,Zr,Hf)(Ni,X)Sn Cu [170]

(Ti,Zr,Hf,X)NiSn/Z V + Nb Sb [174]

(Ti,Zr)Ni1±xSn [22,110,171]

(Ti,Zr)Ni1±xSn [138]

(Zr,Hf)Ni1±xSn [77]

TiNiSn+full Heusler [83]

TiNiSn+HfO2 [149]

ZrNiSn+B [29] *

ZrNiSn+La [108]

ZrNiSn+ZrO2 [35]

ZrNiSn+ZnO [153]

(Zr,Hf)NiSn+W [197]

(Zr,Hf)NiSn+ZrO2 [95]

(Zr,Hf)NiSn/Z+Nb Sb [80] *

(Zr,Hf)NiSn/Z+full Heusler Sb [77,78]

(Zr,Hf)(Ni,X)Sn/Z+ZrO2 Pd Sb [49]

(Ti,Zr,Hf)NiSn/Z+ZrO2 Sb [17]

(Ti,Zr,Hf)CoSb-System

TiCoSb [38,44,46,48,55,56,61,68,177]

(Ti,X)CoSb Ta [204]

Ti(Co,X)Sb Fe [61]

Ni [48]
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Table 1. Cont.

N-Type Half-Heusler Alloys
(Ti,Zr,Hf)NiSn-System X Z References (Marked with *: Not Measured above RT)

(Ti,X)CoSb/Z Nb + Ta Sn [38]

ZrCoSb [3,45,46,56,60,141,147,177]

(Zr,X)CoSb Nb [156]

Zr(Co,X)Sb Ni [141]

HfCoSb [45,46,56,177,195]

(Hf,X)CoSb Nb [182]

(Ti,Zr)CoSb [67]

(Ti,Zr)(Co,X)Sb Ni [67]

(Ti,Hf,X)CoSb Ta [204]

(Zr,Hf,X)CoSb Nb [158,182]

Nb + Ta [214]

(Ti,Zr,Hf)CoSb [56,64]

(Ti,Zr,Hf)(Co,X)Sb Ni [64]

(V,Nb,Ta)FeSb-System

VFeSb [74,91,192]

(V,X)FeSb Ti [15]

NbFeSb [26,148]

Nb(Fe,X)Sb Ir [184]

(V,Nb)FeSb [92]

(V,Nb)(Fe,X)Sb Co [92]

Ti(Fe,X)Sb Ni [200]

Ti(Fe,X)Sb/Z Ni Sn [13]

19-Electron System

VCoSb [136,173,176,199]

VCoSb/Z Sn [136]

NbCoSb [116,117,142,151,165,173]

Nb(Co,X)Sb Ni [186]

NbCoSb/Z Sn [142]

TaCoSb [173]

(Ti,V)CoSb [136,199]

(V,Nb)CoSb [117]

(Nb,Ta)CoSb [117]

(V,Nb,Ta)CoSb [117]

(Ti,Nb,Ta)CoSb/Z Sn [38]

TiNiSb [212]

(Ti,X)NiSb Sc [212]

TiPtSn [194]

Other N-type Half-Heusler
Material

TiCoSn [21]
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Table 1. Cont.

N-Type Half-Heusler Alloys
(Ti,Zr,Hf)NiSn-System X Z References (Marked with *: Not Measured above RT)

TiPtSn [51]

VCoSn [207]

NbCoSn [130,180,202]

NbCoSn/Z Sb [52,63]

Nb(Co,X)Sn Pt [202]

(Nb,Ti)Sn/Z Sb [52]

TaCoSn [180]

(Ta,X)CoSn Nb [180]

(Ta,X)CoSn/Z Nb Sb [180]

ZrCoBi [167,187]

Table 2. P-type half-Heusler alloys.

P-Type Half-Heusler Alloys
(Ti,Zr,Hf)NiSn-System X Z References

(Zr,X)NiSn Sc [122]

Y [114]

ZrNiSn + Co [71]

ZrNiSn + Ir [71]

(Ti,Zr,Hf)CoSb-System

TiCoSb [54,211]

TiCoSb/Z Ge [68]

TiCoSb/Z Sn [55,107,120,164]

ZrCoSb/Z Sn [16,19,60,107,126]

HfCoSb/Z Sn [107,120]

(Ti.Zr)CoSb/Z Sn [107]

(Ti,Hf)CoSb/Z Sn [18,86,107,120,121,132,159]

(Zr,Hf)CoSb/Z Sn [62,76,82,98,107,115,132,156,157]

(Ti,Zr,Hf)CoSb/Z Sn [96,107,121]

(Ti,Hf)CoSb/Z+Cu1.96Ni0.04Te0.97Se0.03 Sn [159]

(Zr,Hf)CoSb/Z+HfO2 Sn [103]

(Ti,Zr)[Fe,(Fe,Co),
(Fe,Ni)]Sb-System

TiFeSb [164]

Ti(Fe,Co)Sb [61,94,164,206,218]

Ti(Fe,Co)Sb/Z Sn [164]

(Ti,Zr)(Co,Fe)Sb [218]

(Ti,Zr)(Co,Fe)Sb/Z Sn [218]

Ti(Fe,Ni)Sb [200]

Ti(Co,Fe)Sb+InSb [94]
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Table 2. Cont.

P-Type Half-Heusler Alloys
(Ti,Zr,Hf)NiSn-System X Z References

(V,Nb,Ta)FeSb-System

(V,X)FeSb Ti [15,97]

Hf [192]

Ti + Hf [193]

NbFeSb [27,112,131,147,195,206]

(Nb,X)FeSb Ti [104,112,128,131,148,160,163,183,201,206]

Zr [113,148,160,163]

Hf [113,148,160,163,168]

Ti + Hf [26,162]

Ti + Ta [150,204]

(V,Nb,X)FeSb Ti [101,112]

TaFeSb [175,188]

(Ta,X)FeSb Ti [175,188]

Other P-Type Half-Heusler
Material

NbCoSb/Z Sn [201]

ZrCoBi/Z Sn [169]

ZrPtSn [51]

HfPtSn [51]

ScNiSb [185,191]

DyNiSb [191]

ErNiSb [191]

TmNiSb [191,212]

LuNiSb [191]

YNiBi [118]

ErPdSb [53]

ErPdBi [53]

LaPdBi [59]

GdPdBi [59]

3.2. N-Type Half-Heusler Alloys

All compounds with the respective references can be found in Table 1. In some cases
(indicated by *), measurements were only performed below room temperature.

3.2.1. (Ti,Zr,Hf)NiSn-System

Comparing the ZT values of TiNiSn, ZrNiSn and HfNiSn, as shown in Figures 11 and 12,
one can immediately see that ZrNiSn is the most investigated alloy of these three, whereas
HfNiSn is not so popular. It is evident from Figures 11 and 12 that the highest ZTs at 300 K
as well as at 800 K in this system are for (Zr,Hf)NiSn and (Ti,Zr,Hf)NiSn and even more so
when Sb-doped at the Sn site.
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Gürth et al. [129] published ZT = 1 at 823 K for TiNiSn and for ZrNiSn, Misra et al. [106]
ZT = 0.9 at 773 K for ZrNiSn and Liu et al. [119] ZT = 0.8 at 1000 K for HfNiSn. In comparison
to these values, those for compounds with Ti and Zr, Ti and Hf, Zr and Hf or with Ti and Zr
and Hf reach much higher values, such as for Zr0.7Hf0.3NiSn ZT = 1.2 at 873 K (Chauhan
et al. [154]), for Ti0.5Zr0.25Hf0.25NiSn ZT = 1.3 at 693 K (Sakurada and Shutoh [43]; Shutoh
and Sakurada [47]) or even ZT = 1.5 at 800 K (Rogl et al. [146]).
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Doping in the (Ti,Zr,Hf)NiSn-system with X (X = Sc, Y, V, Nb, V + Nb, Ta, Mn, Co,
Cu, Co + Cu, Pd, Pt, Pb) (see also Table 1) was not really successful as generally, all these
alloys did not have higher ZTs; however, from Figure 11 as well as from Figure 12 it is
obvious that with an additional substitution of Sn in many cases ZT is enhanced. Usually,
Sn is substituted by a very small amount of Sb or Ge, but also, in rarer cases, In, Si, Pb, Bi
or Te was used. The highest ZT values were reached for Ti0.5Zr0.25Hf0.25NiSn0.998Sb0.002
at 700 K (ZT = 1.5, Shutoh and Sakurada [47]) and Ti0.5Zr0.25Hf0.25NiSn0.99Sb0.01 at 825 K
(ZT = 1.45, Rogl et al. [146]). Besides that, there are several compounds with ZT ∼ 1.3, such
as (Hf0.6Zr0.4)0.99V0.01NiSn0.995Sb0.005 at 900 K (Chen et al. [140]) or Ti0.49Zr0.49V0.02NiSn0.98
Sb0.02 at 823 K (Rogl et al. [146]) (see also Figure 12).

Various groups used additions (not shown in any figure but presented in Table 1),
mainly nanoparticles, to reduce the thermal conductivity and to enhance ZT. Schwall and
Balke [80] incorporated Nb into Zr0.5Hf0.5NiSn but presented data only below room tem-
perature. Akram et al. [108] admixed La with ZrNiSn: the enhancement in ZT was within
the error bar of ZT (from 0.52 to 0.54), which also applies to Visconti et al. [149], who used
HfO2 for Ti0.5Zr0.5NiSn0.994Sb0.006 (ZT rises from 0.9 to 1). A better result was achieved
by Chauhan et al. [153] by mixing ZnO with ZrNiSn (highest ZT = 1). Nanoparticles of
ZrO2 were added to ZrNiSn (Huang et al. [35]) as well as to Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01
and Zr0.25Hf0.6Ti0.15NiSn0.995Sb0.005 (Chen et al. [49] and [127], respectively). For ZrNiSn,
the “enhancement” of ZT was within the error bar; however, it was much better for
the other two compounds with ZTmax = 0.74 and even ZTmax = 1.3 for the Ti-doped
half-Heusler alloy. Additionally, a rather high ZTmax = 1.35 at 873 K was achieved by
Kang et al. [197] for Zr0.4Hf0.6NiSn0.99Sb0.01 plus 2 weight percent tungsten nanoparticles.
Makongo et al. [77,78] and Douglas et al. [83] added to Zr0.25Hf0.75NiSn and TiNiSn the cor-
responding full Heusler phase, i.e., Zr0.25Hf0.75Ni2Sn and TiNi2Sn, respectively; however,
the outcome was rather disappointing with low ZTs < 1, in some cases even lower than ZT
without the full-Heusler phase.

Rogl et al. [25,26] processed arc-melted, annealed, ball-milled and hot-pressed Ti0.5Zr0.5
NiSn and Ti0.5Zr0.5NiSn0.98Sb0.02 samples by high-pressure torsion to improve their ther-
moelectric performance via a drastic reduction of the thermal conductivity due to grain
refinement and a high concentration of defects inferred by severe plastic deformation.
Whereas for Ti0.5Zr0.5NiSn, the thermally stable alloy showed an enhancement of ZTmax of
20%, for Ti0.5Zr0.5NiSn0.98Sb0.02 ZTmax was, within the error bar, about the same.

As a summary, one can say that the (Ti,Zr,Hf)NiSn-system comprises TE materials of
high interest.

3.2.2. (Ti,Zr,Hf)CoSb-System, (V,Nb,Ta)FeSb-System, 19-Electron System and Other N-Type
Half-Heusler Alloys

In Figures 13 and 14, the ZTs are shown for the (Ti,Zr,Hf)CoSb-system, the (V,Nb,Ta)
FeSb-system, the 19-electron system and of all those half-Heuslers, which do not fit into
any of the so-far mentioned categories. For all these systems, only a few half-Heuslers with
Sb/Sn substitutions were published; generally, ZTs are much lower in comparison with the
(Ti,Zr,Hf)NiSn-system for 300 K as well as for 800 K.

At 800 K (Figure 14), almost all ZTs are lower than 0.7 and also ZTmax rarely exceeds 1.
He et al. [141] reached ZT > 1 for Zr0.5Hf0.5Co0.9Ni0.1Sb at 1073 K, Liu et al. [158] acquired
ZTs of almost 1 and around 1 for the series (Zr1−xHfx)0.88Nb0.12CoSb. Xia et al. [116,165]
investigated Nb1−xCoSb and Nb0.8Co1−xNixSb with ZT = 0.8–0.9. Zhu et al. [187] obtained
ZT = 0.85 at 800 K with a peak ZT = 1.04 at 972 K for ZrCo0.9Ni0.1Bi0.85Sb0.15.
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3.3. P-Type Half-Heusler Alloys

All compounds with the respective references can be found in Table 2. In some
cases, measurements were only performed below room temperature. Figures 15 and 16
represent the ZTs for p-type half-Heusler alloys at 300 K and 800 K as well as the peak ZTs,
respectively.
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When looking at Section 3.3, it is obvious that many more n-type than p-type alloys
were investigated. As depicted in Figure 15, at 300 K, all ZTs are below 0.3; at 800 K
(Figure 16), most ZTs are lower than 1; however, several half-Heuslers in the (NbX”)FeSb
series with X” = Ti, Zr, Hf, Zr and Hf, as well as Ti + Ta, reach ZT = 1.4 at 800 K; the values
for ZTmax in some cases reach or even exceed 1.4 and go up to 1.6.

It can be seen in Figures 15 and 16 that only data of two p-type compounds are
available for the (Ti,Zr,Hf)NiSn-system, namely (Zr,Sc)NiSn [122] and (Zr,Y)NiSn [114]
with rather low ZTs.

In the CoSb-based system, almost all compounds are substituted at the Sb-site by Sn,
except for TiCoSb, which was also substituted by Ge [68]. Rausch et al. published in two
separate works [120,121] rather high ZTs of the (Ti,Zr,Hf)CoSb1−xSnx, series: the highest
ZTmax = 1.4 for Ti0.12Zr0.44Hf0.44CoSb0.8Sn0.2 at 963 K [121].
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In the FeSb-based system, Yu et al. [150] achieved outstanding high peak ZT values
(ZT = 1.2–1.6) for the series Ti0.2(Nb1−xTax)0.8FeSb; Zhu et al. gained ZT~1.4 at 1200 K for
Hf0.12Nb0.88FeSb [168] and for Ti0.16Ta0.84FeSb [188].

Whereas many p-type half-Heuslers have ZTs < 1, the ZrCoBi-based half-Heuslers
showed excellent thermoelectric performance, even more so for substituting at the Bi-site
with ZT = 1.42 for ZrCoBi0.65Sb0.15Sn0.20 at 973 K as reported by Zhu et al. [169].

Also, for p-type half-Heusler alloys, some research groups tried to enhance ZT via
additions. Kimura et al. [71] added Co and Ir to ZrNiSn and converted this way the n-type to
a p-type half-Heusler alloy; however, ZTs were rather low, i.e., below 0.3. Mallick et al. [159]
investigated (Hf0.7Ti0.3CoSb0.8Sn0.2)1−x(Cu1.98Ni0.04Te0.97Se0.03)x: for x = 0.25 they could
enhance ZT = 0.15 (without the chalcogenide) to ZT = 0.63 at 1023 K, which corresponds an
enhancement of 320%. Hsu et al. [103] were successful in producing nanostructured HfO2
during the ball-milling and spark–plasma–sintering process of Zr0.5Hf0.5CoSb0.8Sn0.2 and
reached as highest ZT = 0.75. Xie et al. [193] enhanced ZT of Ti(Co,Fe)Sb with the addition
of 1 atom percent nano inclusions of InSb by 450%; however, ZT = 0.33 is still very low.

Not only for n-type half-Heusler alloys, as described in Section 3.2.1, but also for
the p-type, NbFeSb and Ti0.15Nb0.85FeSb, the influence of severe plastic deformation via
high-pressure torsion was investigated by Rogl and colleagues [25,26]. For NbFeSb, the
peak ZT could be enhanced by about 50% but is, with ZT = 0.00043, still very low. For
Ti0.15Nb0.85FeSb, ZT was enhanced from ZT = 0.68 to ZT = 0.74 for the thermally stable
sample.

Generally, for n- as well as for p-type half-Heuslers, most ZTs at 300 K are below 0.3.
Above 300 K, many peak ZTs are below 1 but can reach 1.6. Whereas the most successful
system for the n-type is the (Ti,Zr,Hf)NiSn-system with Sb/Sn substitution, for the p-type,
it is the (V,Nb,Ta)FeSb-system doped with Ti, Zr or Hf.

3.4. Miscellaneous

On 8-electron half-Heusler alloys: Several authors have screened 8-electron half-
Heusler alloys in DFT throughput calculations, identifying a series of compounds of interest
in thermoelectrics. Vikram et al., in one publication [219], presented the TE properties of
21 half-Heusler alloys with a sum of 8 valence electrons (8-electron half-Heuslers); 6 of them
showed ZTs between 0.8 and 1, such as LiSnAl, NaAlSn or LiAlGe. In another paper [220],
he calculated the thermoelectric properties of a large number of ternary compounds of the
type: group IA or IB element—group IIA or IIB element—group V element. From these
results, he highlighted even ZTs such as ZT = 1.37 for RbPBa and ZT = 1.56 for AgPMg.
Hoat et al. [221] also made theoretical investigations of the 8-electron half-Heusler alloy
RbYSn, but they published only the power factors for the p- and n-types. So far, however,
no experimental confirmation exists for the ZTs estimated from these DFT calculations.

On “double half-Heusler alloys”, etc.: Some authors have coined the term “double
half-Heusler alloys”, “triple half-Heusler alloys”, etc. These terms are not without problems.
Firstly, double a half is full, but the authors certainly did not want to discuss full-Heusler
alloys. Secondly, a formula such as Ti2FeCoSnSb from a structural chemical point of view
indicates a fully ordered compound, where Fe,Co and Sn,Sb atoms fully occupy separate
two-fold sites in a crystallographic subgroup of the space group of the half-Heusler phase.
As such a subgroup cannot be found among the HH face-centered cubic space group type,
the structure, therefore, needs to be transferred into a suitable body-centered tetragonal
space group (cubic setting a,a,a needs to be transferred to a tetragonal cell: a/

√
2, a/

√
2, a

)
in order to find sites of two-fold multiplicity. Only if authors can prove the full atom order
will the formula Ti2FeCoSnSb be proper. Similar arguments hold for “triple half-Heusler
alloys“, etc.
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4. Conclusions

The review presented here attempts to cover all measured thermoelectric properties
of p- and n-type half-Heusler alloys of the last 25 years. Of course, even with the best
literature search, it may be possible to miss some publications. It also became obvious that
there exist about twice as many papers of n-type than of p-type half-Heusler alloys.

As the figure of merit, ZT is dependent on three key figures, the electrical resistivity,
the Seebeck coefficient and the thermal conductivity, the evaluations in this review, focusing
on these key figures, may help to understand the interrelations between them as well as
their influence on ZT.

It was found out that the n-type (Ti,Zr,Hf)NiSn-sytem generally has the highest ZTs
and that (Ti,Zr)NiSn, (Ti,Hf)NiSn, (Zr,Hf)NiSn and especially (Ti,Zr,Hf)NiSn have higher
ZTs than TiNiSn, ZrNiSn and HfNiSn. Furthermore, this investigation showed that doping,
in most cases, does not enhance ZT as much as substituting at the antimony site, preferably
tin by antimony. Various additions of nanoparticles could, in some cases, push up ZT
slightly.

For the p-type, the (V,Nb,Ta)FeSb-system in respect of high ZT is the best and even
better with compounds doped with Ti or Hf, but also quite remarkable ZTs were found for
the (Ti,Zr,Hf)CoSb-system substituted by tin, and for ZrCoBi substituted at the bismuth
site by antimony and tin.

All these evaluated ZTs are, of course, primarily dependent on the preparation method
warranting a proper microstructure with small (preferably nano) grain size and a high
density.

The present compilation may provide the data for the individual selection of p- and
n-type leg materials suitable for an efficient thermoelectric generator within a given tem-
perature gradient.
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