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Abstract: By numerical simulation and experimental analysis, the melt pool shapes for the laser
surface remelting of nickel-based single-crystal superalloy under different processing parameters are
investigated. The results show that heat conduction and heat convection work together to determine
the formation of the melt pool during the laser surface remelting, and the melt pool shape can be
controlled by adjusting the laser power and laser scanning speed. For processing with large laser
power and low scanning speed, the alloy vaporizes in the melt pool, which makes the melt pool shape
unstable. For laser surface remelting with smaller laser power or higher scanning speed, one can have
a stable “ω” shape melt pool, which is because the Peclet number is large, and the heat convection
plays the dominant role. For the condition with further smaller laser power or higher scanning
speed, the Peclet number in the melt pool is much lower, and the heat convection is the weakest,
which produces the semi-elliptical melt pool shape that has no essential difference from that of the
pure heat conduction model. The present study offers theoretical support to our previous research
and the future parameters selection of processing parameters for the laser repairing of nickel-based
single-crystal superalloys.

Keywords: laser surface remelting; processing parameter; melt pool shape; heat transfer; fluid flow

1. Introduction

Nickel-based single-crystal (SX) superalloy has been used in the aeronautic industry
due to its superior mechanical properties [1]. However, there will be casting defects (e.g.,
surface secondary grains) that appear during the production of the SX components. To
fix these defects, the laser surface remelting (LSR) process has been proven a suitable
repair technique [2,3]. This desirable repairing aims to make the defect fixed, and the SX
structure maintained [4]. It is found that the dendrite structure and stray grain formation
in the laser-remelted SX superalloy are affected by the melt pool shape [5]. The melt pool
shape can be controlled by adjusting the processing parameters [6]. Therefore, it is of great
significance to figure out the processing parameter effects on the melt pool shape and the
underlying mechanism for engineering application.

To depict the melt pool shape of the LSR process, Lei et al. [7] built a one-domain
numerical model to figure out the heat transfer in laser remelted 304 stainless steel.
Liu et al. [3,5] applied a set of 3D melt pool shape equations to investigate the microstruc-
ture distribution in laser-remelted SX alloy. Vitek [8] used the 3D Rosenthal model to
simulate the melt pool shape, by which the processing parameter effect on the stray grain
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formation mechanism was analyzed. A steady-state 3D heat/fluid flow model was applied
to simulate the solidification conditions at the solidification front with varied processing
parameters for the laser welding of SX alloys [9,10]. Wang et al. [11] analyzed the mi-
crostructure in the laser-remelted nickel-based SX superalloy by using a steady-state melt
pool shape model without considering the melt pool effect.

The above models are built based on the high simplification of the LSR process. In
fact, during the laser remelting processing, the factors, including Marangoni convection,
vaporization pressure, buoyancy, etc., work together to affect the fluid flow in the remelt
region and finally determine the shape of the melt pool [12–14]. Koo et al. [15] found that
for conditions with high laser power, the recoil pressure and Marangoni convection are
always the first two factors that determine the melt pool shape. When the laser power is
large enough, the alloy melts and then vaporizes, and the recoil pressure makes the laser
penetrate deeper into the substrate to form the keyhole melt pool, which plays the dominant
role in determining the melt pool shape [16–19]. Lu et al. [20] investigated the melt pool for-
mation mechanism with consideration of the Peclet number and Marangoni number model
under varied processing parameters, and their results show that the Marangoni convection
plays an important role in determining the melt pool shape. But, the vaporization effect
was ignored, and the fluid flow mechanism research is more of a quantitative analysis in
their work. By applying the Peclet number model, Chen et al. [21] numerically analyzed
the effect of the magnetic field on the heat transfer mechanism in the laser-remelted alloy.
Asghar et al. [6] analyzed the effect of the processing parameters on the melt pool shape;
however, their results do not provide a deep explanation of the underlying mechanism of
the variation in melt pool shapes for the different processing parameters. Many works have
been conducted to analyze the melt pool formation mechanism for the deep-penetration
laser welding process. However, the works on the LSR process focus mostly on the mi-
crostructure distribution in the melt pool. The variation in the melt pool shape and heat
transfer characteristic with the changing of the processing parameters are not depicted
enough for the LSR process.

The present paper aims to figure out the melt pool shape transformation mechanism
with the changing of the processing parameters for the LSR process. A 3D multiphase tran-
sient model is combined with the experimental analysis. Major physical factors, including
recoil pressure, surface tension, Marangoni convection, etc., are included in the model.
The experimental analysis is offered for comparison to show the effect of the processing
parameter on the melt pool shape. The Peclet number model was applied to explain the
fundamental mechanism for the variation in the melt pool shape.

2. Materials and Methods
2.1. Numerical Modeling

The Schematic diagram of the LSR process is shown in Figure 1. There are not only the
melting/solidifying processes but also the Marangoni convection and vaporization during
the remelting. Therefore, it is essential to make some approximate for the simulation model
of the LSR process. The molten metal in the melt pool is assumed to be incompressible
Newtonian fluid; the fluid flow is assumed to be laminar; the parameters of the material
are temperature-dependent and isotropic homogeneous; the laser beam energy is in the
form of the volumetric heat source; and the temperature field, fluid velocity, and melt
pool shape are assumed to be symmetrical about the longitude section of the melt pool.
In addition, there are solid, liquid, and gas phases during the LSR process; therefore, in
addition to simulating the heat transfer and fluid velocity, the liquid/gas interface should
also be tracked. Based on these, the model is built as follows:
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Figure 1. Schematic diagram of the LSR process.

2.1.1. Governing Equations

The three-dimensional transient simulation is carried out for the LSR process, where
the mass conservation, momentum conservation, and energy conservation are satisfied.
Correspondingly, the continuity equation, momentum equation (Navier–Stokes equation),
energy equation, and the volume of fluid (VOF) equation are used as governing equations
for the analysis [11,17,22,23]:

Continuity equation:
∂ρ

∂x
+∇·

(
ρ
→
U
)
= 0 (1)

Momentum equation:

∂

(
ρ
→
U
)

∂t
+∇·

(
ρ
→
U
→
U
)
= −∇P +∇·

(
µ∇
→
U
)
− µ

K

→
U − ρβ

→
g (T − T0) (2)

Energy equation:

∂(ρh)
∂x

+∇·
(

ρ
→
Uh
)
= ∇·(k∇T) + Sh (3)

where ρ is the density,
→
U the velocity vector, P the pressure, T the temperature, T0 the

reference temperature, µ the viscosity, K the Carman–Kozeny coefficient, β the liquid
coefficient of thermal expansion,

→
g the gravitational vector, k the heat conductivity, and Sh

the source term of the energy equation.
To track the liquid/gas interface, the volume of fluid model is applied with the volume

fraction factor φ:
∂φ

∂t
+∇·

(→
Uφ

)
= 0 (4)

where φ = 1 for the liquid phase, φ = 0 for the air, and 0 ≤ φ ≤ 1 at the liquid/gas
interface.

2.1.2. Boundary Conditions

The thermal boundary condition is [24]:

k
∂T

∂
→
n

= ql − εσ
(

T4 − T4
0

)
− hc(T − T0) (5)
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where
→
n is the vector normal to the surface, ε the radiation coefficient, σ the Stefan–

Boltzmann coefficient, hc the convection coefficient, and ql the heat resource at the top
surface of the substrate, which can be expressed as follows:

ql =
3P

πH(1− e3)
exp

− 3r2

r2
0ln
(

H
z

)
 (6)

where P is the laser power, H the heat resource height, and r0 the laser radius. It should
be noted that the first term on the right-hand side of Equation (5) is only used for the top
surface boundary, where the free interface between the liquid metal and the gas is identified
by the calculation of Equation (4). Only the third term can be used for the bottom boundary,
and the convection coefficient should be changed to the contact coefficient.

Since the vaporization is considered in the present model, the evaporation pressure
item Pt and surface tension pressure item Pr are introduced to calculate the liquid/gas
boundary pressure [25]:

Pt = 0.54P0exp
(

∆H∗
T − Tb
RTTb

)
(7)

Pr =

(
γk +

dγ

dT
(T − T0)

)−∇·
 →

n∣∣∣→n ∣∣∣
 (8)

where γk is the surface tension near the melting temperature, dγ/dT the surface tension
coefficient, P0 the ambient pressure, Tb the boiling temperature, ∆H∗ latent heat of evapo-
ration, R the gas constant, and

→
n the unit vector normal to the interface.

2.1.3. Numerical Implementations

DD6, a Chinese second-generation nickel-based SX superalloy with the nominal
composition listed in Table 1, is taken as the research object in the present work. Figure 2
shows a schematic diagram of the meshing method. To save the simulation cost, the model
is built with a symmetrical boundary, and the laser moves along the symmetrical line at the
top of the substrate. The simulation domain is cubic in the size of 10 × 4 × 3 mm3, where
the substrate is in the thickness of 2 mm, and the upper region is the air. The simulation
domain is discretized as the hexahedral cells, and the region close to the laser scanning
path is discretized with a smaller size, where the smallest size is 0.1 mm.

Table 1. The nominal composition of nickel-based SX superalloy DD6 (wt. %).

Composition Cr Co Mo W Ta Re Nb Al Hf Ni

DD6 4.3 9.0 2.0 8.0 7.5 2.0 0.5 5.6 0.1 Bal.
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To ensure the calculation accuracy, the main thermophysical parameters for the DD6
SX superalloy used in the calculation are obtained by the software JmatPro 7.0, and the
values of the parameters are shown in Figure 3. All the parameters are imported into the
Fluent 2023 R1 software with the piecewise linear approximation. After building the model
and importing the parameters, the SIMPLE calculation method is applied for calculation.
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To execute the above modeling, the numerical calculation is conducted by the Fluent
software. The heat resource, buoyancy, and surface tension term are achieved by the user-
defined functions (UDF) programmed in C language. The numerical model is solved by
the finite volume method (FVM).

2.2. Experimental

The substrate material used in the experiment is the second-generation DD6 nickel-
based SX superalloy with composition presented in Table 1. The specimens with a thickness
of 2 mm are cut from the casted DD6 superalloy ingot with a diameter of 15 mm, which
has been processed with heat treatment before the remelting to obtain a smooth melt pool
boundary for the following analysis. The surfaces of the substrates are polished with
2000 grit SiC paper and then cleaned with alcohol to ensure that the surfaces are smooth
for the LSR experiment.

For the LSR process, the 3D motion processing platform is used, which has the NCLT
CW 1000 continuous-wave Nd: YAG laser with the maximal output power of 1000 W.
The wavelength of the laser is 1.06 µm, and the beam radius is 0.75 mm. The substrate
is located at the specimen platform, and the distance between the laser nozzle tip and
substrate surface is set to be about 3 mm. After setting the laser scanning velocity and the
laser power, two sets of experiments are performed with the laser power of 200 W and
350 W at the fixed scanning speed of 2.5 mm/s for comparison. To protect the specimens
from oxidation during the LSR process, the specimens are located in a box that is filled with
Ar2 gas throughout the process.

After the remelting process, the samples are cut along the direction perpendicular
to the laser scanning direction to obtain the transverse section of the melt pool. Then,
the transverse section is polished with the SiC papers from 600 grit to 2000 grit and the
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polishing cloth. The polished transverse sections are cleaned and then etched with the
solution of diluent royal water (5 mL H2O, 10 mL HCL, and HNO3) for 20 s and then
cleaned with water. Finally, the melt pool shapes of the samples are obtained by using the
ZEISS Axio Scope A1 optical microscopy.

3. Results

In this part, the processing conditions for the laser power of 200 W, 350 W, and 500 W
at a fixed scanning speed of 2.5 mm/s, and those at the scanning speed of 2.5 mm/s,
5.0 mm/s, and 7.5 mm/s with a constant laser power of 500 W, are calculated first. Then,
the conditions with the laser power of 200 W and 350 W at the scanning speed of 2.5 mm/s
laser with and without considering the Marangoni convection are computed to show the
Marangoni effect. Finally, the experiments with the laser power of 200 W and 350 W at a
fixed scanning speed of 2.5 mm/s are performed for comparison.

3.1. Temperature Distributions

Figure 4 shows the variation in the temperature distributions for the laser power of
200 W, 350 W, and 500 W at the fixed scanning speed of 2.5 mm/s. One can see that the
maximal temperature in the melt pool increases with the laser power. Due to the moving of
the laser beam, the “dragging” temperature distribution appears in the substrate, and the
“dragging” extent is weak for 200 W. When the laser power is 500 W, the alloy is vaporized
at a pit that appears at the surface of the melt pool, and the instability of the vapor makes
the melt pool shape unstable.
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3.2. Processing Parameters Effect

Figure 5 shows the transient melt pool shape for the laser power of 200 W, 350 W, and
500 W at the same laser scanning speed of 2.5 mm/s, in which the melt pool boundary is
determined by the liquidus temperature of the alloy [8], and the location at the deepest
point in the longitudinal section of the melt pool is selected to obtain the melt pool shape
in the cross-section marked by the black dotted line. With the increase of the laser power,
maximal temperature in the melt pool increases with the laser power, and three kinds of
melt pool shapes are produced. As shown in Figure 5a, when the laser power is 200 W, the
melt pool shape is semi-elliptical. Figure 5b shows that when the laser power is 500 W, a
“ω” melt pool shape is produced, and an obvious and stable inflection point appears at
the melt pool boundary. Compared with the semi-elliptical melt pool, the “ω” melt pool
boundary is no longer smooth semi-elliptical curve due to the fluctuation, the location with
the maximal curvature at the boundary is called inflection point, just like the point marked
by the blue arrow in Figure 5b. For the laser power of 500 W, Figure 5c, the top surface of
the melt pool sinks, and the melt pool boundary is not regular, which is different from the
other two conditions.
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same scanning speed of 2.5 mm/s.

Figure 6 shows the melt pool shape at the scanning speed of 2.5 mm/s, 5 mm/s, and
7.5 mm/s with a fixed power of 500 W, where the melt pool boundaries are marked by
black dotted lines. One can see that with the increase of the scanning speed, the maximal
temperature decreases, and the melt pool shape varies with the processing parameters. As
shown in Figure 6a, the melt pool shape is irregular at a velocity of 2.5 mm/s. When the
scanning speed increases to 5.0 mm/s (Figure 6b), the melt pool boundary is in the shape of
“ω,” and the obvious and stable inflection point is presented, which is similar to that shown
in Figure 5b. At the scanning speed of 7.5 mm/s (Figure 6c), the semi-elliptical melt pool
is presented, which is similar to that of the condition with the laser power of 200 W and
scanning speed of 2.5 mm/s (Figure 5a), except that the melt pool is smaller. Combining
Figures 5 and 6, one can see that the melt pool shape can be controlled by adjusting the
processing parameters.
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3.3. The Effect of Fluid Flow

The computations with and without the Marangoni convection for the laser power of
200 W and 350 W at the fixed laser power of 2.5 mm/s are conducted to analyze the melt
pool shape formation mechanism, and the results are given in Figure 7. One can see that
for the laser power of 200 W with consideration of the Marangoni convection (Figure 7a),
the melt pool is in a shape of a semi-ellipse, and the half-width/depth ratio equals 1.7.
When the Marangoni convection is ignored, the melt pool shape is similar (Figure 7b),
except that the half-width/depth ratio decreases to 1.2. For the laser power of 350 W, when
the Marangoni convection is considered, the melt pool is in the shape of “ω” (Figure 7c);
however, when the Marangoni convection is not considered, the melt pool shape translates
to semi-ellipse (Figure 7d).
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3.4. Experimental Results

As shown in Figure 8, the experimental melt pool shapes for the laser power of 200 W
and 350 W at the fixed scanning speed of 2.5 mm/s are presented to be compared with the
simulated results. It shows that when laser power is 200 W, the experimental melt pool is in
the shape of a semi-ellipse. When the laser power is 350 W, the experimental melt pool is a
“ω” shape with an inflection point. The experimental melt pool shape is in good agreement
with the simulated ones except for the ignorable size differences. One can see that when
the laser power is 350 W, the obvious inflection point can be seen at the experimental “ω”
shape melt pool boundary in Figure 8b, where the point is marked by the yellow arrow.
The result is the same as that of the calculated one in Figure 8a. The formation of the “ω”
shape melt pool and inflection point is caused by the fluid flow, and the mechanism will be
discussed in the following section.
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4. Discussion

According to the above results, one can see that when the Marangoni convection is
considered, the melt pool shape varies from semi-elliptical to “ω” shape with the variation
in the processing parameters, and it is always the semi-elliptical shape when the convection
is ignored. This indicates that the melt pool shape is determined by the interaction between
the Marangoni convection-induced thermal convection and thermal conduction, and the
interaction varies when the processing parameters are changed. The relative intensity of
thermal convection and thermal conduction can be evaluated by the value of the Peclet
number. When the Peclet number is larger than 1, the thermal convection dominates
heat transfer in the melt pool, and the larger the Peclet number, the stronger the thermal
convection. The Peclet number is defined as [21,26]:

Pe = Re·Pr =
V·L

α
(9)

where Re is the Reynold number, Pr the Prandtl number, V the characteristic velocity which
is selected as the maximal velocity in the cross-section of the melt pool here, α the thermal
diffusion coefficient, and L the characteristic length. Here, we take α = 4.56× 10−6 m2/s [27]
for the DD6 nickel-based SX superalloy. The characteristic length L can be calculated by:

L =
W·H

W + H
(10)

where W and H are the melt pool width and depth at the cross-section of the melt pool.
The values of W and H in Figure 7a,c for the laser power of 200 W and 350 W at the

fixed scanning speed of 2.5 mm/s are measured. Then, by applying Equation (10), the
characteristic lengths are calculated to be 0.29 × 10−3 m and 0.38 × 10−3 m, respectively.
The characteristic velocities are 0.072 m/s and 0.122 m/s for the laser power of 200 W and
350 W, respectively. By using Equations (9) and (10), the Peclet numbers are calculated to
be 4.6 for the laser power of 200 W and 10.1 for the laser power of 350 W; the higher the
laser power, the larger the Peclet number.

Figure 9 shows the calculated fluid flow directions in the melt pool for the laser power
of 200 W and 350 W. One can see that the flow is in the clockwise direction in the melt



Crystals 2023, 13, 1162 10 of 12

pool, since the surface tension coefficient is negative, as given in Figure 3a. The average
velocity is higher for the laser power of 350 W, and the velocity decreases drastically when
the fluid crush the melt pool edge [12]. Consequently, when the laser power is 350 W, the
thermal convection is strong, and the heat transfers with fluid convection toward the top
right side of the melt pool, which combines with the heat conduction to produce the “ω”
shape melt pool that has a stable inflection point. In comparison, when the laser power
is 200 W, the Peclet number is much smaller, which indicates that the thermal convection
is weak, and the heat transferred by convection is less. Therefore, the melt pool is in the
shape of a semi-ellipse. The heat convection, in this case, also makes the half-width/depth
ratio larger than that of the pure heat conduction model.
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In addition, considering that the substrate material is the SX superalloy, the microstruc-
ture in the melt pool is affected by the melt pool shape. When the melt pool is “ω” shape,
the microstructure inside the melt pool is more complicated than that in the semi-elliptical
melt pool, which makes it more complicated to control the microstructure by rotating the
substrate crystal orientation as presented in Rappaz’s results [28]. Therefore, the processing
parameters that can produce a “ω” melt pool are not suitable for our previous research.
On the other hand, our previous works simulated the melt pool with the steady-state
heat transfer model, which ignored the fluid flow effect [29,30]. These simulations are
performed with the processing parameters close to that of Figure 8a (200 W and 2.5 mm/s)
in the present work, under which the convection heat transfer is weak, and the melt pool
shapes with and without the Marangoni convection does not show a significant difference.
Therefore, it is acceptable for our previous works to ignore the Marangoni convection for
simplification under suitable processing parameters.

It should be noted that the present research aims to figure out the variation in the melt
pool shape with the variation in the processing parameters for the LSR process; the laser
power is relatively smaller compared to the deep-penetration welding. This work offers a
basic processing map to control the melt pool shape for the LSR process.

5. Conclusions

The formation mechanism of melt pool shape during the LSR process for different
processing parameters is analyzed by numerical simulation and experimental investigation.
The specific conclusions can be summarized as follows:

1. The melt pool shapes are different for varied processing parameters during the LSR
process. When the laser power is 500 W at the scanning speed of 2.5 mm/s, the melt
pool shape is irregular and unstable due to the evaporation of the alloy. When the
power is 350 W, the dominant Marangoni convection produces a “ω” shape melt pool.
When the laser power is 200 W, the Marangoni convection and evaporation effect are
relatively weak, and a semi-elliptical melt pool is made. The conditions for the laser
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power of 500 W with scanning speeds of 2.5 mm/s, 5.0 mm/s, and 7.5 mm/s also
show the same variation trend of the melt pool shape;

2. For a fixed laser scanning speed of 2.5 mm/s, when the laser power is 350 W, the
Peclet number is large, which means the thermal convection is strong; therefore, a
“ω” shape is produced. When the laser power is 200 W, the Peclet number is smaller,
indicating weaker thermal convection, which produces a semi-elliptical melt pool;

3. The good agreement between the experimental and simulated results demonstrates
the reliability of the numerical model.
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