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Abstract: Polyurethane is a multipurpose polymer with indispensable physical characteristics and
technical uses, such as films/coatings, fibers, and foams. The inclusion of nanoparticles in the
polyurethane matrix has further enhanced the properties and potential of this important polymer.
Research in this field has led to the design and exploration of polyurethane foams and polyurethane
nanocomposite foams. This review article reflects vital aspects related to the fabrication, features, and
applications of polyurethane nanocomposite foams. High-performance nanocellular polyurethanes
have been produced using carbon nanoparticles such as graphene and carbon nanotubes. Enhancing
the amounts of nanofillers led to overall improved nanocomposite foam features and performances.
Subsequently, polyurethane nanocomposite foams showed exceptional morphology, electrical con-
ductivity, mechanical strength, thermal stability, and other physical properties. Consequently, multi-
functional applications of polyurethane nanocomposite foams have been observed in shape memory,
electromagnetic interference shielding, and biomedical applications.
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1. Introduction

Polyurethane is an imperative category of polymers [1]. Polyurethanes possess the
superior features of facile processing, chemical constancy, heat stability, and mechanical
confrontation. Simple as well as segmented polyurethanes have been developed, hav-
ing hard and soft segments in the backbone. The physical and covalent crosslinking
between the chains has been found to affect the polymer’s features and performance [2].
Polyurethanes have been used as important matrices to form foam materials [3]. For
this concern, various foaming approaches have been used. Polyurethanes have been em-
ployed for high-tech applications ranging from aerospace/automobiles to the electronics
and biomedical fields [4–6]. Developments in polyurethane foam materials led to the
formation of nanocomposite sponges with nanoparticle reinforcements [7,8]. Here, carbon
nanoparticles like graphene and carbon nanotube have been applied as effective nanofillers
for foam materials [9–11]. The polyurethane nanocomposite foams are lightweight and
have fine elasticity, strength, compression, reversibility, and high-efficiency sponge-related
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specific features. The conversion of polyurethane foam to polyurethane nanocomposite
foam resulted in the further enhancement of the physical properties of these materials.
High-performance polyurethane foams and nanocomposite foams have been produced
as low-density efficient nanomaterials for applications related to radiation defense, shape
recovery, biomedicine, space, construction, packaging, and other industries [12,13].

This state-of-the-art overview elaborates on the design, properties, and technical per-
formance of polyurethane nanocomposite foams. At first, the fundamentals of polyurethane
and polyurethane foams are stated. Afterward, the noteworthy systems and features of
polyurethane/nanocarbon nanocomposite foams are illustrated. Polyurethane foams have
been prepared as flexible thermoset plastics having open or closed cell structures using
chemical or physical blowing agents [14,15]. Additionally, the nanocellular structure or
blowing agents can be introduced to form thermoplastic polyurethanes’ structures [16,17].
Some essential application areas of these nanocomposite sponges have been elaborated,
including stimuli-responsive, electromagnetic interference (EMI) radiation shielding, and
biomedical materials and systems. For polyurethane foams, some literature review reports
have been observed, such as a review article by Sang et al. [18] on interface-engineered
magnetic EMI-shielding polyurethane foams. However, to the best of our knowledge, this
unique and comprehensive review has an entirely novel outline, design, selected literature,
and conforming aspects of polyurethane nanocomposite foams, especially covering three
important technical areas (shape memory, EMI shielding, biomedical field) in one place.
Consequently, this all-inclusive article will definitely be helpful for field researchers seeking
important future aspects and different application areas of these important materials.

2. Polyurethane and Polyurethane Foam

Polyurethanes form a significant class of polymers [19]. Polyurethanes possess ure-
thane functionalities usually formed via the reaction of isocyanate (R–(N=C=O)n and
hydroxyl (R–(OH)n groups. Polyurethane has been produced in film, powder, or elas-
tomeric forms. Polyurethanes have been frequently prepared using the solution technique,
in situ procedure, and other facile methods [20]. Segmented polyurethane is an essential
form of polyurethanes [21,22]. These polymers contain soft and hard segments in the
backbone. Soft segments have flexible polyols in structure, whereas hard segments have
isocyanate linkages in the units. Hard and soft segments in polyurethanes may develop
physical interactions (π–π stacking, hydrogen bonding, van der Waals interactions) and
covalent linking between chains [23]. An interesting property of polyurethanes is that
these polymers exist both as thermoplastic and thermoset forms. Hence, carefully designed
polyurethanes have superior thermal constancy, flame resistance, mechanical stability,
chemical stability, and other desired characteristics [24]. High-performance polymers have
several technological applications such as electronics [25], engineering and structural ma-
terials [26], biomaterials [27], etc. In nanocomposite form, polyurethane matrices have
been filled with various inorganic and organic nanoparticles. Polyurethanes have a very
fine capability to develop foam or sponge materials. Polyurethane foam can be obtained
via the foaming of polyurethane matrix [28]. Polyurethane foams have been developed
for varying domestic, transportation, and industrial areas [29]. Polyurethane foams may
have open cell or close cell morphology [30,31]. Saint-Michel et al. [32] reported obtaining
polyurethane foam by employing 4,4′-diphenylmethanediisocyanate and polypropylenes
triol monomers. A supercritical carbon dioxide foaming technique was used to form the
polyurethane foam [33]. Scanning electron microscopy-based microstructural analysis re-
vealed consistent closed shell structure [34]. High-performance sponges have lightweight,
thermal conduction, and non-flammability characteristics [35–37]. Heat stability and barrier
characteristics of polyurethane foams have been investigated [38,39]. Remarkable prop-
erties of polyurethane sponges led to applications in aerospace, automotive, packaging
materials, biomedical, etc. [40–42]. Lately, numerous nanoparticles have been filled in
polyurethane matrices to design nanocomposite foams [43,44].
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3. Polyurethane-Derived Nanocomposite Foam
3.1. Polyurethane- and Graphene-Based Nanocomposite Foam

Graphene is a one-atom-thick nanocarbon nanosheet with sp2 hybridized atoms of
two-dimensional nanostructures [45]. Due to its unique structure, it has a high specific sur-
face area and superior physical features such as electron transportation, mechanical stability,
heat conduction, and chemical stability [46]. Graphene oxide is an imperative derivative of
graphene [47,48]. It contains oxygen-rich functionalities on its surface, such as hydroxyl,
carboxylic acid, carbonyl, ketonic groups, and others [49,50]. Similar to other polymers,
polyurethanes have been used as matrices for graphene nanofillers [51]. Moreover, the
polyurethane foam matrix has been reinforced with graphene [52,53]. Adding graphene
or graphene oxide resulted in the improvement of mechanical, thermal, conductivity, and
other physical characteristics of polyurethane nanocomposite foams [54]. Consequently,
various polyurethane/graphene nanocomposite foams have been fabricated and investi-
gated [55,56]. Jiang et al. [57] developed thermoplastic polyurethane nanocomposites with
graphene oxide and reduced graphene oxide nanofillers. Figure 1 shows the nanocomposite
formation and then the foaming of thermoplastic polyurethane/reduced graphene oxide
materials. The solution impregnation method was used for coating the reduced graphene
oxide with thermoplastic polyurethane particles. Graphene oxide was formed via the
modified Hummers method [58], and L-ascorbic acid was applied to convert graphene
oxide to reduced graphene oxide [59]. Consequently, graphene oxide nanoparticles were
coated on thermoplastic polyurethane and reduced in situ using L-ascorbic acid. Initially,
the nanocomposite powder was developed using vacuum filtration and freeze-drying
methods. Hydrogen bonding interactions between carboxyl and urethane functionalities
of polyurethane and oxygenated functionalities of graphene oxide were responsible for
overall nanocomposite formation. The in situ reduction mechanism is given in Figure 2.
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Figure 1. Schematic showing the fabrication process of TPU/RGO nanocomposite foams [57].
L-AA = L-ascorbic acid; TPU = thermoplastic polyurethane; GO = graphene oxide; TPU/GO =
thermoplastic polyurethane/graphene oxide; TPU/RGO = thermoplastic polyurethane/reduced
graphene oxide; TPU/CRGO = thermoplastic polyurethane/reduced graphene oxide through com-
pression molding. Reproduced with permission from Elsevier.
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Figure 2. Schematic drawing of in situ reduction of graphene oxide using L-ascorbic acid: (1,2) reac-
tion of L-ascorbic acid and graphene oxide; (3) water addition to modified graphene oxide; (4) reaction
of reduced graphene and L-ascorbic acid [57]. Reproduced with permission from Elsevier.

The L-ascorbic acid was considered an ecofriendly reducing agent, compared with the
hydrazine-type hazardous reducing agent for graphene oxide. Afterward, the supercritical
CO2 foaming method was used for the formation of the polyurethane/reduced graphene ox-
ide nanocomposite foam [60]. The nanocomposite was placed in a high-pressure vessel and
flushed with low-pressure CO2. Consequently, the sample was exposed to supercritical CO2
under 14 MPa at 80 ◦C. After saturation of the sample with supercritical CO2, the reaction
vessel was depressurized and cooled, and foamed samples were obtained. The electrical
conductivity of nanocomposite foam was found to be 2.53 × 10−1 Sm−1. Consequently,
including 3.17 vol.% reduced graphene oxide nanofiller resulted in an electromagnetic
shielding effectiveness of about 22 dB.

Li et al. [61] reported on polyurethane/graphene nanocomposite foam as an EMI
shielding material. Figure 3 shows the procedure for the development of polyurethane/
graphene nanocomposite foam. In this process, polyurethane/graphene nanocomposite
was obtained via a solution route and precipitated to obtain the product. Then, nanocom-
posite foam was developed by re-dissolving the precipitate in dimethylformamide and
using a solvent-induced phase separation route. As obtained polyurethane/graphene
nanocomposite foam had high shielding effectiveness of ~23–24 dB.
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Feng and co-workers [62] used ultrasonication, freeze drying, and solvent extraction
techniques to develop polyurethane/graphene nanocomposite foams. The porous mi-
crostructure and compressive stress properties of nanocomposite foams were examined.
Investigations into the electric conductivity and strength features of polyurethane/graphene
nanocomposite foams were explored by Chen et al. [63]. Similarly, Hodlur and co-workers [64]
investigated electron conduction, compressibility, and flexibility properties of polyurethane/
graphene oxide nanofoam materials [65]. These spongy nanomaterials also have fine
sound absorption characteristics, according to Kim et al. [66]. These physical proper-
ties of three-dimensional nanostructures were found to enhance with nanofiller addition.
Polyurethane nanocomposite foams with graphene and graphene oxide nanofillers have a
three-dimensional consistent flexible network microstructure for advanced technical features.

3.2. Polyurethane- and Carbon Nanotube-Derived Nanocomposite Foam

Carbon nanotube is also an important one-dimensional nanocarbon nanostructure
consisting of sp2 hybridized atoms [67,68]. It can be imagined as a rolled-up nanosheet of
graphene [69,70]. However, several overlapping graphene cylinders form multi-walled
carbon nanotubes. Similar to graphene, carbon nanotubes have been reinforced in poly-
mers to achieve enhancement in the nanocomposite properties [71,72]. In polymeric foams,
carbon nanotubes can be included as efficient nanofillers to enhance the valuable proper-
ties of three-dimensional nanostructures [73,74]. Similarly, the polyurethane foam matrix
has been reinforced with a carbon nanotube to attain the desired foam materials [75]. A
one-dimensional nanotube is a fine nanofiller to form a three-dimensional network in
polymeric sponges. The resulting foam has enhanced structural, strength, compressibility,
electrical, and other physical properties [76]. Consequently, polyurethane- and carbon
nanotube-derived foams have been applied for technical applications. Yan and cowork-
ers [77] fabricated polyurethane- and carbon nanotube-based nanocomposite foams. Three-
dimensional nanostructures have been explored for electrical conductivity and mechanical
performance. Nanocomposite foams revealed percolation thresholds of 1.2 wt.% due to
an interlinked conducting network in the sponge matrix [78,79]. A polyurethane/carbon
nanotube nanocomposite foam system depicted an electrical conductivity of 0.23 S·cm−1,
as reported by You et al. [80]. For this system, a decrease in electron transportation was ob-
served by enhancements in nanofiller contents and aggregation [81,82]. Madaleno et al. [83]
reinforced polyurethane foam with a carbon nanotube- and montmorillonite-based hybrid
nanofiller. The hybrid nanofiller was reinforced in polyurethane foam via an in situ process.
Even small amounts of nanofillers have been found to enhance the thermal and compression
features of nanocomposites. Huang et al. [76] designed thermoplastic polyurethane and
carbon nanotubes resulting in nanocomposite foams. Directional freeze drying was used
to form low-density and flexible foams with fine compression and reversibility properties.
Figure 4 shows a directional freeze-drying process for developing aligned nanocomposite
foams. For this purpose, ultrasonication and 1,4-dioxane solvents have been applied for
carbon nanotube dispersion. A thermally insulated container and cylindrical metal block
were used in the foaming setup. An aligned porous structure was obtained after freeze
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drying. Figure 5 depicts the formation of aligned unfilled thermoplastic polyurethane foam
and thermoplastic polyurethane/carbon nanotube nanocomposite foam. Scanning electron
microscopy images of aligned unfilled and filled thermoplastic polyurethane foams were
scanned. Uniquely aligned samples revealed fine morphology due to the formation of regu-
larly interlinked nanocomposite nanostructure. The freeze-drying method has been found
to be effective in developing a unidirectional ladder-like solidification in foam structures.
Figure 6 shows a simple comparison of the compression and reversibility processes for
thermoplastic polyurethane/carbon nanotube nanocomposite foams. For aligned foam
structures, the reversibility process was found to be much smoother than the disordered
foam nanocomposite structure.

Zhai et al. [84] also prepared polyurethane/carbon nanotube nanocomposite foams.
Nanocomposite foams were developed using the water blown technique [85–87]. Figure 7 il-
lustrates the compression stress–strain features of polyurethane/carbon nanotube nanocom-
posite foams with different carbon nanotube contents. Adding carbon nanotube consid-
erably improved the compressive stress properties of nanocomposite foams, along with
enhancements in flexibility properties [88]. Espadas-Escalante and co-workers [89] studied
the thermal conductivity as well as the non-flammability features of polyurethane/carbon
nanotube nanocomposite foams. Including nanotube nanofiller increased the thermal
conductivity as well as the non-flammability properties of the foams. Moreover, these
nanocomposite foams were investigated for electrical conductivity and compressibil-
ity characteristics [90]. Further research may reveal several other potential features of
polyurethane/carbon nanotube nanocomposite foams.
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4. Technical Significance of Polyurethane Nanocomposite Foam
4.1. Shape Memory Nanomaterials

Shape memory or stimuli-responsive polymers have been recognized as significant
smart materials [91–93]. A shape memory polymer has the capability to deform and then
recover its original shape under the effects of heat, light, electric field, pH, force effect, mois-
ture, etc. [94–96]. Furthermore, these shape recovery polymers have high-efficiency char-
acteristics such as electron conduction, strength, heat constancy, glass transition/melting
temperature, non-flammability, and other properties [97,98]. High-performance polymer
foams reveal essential stimuli-responsive features under environmental effects. Congru-
ently, polyurethane foams have revealed stimuli-responsive applications [99,100]. Sing-
hal et al. [101] developed polyurethane foam with 1,6-diisocyanatohexane, N,N,N′,N′-
tetrakis(2-hydroxypropyl)ethyl-enediamine, and 2,2′,2′ ′-nitrilotriethanol reactants. Ensu-
ing polyurethane foams had a glass transition temperature of about 45–70 ◦C. Polyurethane
foams depicted fine thermo-responsive shape memory influence [102,103]. In these ma-
terials, 97–98% shape recovery has been attained. Kim and co-workers [104] fabricated
shape memory polyurethane- and carbon nanotube-derived nanocomposite foams via a
microwave heating technique. The inclusion of carbon nanotubes also resulted in superior
thermal and mechanical characteristics. Microwave exposure was used to study thermo-
responsive behavior. Kang and colleagues [105] researched polyurethane nanocomposite
foam prepared with 2,4/2,6-toluene diisocyanate and polypropylene glycol reactants. As
obtained polyurethane foams were reinforced with carbon nanotube nanofiller [106]. A
nanocomposite foam was designed using the one-shot foaming technique and by adding
a blowing agent [107]. In addition, shape memory polyurethane/graphene nanocompos-
ite foams have also been explored for the shape memory effects [108]. Zhou et al. [109]
developed shape memory polyurethane with graphene and carbon nanotube nanofillers.
Figure 8 discloses the compression recovery steps of polyurethane/graphene foams via
stress–strain analysis at different set strains of 20 to 90%. Moreover, the cyclic stress–strain
performances of nanocomposite foams were analyzed at 50% strains. These tests revealed
good elasticity and flexibility properties.
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Figure 9 depicts the stimuli response of three-dimensional polyurethane nanocom-
posite foams filled with graphene (8 wt.%) and carbon nanotube (3 wt.%). As obtained
samples were heated using a power source at 100 V. An efficient shape recovery effect was
observed due to the heating effect. To form a temporary U shape, the sample was heated
to 60 ◦C, bent, and the shape was preserved by cooling at 0 ◦C. The original shape was
recovered in 150 s under 100 V. Shape memory nanocomposite foams showed technical
applications in the space sector, sensors, actuators, electronics, biomedical devices, and
related smart applications [110–112].

4.2. Electromagnetic Interference Shielding

A significant utility of polyurethane-based nanocomposite foams has been studied
for electromagnetic interference (EMI) shielding [113,114]. Nanocomposite foams have
low density, facile foaming methods, and fine electron conduction responsible for high
EMI shielding effects [115]. Additionally, the EMI protection phenomenon depends on
the nanofiller type, amount, scattering, etc. In particular, carbon nanoparticle additives
such as graphene and carbon nanotube in polyurethane foams have been found effective.
Such EMI shields possess high electrical conductivity, dielectric features, and EMI shielding
characteristics. Li and researchers [116] researched waterborne polyurethane and carbon
nanotube-derived nanocomposite foams for radiation shielding purposes. Nanocomposite
foams have pointedly high electrical conductivities of 362 Sm−1 due to the formation of
an interconnecting nanotube network in the foam structures. Consequently, nanocompos-
ite foams had fine shielding effectiveness of about 25 dB. Gavgani et al. [117] developed
polyurethane and reduced graphene oxide-based nanocomposite foams for EMI shielding.
Nanocomposite foams prepared were elastic and low density. Moreover, good graphene
dispersion and homogeneous morphology were obtained due to the processing technique
used. Nanofiller dispersion, regular microstructure, and material thickness enhanced
the absorption-based EMI shielding of foams. Graphene developed a fine interrelating
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network in the three-dimensional foam architecture to promote an electron percolation
system. The polyurethane/reduced graphene oxide nanocomposite foam revealed a con-
siderably high electrical conductivity of 4 Sm−1 and a superior EMI shielding effectiveness
of ~253 dB. Jiang et al. [57] produced low-density and elastic thermoplastic polyurethane
and reduced graphene oxide-derived nanocomposite foams using the supercritical CO2
foaming technique and simple non-foamed nanocomposites for EMI shielding. Figure 10
shows the EMI shielding mechanism of polyurethane/reduced graphene oxide nanocom-
posite and polyurethane/reduced graphene oxide nanocomposite foams in the X-band
region. In nanocomposite foams, the formation of an interconnected nano-cellular struc-
ture has facilitated incident microwave absorption via multiple reflections and scattering
phenomena. Polyurethane/reduced graphene oxide nanocomposite foams with 3.17 vol.%
reduced graphene oxide had high electrical conductivity due to interlinked network for-
mation. Consequently, a high EMI shielding effectiveness of 21.8 dB was attained. In
particular, the absorption mechanism of nanocomposite foam was dependent upon the EMI
shielding effect.
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Figure 10. Representation of electromagnetic waves transfer across (a) the thermo-
plastic polyurethane/reduced graphene oxide nanocomposite and (b) the thermoplastic
polyurethane/reduced graphene oxide nanocomposite foam [57]. Red arrows = Reflected radiations;
yellow arrows = multiple internal reflections. Reproduced with permission from Elsevier.

Li et al. [61] fabricated multi-layered thermoplastic polyurethane/graphene sandwiched
nanocomposite foams by piling up several single-layered thermoplastic polyurethane/graphene
nanocomposite foams. Sandwiched thermoplastic polyurethane/graphene nanocomposite
foam structures had improved absorption features for incident radiation. With an increasing
thickness of the EMI shielding foam, reflection loss was observed due to the constructive in-
terference effects. The EMI shielding of thermoplastic polyurethane/graphene sandwiched
nanocomposite foams was observed in the region of the Ku-band (Figure 11). The shielding
effectiveness of foam materials was found to increase with graphene loading. At 20 wt.%
graphene nanofiller addition, EMI shielding effectiveness was found in the range of 17 to
21 dB. Improved effectiveness was experiential due to the formation of fine conducting
links of graphene additives. On the other hand, unfilled polyurethane was insulating in
nature and translucent toward electromagnetic radiations. The EMI shielding mechanism
was found to depend on shielding effectiveness absorptions (SEA) as well as shielding
effectiveness reflections (SER). Both SEA and SER were dependent upon graphene addition
and found to enhance with increasing graphene contents.

Table 1 shows the electrical conductivity and EMI shielding effectiveness of polyurethane
nanocomposite foam. A correlation between electrical conductivity and radiation shielding
properties has been observed. High EMI SE was attributed to strong interfacial interactions
between matrix–nanofiller leading to the high electrical conductivity of the system. Carbon
nanofiller efficiently developed conducting interfaces causing an interfacial polarization
effect. Due to possible relaxation modes and interfacial polarization effects, resulting
dielectric losses caused high microwave absorption and increased EMI SE phenomenon.
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Figure 11. (a) Digital images of polyurethane/graphene foam, electromagnetic samples with varying
graphene contents, experimental setup, and the sample holder used; (b) DC conductivity (σdc) of
polyurethane/graphene foam foams, where the inset shows the log-log plot of σdc versus (p-pc), and
the solid line shows a fit to the measured data using relationship of σdc ∝ (p-pc)t; and (c–e) shielding
effectiveness (SE) total, SE absorption (SEA), and SE reflection (SER) of the polyurethane/graphene
foams in region of Ku-band [61]. PUG = polyurethane/graphene foam. Reproduced with permission
from Elsevier.

Table 1. Electrical conductivity and EMI shielding effectiveness of polyurethane nanocomposite foam.

Nanocomposite
Foam Matrix Nanofiller Conductivity EMI Shielding

Effectiveness Ref.

Polyurethane Reduced graphene
oxide3.17 vol.% 2.53 × 10−1 Sm−1 22 dB [57]

Polyurethane Graphene oxide
20 wt.% 3 Scm−1 17–24 dB [61]

Polyurethane Carbon nanotube 0.23 Scm−1 - [80]

Polyurethane Carbon nanotube
Percolation

threshold 1.2 wt.%;
2.03 × 10−6 Sm−1

- [77]

Waterborne
polyurethane Carbon nanotube 362 Sm−1 25 dB [116]

Polyurethane Reduced
graphene oxide 4 Sm−1 253 dB [117]

4.3. Biomedical Field Applications

Polyurethanes have been considered an important polymer for biomedical applica-
tions [118]. Mainly properties of polyurethanes (biocompatibility, biodegradability, con-
trollable chemical, physical properties) have been found to be effective for biomedical
purposes [119]. Progress in the field of polyurethanes led to several innovative biomedical
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areas ranging from drug delivery to tissue engineering [120]. Consequently, polyurethanes
have been frequently used to form drug delivery carriers, stents, catheters, adhesives,
coatings, bioimplants, and other tissue engineering scaffolds [121–123]. Accordingly,
polyurethane foam materials have been developed and applied for numerous in vivo
and in vitro uses [124,125]. Owing to in vivo or in vitro stability and bio sustainability
of polyurethane foams, these materials have been preferred for long-life biomedical de-
vices [126]. Guelcher and colleagues [127] fabricated polyurethane foams of lysine methyl
ester diisocyanate and poly(ε-caprolactone-co-glycolide) triol reactants by tertiary amine cat-
alyst. Polyurethane foam revealed fine in vitro biocompatibility of injectable scaffolds [128].
Schreader and co-workers [129] developed polyurethane-derived nanocomposite foams
filled with hydroxyapatite nanoparticles. Nanocomposite foams had good biocompati-
bility for interaction with bone tissue cells. Hence, these polymer nanocomposite foams
have good bone tissue engineering solicitations [130]. Zawadza et al. [131] formed car-
bon nanotube-coated polyurethane via the electrophoretic deposition method used for
tissue engineering. In this study, the effect of nanotube coating on the bioactivity of
polyurethane-based scaffolds has been assessed for the formation of calcium phosphate
of hydroxyapatite on foam surfaces. The presence of carbon nanotubes acted as nucle-
ation centers to facilitate the formation of hydroxyapatite in tissue engineering compared
with non-coated foam samples. Hence, nanocarbon-coated polyurethane foams have
been used as potential contenders to form bioactive scaffolds in bone tissue engineer-
ing owing to suitable porosity, bioactivity, and nanostructured topography. However,
nanocarbon-based polyurethane nanocomposite foams have major issues in controlling
the in vivo and in vitro toxicity levels [132]. Future research attempts with controlled toxi-
city levels may lead to further progress in this field. Moreover, polyurethane foams and
nanocomposite foams have been found to be useful for injectable delivery systems [133].
In this context, polyurethane/graphene nanocomposite foam and polyurethane/carbon
nanotube nanocomposite foam scaffolds have been designed and studied. Shin et al. [134]
designed three-dimensional scaffolds based on polyurethane foams filled with graphene
and graphene oxide nanosheets. Three-dimensional scaffolds were tested for facilitating
the cell growth of skeletal tissues. Moreover, polyurethane nanocomposite foams were
used as biomimetic scaffolds for skeletal tissue regeneration. The porous consistent foams
have a pore size of around 300 µm. Nanocomposite foams offered a fine microenviron-
ment for skeletal cell growth. The myogenic differentiation of skeletal cells was also
observed for nanocomposite foams. According to the studies, polyurethane/graphene
and polyurethane/graphene nanocomposite foams have a good myogenic stimulation
influence on myoblasts. Hence, these nanocomposite foams have been found to be effec-
tive in designing three-dimensional biomimetic scaffolds for drug delivery carriers and
different types of tissue engineering purposes. Moreover, careful future studies must be
performed to analyze the harmful effects and long-term influence of nanocarbon-filled
foams for biomedical applications.

5. Prospects

Polymeric foams have gained immense attention for their important methodological
applications [135]. The addition of nanofillers caused significant enhancement in the essen-
tial characteristics of the polymeric foams [136]. Consequently, the microstructure, mor-
phology, fabrication efficiency, as well as thermal, electrical, mechanical, and other technical
features of filled polyurethane foams have been observed. In particular, the remarkable per-
formances of carbon nanofillers (graphene, graphene oxide, carbon nanotube)-filled poly-
meric foams were investigated in the literature [137]. Polyurethanes have been considered
important matrices for nanocomposite foam fabrication. Carbon nanofillers (graphene and
carbon nanotube) filled polyurethane foams have been applied for shape memory spongy
nanomaterials, EMI shielding foams, and biomedical relevance. However, there are several
hidden future application areas of these high-performance polyurethane nanocomposite
foam materials. For example, like other polymeric foams [137], polyurethane/graphene
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and polyurethane/carbon nanotube foam materials can be employed in the space sector,
especially for structural applications. High strength, non-flammability, and thermal con-
duction properties of polyurethane nanocomposite foams have been found to be effective
in forming lightweight sandwich panels for space structures. Furthermore, the energy
absorption features of these polyurethane nanocomposite foam-based sandwich panels
may be explored for important utilizations. Similar to other polymeric foams [138], the non-
flammability and mechanical strength properties of polyurethane nanocomposite foams
were useful for high-tech automotive applications. Polymer foams have important applica-
tions in the construction industry [139]. Here again, polyurethane-derived nanocomposite
foams can be used to support or develop buildings and structures. In particular, these foams
may offer high strength and energetic radiation protection to building structures. Another
important use of polyurethane nanocomposite foams has been observed for developing
eco-friendly and sustainable materials [140].

6. Conclusions

Briefly, polyurethane has been researched as a multipurpose polymer to develop
foam materials. Consequently, various thermoplastics or thermosetting polyurethane
foams have been reported in the literature. Several chemical or physical foaming meth-
ods employing foaming agents, freeze drying, supercritical CO2 foaming, compression
molding, etc., have been adopted. Nanocarbon nanoparticles have been included for de-
sign, microstructural control, and overall enhancement in the physical performance of
polyurethane foams. Unique pore structures, open or closed cell structures, electronic,
mechanical, thermal, and other properties have been attained. Graphene and carbon nan-
otubes have played important roles in polyurethane foam reinforcement. Polyurethane
and polyurethane nanocomposite foams were found to have good processing capabilities,
chemical constancy, flexibility, compressibility, reversibility, heat stability, non-flammability,
mechanical strength, electron conduction, thermal conductivity, and several other impor-
tant physical characteristics. The inclusion of carbon nanoparticles in polyurethane foams
has positively altered morphology, physical properties, and technical performance de-
pending on nanofiller contents and the dispersion in the matrix. Noteworthy applications
of polyurethane nanocomposite foams have been observed for stimuli responsiveness,
EMI shielding, and biomedical uses. However, these application areas need to be fur-
ther explored for future progress in the field of polyurethane/nanocarbon nanocomposite
foams. Exploring current challenges associated with these foams may open future research
pathways for significant technical applications.
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