Features of the Phase Formation of Cr/Mn/Fe/Co/Ni/Cu Codoped Bismuth Niobate Pyrochlore
Abstract
:1. Introduction
2. Experimental Part
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Murugesan, S.; Huda, M.N.; Yan, Y.; Al-Jassim, M.M.; Subramanian, V. Band-Engineered Bismuth Titanate Pyrochlores for Visible Light Photocatalysis. J. Phys. Chem. 2010, 114, 10598–10605. [Google Scholar] [CrossRef]
- Pandey, J.; Shrivastava, V.; Nagarajan, R. Metastable Bi2Zr2O7 with Pyrochlore-like Structure: Stabilization, Oxygen Ion Conductivity, and Catalytic Properties. Inorg. Chem. 2018, 57, 13667–13678. [Google Scholar] [CrossRef] [PubMed]
- Parrondo, J.; George, M.; Capuano, C.; Ayers, K.E.; Ramani, V. Pyrochlore electrocatalysts for efficient alkaline water electrolysis. J. Mater. Chem. A 2015, 3, 10819–10828. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G. Thermal expansion of bismuth magnesium tantalate and niobate pyrochlores. Ceram. Int. 2021, 47, 30099–30105. [Google Scholar] [CrossRef]
- Subramanian, M.A.; Aravamudan, G.; Subba Rao, G.V. Oxide pyrochlores—A review. Prog. Sol. St. Chem. 1983, 15, 55–143. [Google Scholar] [CrossRef]
- McCauley, R.A. Structural Characteristics of Pyrochlore Formation. J. Appl. Phys. 1980, 51, 290–294. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Lufaso, M.W.; Adler, A.U.; Levin, I.; Nino, J.C.; Provenzano, V.; Schenck, P.K. Subsolidus phase equilibria and properties in the system Bi2O3:Mn2O3±x:Nb2O5. J. Solid State Chem. 2006, 179, 3467–3477. [Google Scholar] [CrossRef]
- Vanderah, T.A.; Siegrist, T.; Lufaso, M.W.; Yeager, M.C.; Roth, R.S.; Nino, J.C.; Yates, S. Phase Formation and Properties in the System Bi2O3:2CoO1+x:Nb2O5. Eur. J. Inorg. Chem. 2006, 2006, 4908–4914. [Google Scholar] [CrossRef]
- Lufaso, M.W.; Vanderah, T.A.; Pazos, I.M.; Levin, I.; Roth, R.S.; Nino, J.C.; Provenzano, V.; Schenck, P.K. Phase formation, crystal chemistry, and properties in the system Bi2O3–Fe2O3–Nb2O5. J. Solid State Chem. 2006, 179, 3900–3910. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Nekipelov, S.V.; Sivkov, D.V.; Sivkov, V.N.; Lebedev, A.M.; Chumakov, R.G.; Makeev, B.A.; Kharton, V.V.; et al. Spectroscopic characterization of cobalt doped bismuth tantalate pyrochlore. Sol. St. Sci. 2022, 125, 106820. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Nekipelov, S.V.; Kharton, V.V.; Sekushin, N.A. Thermal Expansion, XPS Spectra, and Structural and Electrical Properties of a New Bi2NiTa2O9 Pyrochlore. Inorg. Chem. 2021, 60, 4924–4934. [Google Scholar] [CrossRef] [PubMed]
- Chon, M.P.; Tan, K.B.; Khaw, C.C.; Zainal, Z.; Taufiq-Yap, Y.H.; Chen, S.K.; Tan, P.Y. Subsolidus phase equilibria and electrical properties of pyrochlores in the Bi2O3–CuO–Ta2O5 ternary system. J. Alloys Compd. 2016, 675, 116–127. [Google Scholar] [CrossRef]
- Valant, M.; Suvorov, D. The Bi2O3-Nb2O5-NiO Phase Diagram. J. Am. Ceram. Soc. 2005, 88, 2540–2543. [Google Scholar] [CrossRef]
- Jusoh, F.A.; Tan, K.B.; Zainal, Z.; Chen, S.K.; Khaw, C.C.; Lee, O.J. Novel pyrochlores in the Bi2O3-Fe2O3-Ta2O5 (BFT) ternary system: Synthesis, structural and electrical properties. J. Mater. Res. Technol. 2020, 9, 11022–11034. [Google Scholar] [CrossRef]
- Egorysheva, A.V.; Ellert, O.G.; Gajtko, O.M.; Efimov, N.N.; Svetogorov, R.D.; Zubavichus, Y.V.; Grigorieva, A.V. The Bi2O3–Fe2O3–Sb2O5 system phase diagram refinement, Bi3FeSb2O11 structure peculiarities and magnetic properties. J. Solid State Chem. 2015, 225, 278–284. [Google Scholar] [CrossRef]
- Nino, J.C.; Lanagan, M.T.; Randall, C.A. Dielectric Relaxation in Bi2O3–ZnO–Nb2O5 Cubic Pyrochlore. J. Appl. Phys. 2001, 89, 4512–4516. [Google Scholar] [CrossRef]
- Ang, C.; Yu, Z.; Yuon, H.J.; Randall, C.A. Low-Temperature Dielectric Relaxation in the Pyrochlore (Bi3/4Zn1/4)(Zn1/4Ta3/4)O7 Compound. Appl. Phys. Lett. 2002, 80, 4807–4809. [Google Scholar] [CrossRef] [Green Version]
- Kamba, S.; Porokhovskyy, V.; Pashkin, A. Anomalous Broad Dielectric Relaxation in Bi1.5Zn1.0Nb1.5O7 Pyrochlore. Phys. Rev. B Condens. Matter. 2002, 66, 1–8. [Google Scholar] [CrossRef]
- Valant, M. Dielectric Relaxations in Bi2O3-Nb2O5-NiO Cubic Pyrochlores. J. Am. Ceram. Soc. 2009, 92, 955–958. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Sekushin, N.A.; Nekipelov, S.V.; Kharton, V.V.; Makeev, B.A.; Lutoev, V.P.; Sennikova, Y.D. Cu, Mg codoped bismuth tantalate pyrochlores: Crystal structure, XPS spectra, thermal expansion, and electrical properties. Inorg. Chem. 2022, 61, 4270–4282. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Sekushin, N.A.; Krzhizhanovskaya, M.G.; Kharton, V.V. Multiple relaxation, reversible electrical breakdown and bipolar conductivity of pyrochlore–type Bi2Cu0.5Zn0.5Ta2O9 ceramics. Solid State Ion. 2022, 377, 115868. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Koroleva, A.V.; Reveguk, A.A.; Sivkov, D.V.; Nekipelov, S.V. Thermal expansion, crystal structure, XPS and NEXAFS spectra of Fe-doped bismuth tantalate pyrochlore. Ceram. Int. 2022, 48, 14849–14855. [Google Scholar] [CrossRef]
- Ismunandar; Kamiyama, T.; Oikawa, K.; Hoshikawa, A.; Kennedy, B.J.; Kubota, Y.; Kato, K. Static bismuth disorder in Bi2−x(CrTa)O7−y. Mater. Res. Bull. 2004, 39, 553–560. [Google Scholar] [CrossRef]
- Jusoh, F.A.; Tan, K.B.; Zainal, Z.; Chen, S.K.; Khaw, C.C.; Lee, O.J. Investigation of structural and dielectric properties of subsolidus bismuth iron niobate pyrochlores. J. Asian Ceram. Soc. 2020, 8, 957–969. [Google Scholar] [CrossRef]
- Tan, P.Y.; Tan, K.B.; Khaw, C.; Zainal, Z.; Chen, S.K.; Chon, M.P. Structural and electrical properties of bismuth magnesium tantalate pyrochlores. Ceram. Int. 2012, 38, 5401–5409. [Google Scholar] [CrossRef]
- Youn, H.-J.; Sogabe, T.; Randall, C.A.; Shrout, T.R.; Lanagan, M.T. Phase Relations and Dielectric Properties in the Bi2O3-ZnO-Ta2O5 System. J. Am. Ceram. Soc. 2001, 84, 2557–2562. [Google Scholar] [CrossRef]
- Khaw, C.C.; Tan, K.B.; Lee, C.K. High temperature dielectric properties of cubic bismuth zinc tantalate. Ceram. Int. 2009, 35, 1473–1480. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Sekushin, N.A.; Kharton, V.V.; Koroleva, A.V.; Nekipelov, S.V.; Sivkov, D.V.; Sivkov, V.N.; Makeev, B.A.; Lebedev, A.M.; et al. Novel Ni-Doped Bismuth–Magnesium Tantalate Pyrochlores: Structural and Electrical Properties, Thermal Expansion, X-ray Photoelectron Spectroscopy, and Near-Edge X-ray Absorption Fine Structure Spectra. ACS Omega 2021, 6, 23262–23273. [Google Scholar] [CrossRef] [PubMed]
- Rylchenko, E.P.; Makeev, B.A.; Sivkov, D.V.; Korolev, R.I.; Zhuk, N.A. Features of phase formation of pyrochlore-type Bi2Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Ta2O9+Δ. Lett. Mater. 2022, 12, 486–492. [Google Scholar] [CrossRef]
- Zhuk, N.; Makeev, B.; Krzhizhanovskaya, M.; Korolev, R. Effect of magnesium and zinc on phase formation of pyrochlore-type Bi2Mg(Zn)1-xMxTa2O9.5-Δ (M-Cr, Fe) ceramics. Ceram. Int. 2023, 49, 5496–5509. [Google Scholar] [CrossRef]
- Zhuk, N.A.; Kovalenko, S.Y.; Korolev, R.I.; Makeev, B.A.; Krzhizhanovskaya, M.G.; Sivkov, D.V.; Nekipelov, S.V.; Sivkov, V.N.; Yermolina, M.V. Features of Phase Formation of Pyrochlore-type Ceramics Bi2Mg(Zn)1-xNixTa2O9. ACS Omega 2023, 8, 11351–11363. [Google Scholar] [CrossRef] [PubMed]
- Akselrud, L.G.; Grin, Y.N.; Zavalij, P.Y. CSD-universal program package for single crystal or powder structure data treatment. Thes. Rep. XII Eur. Crystallogr. Meet. 1989, 3, 155. [Google Scholar]
- Parshukova, K.N.; Rylchenko, E.P.; Muravyov, V.A.; Badanina, K.A.; Korolev, R.I.; Zhuk, N.A. Synthesis of Multicomponent Compounds with Pyrochloric Structure. Glass Ceram. 2023, 79, 418–421. [Google Scholar] [CrossRef]
- Shannon, R.D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 1976, 32, 751–767. [Google Scholar] [CrossRef]
- Kato, K. Structure refinement of h-Nb2O5. Acta Crystallogr. Sec. B Struct. Crystallogr. Cryst. Chem. 1976, 32, 764–767. [Google Scholar] [CrossRef]
- Zahid, A.H.; Han, Q. A review on the preparation, microstructure, and photocatalytic performance of Bi2O3 in polymorphs. Nanoscale 2021, 13, 17687–17724. [Google Scholar] [CrossRef]
- Ling, C.D. Solving δ-Bi2O3-related superstructures by combining neutron powder diffraction and ab initio calculations. Physica B 2006, 385–386, 193–195. [Google Scholar] [CrossRef]
- Gopalakrishnan, J.; Ramanan, A.; Rao, C.N.R.; Jefferson, D.A.; Smith, D.J. A homologous series of recurrent intergrowth structures of the type Bi4Am+n−2Bm+nO3(m +n)+6 formed by oxides of the aurivillius family. Solid State Chem. 1984, 55, 101–105. [Google Scholar] [CrossRef]
- Warda, S.A.; Pietzuch, W.; Massa, W.; Kesper, U.; Reinen, D. Color and Constitution of CrVI-Doped Bi2O3 Phases: The Structure of Bi14CrO24. J. Solid State Chem. 2000, 149, 209–217. [Google Scholar] [CrossRef]
- Craid, D.C. Stephenson Structure Studies of Some Body-Centered Cubic Phase of Mixed Oxides Involving Bi2O3: The Structures of Bi25FeO40 and Bi38ZnO60. J. Solid State Chem. 1975, 5, 1–8. [Google Scholar]
- Struzik, M.; Liu, X.; Abrahams, I.; Krok, F.; Malys, M.; Dygas, J.R. Defect structure and electrical conductivity in the pseudo-binary system Bi3TaO7–Bi3NbO7. Solid State Ion. 2012, 218, 25–30. [Google Scholar] [CrossRef]
- Castro, A.; Aguado, E.; Rojo, J.M.; Herrero, P.; Enjalbert, R.; Galy, J. The New Oxygen-Deficient Fluorite Bi3NbO7: Synthesis, Electrical Behavior and Structural Approach. Mater. Res. Bull. 1998, 33, 31–41. [Google Scholar] [CrossRef]
- Roth, R.S.; Waring, J.L. Synthesis and stability of bismutotantalite, stibiotantalite and chemically similar ABO4 compounds. Am. Mineral. 1963, 48, 1348–1356. [Google Scholar]
- Zhuk, N.A.; Krzhizhanovskaya, M.G.; Belyy, V.A.; Makeev, B.A. High-Temperature Crystal Chemistry of α-, β-, and γ-BiNbO4 Polymorphs. Inorg. Chem. 2019, 58, 1518–1526. [Google Scholar] [CrossRef] [PubMed]
- Guragain, D.; Zequine, C.; Gupta, R.K.; Mishra, S.R. Facile Synthesis of Bio-Template Tubular MCo2O4 (M = Cr, Mn, Ni) Microstructure and Its Electrochemical Performance in Aqueous Electrolyte. Processes 2020, 8, 343. [Google Scholar] [CrossRef] [Green Version]
Synthesis Temperature, °C | Phase Composition |
---|---|
400 | η-Nb2O5, α-Bi2O3 |
450 | η-Nb2O5, α-Bi2O3 |
500 | η-Nb2O5, α-Bi2O3, β-Bi2O3 |
550 | η-Nb2O5, β-Bi2O3, Bi5Nb3O15, Bi14CrO24 |
600 | η-Nb2O5, β-Bi2O3,Bi5Nb3O15, Bi14CrO24, Bi25FeO40 |
650 | Bi25FeO40,β-Nb2O5, Bi5Nb3O15, Bi14CrO24, BiNbO4, pyrochlore |
700 | Bi25FeO40(traces),β-Nb2O5, Bi5Nb3O15, Bi14CrO24, BiNbO4, pyrochlore |
750 | β-Nb2O5(traces), Bi14CrO24(traces), Bi5Nb3O15, BiNbO4, pyrochlore |
800 | Bi5Nb3O15(traces), BiNbO4, pyrochlore |
850 | pyrochlore (68), BiNbO4 (32) |
900 | pyrochlore (70), BiNbO4 (30) |
950 | pyrochlore (76), BiNbO4 (24) |
1000 | pyrochlore (89), BiNbO4 (11) |
1050 | Bi2Cr1/6Mn1/6Fe1/6Co1/6Ni1/6Cu1/6Nb2O9+Δ (100) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuk, N.A.; Makeev, B.A.; Krzhizhanovskaya, M.G.; Nekipelov, S.V.; Sivkov, D.V.; Badanina, K.A. Features of the Phase Formation of Cr/Mn/Fe/Co/Ni/Cu Codoped Bismuth Niobate Pyrochlore. Crystals 2023, 13, 1202. https://doi.org/10.3390/cryst13081202
Zhuk NA, Makeev BA, Krzhizhanovskaya MG, Nekipelov SV, Sivkov DV, Badanina KA. Features of the Phase Formation of Cr/Mn/Fe/Co/Ni/Cu Codoped Bismuth Niobate Pyrochlore. Crystals. 2023; 13(8):1202. https://doi.org/10.3390/cryst13081202
Chicago/Turabian StyleZhuk, Nadezhda A., Boris A. Makeev, Maria G. Krzhizhanovskaya, Sergey V. Nekipelov, Danil V. Sivkov, and Ksenia A. Badanina. 2023. "Features of the Phase Formation of Cr/Mn/Fe/Co/Ni/Cu Codoped Bismuth Niobate Pyrochlore" Crystals 13, no. 8: 1202. https://doi.org/10.3390/cryst13081202
APA StyleZhuk, N. A., Makeev, B. A., Krzhizhanovskaya, M. G., Nekipelov, S. V., Sivkov, D. V., & Badanina, K. A. (2023). Features of the Phase Formation of Cr/Mn/Fe/Co/Ni/Cu Codoped Bismuth Niobate Pyrochlore. Crystals, 13(8), 1202. https://doi.org/10.3390/cryst13081202