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Abstract: Lithium tantalate (LiTaO3, or LT) crystal is widely used in optical applications, infrared
detection, and acoustic surface wave devices because of its excellent piezoelectric, pyroelectric, and
nonlinear optical properties. In this paper, we discuss the defect structure of LT; the preparation
method for LT; the influence of doping on LT; and LT’s application in optical, acoustic, and electrical
devices. We mainly analyzed the structure and physical properties of LT crystal, the preparation of LT
crystal and LT thin films, the periodic polarization of LT crystal, the reduction of LT wafers, and the
application potential of LT crystals in lasers and acoustic surface filters according to the most recent
research. We also provide an overview of future research directions for LT in the fields of acoustics,
optics, and other fields. The applications of LT in 5G, 6G, SAW filters, nonlinear optical devices, and
waveguides are expected to provide additional breakthroughs.

Keywords: lithium tantalate; defect structure; performance control; application of lithium tantalate;
piezoelectric crystal

1. Introduction

Lithium tantalate (LiTaO3, or LT) is widely used in filters [1], pyroelectric detectors,
holographic memory devices [2], and other devices, due to its excellent piezoelectric,
pyroelectric, and nonlinear optical properties. Some properties of LT are better than those
of lithium niobate (LiNbO3, or LN) [3], which is isomorphic to lithium tantalate. First, the
photorefractive resistance of LT is twice that of LN [4]. Second, LT has a smaller temperature
frequency coefficient (TCF) than LN, so it is an ideal material for manufacturing high-
stability and broadband filters [5]. Finally, the thermal stability of LT, which is only 18 ppm
in the range of 20–80 ◦C, is better than that of LN. Moreover, the optical damage threshold
for LT at 514.5 nm is 1500 W/cm2, which is approximately 37.5 times the optical damage
threshold for LN, which is only 40 W/cm2 [6]. Therefore, the performance of an LT device,
after being fabricated into a specific device, is better than that of an LN device.

LT is also called a “universal crystal” because it has excellent electro-optic, nonlinear
optical [7,8], piezoelectric, and pyroelectric properties. The applications of LT need to be
perfected, and the preparation of large amounts of LT is still unable to avoid tantalate
(Ta)-on-lithium (Li) site defects and Li vacancy defects [9]. This affects the applications of
LT crystals in devices to varying degrees.

The pyroelectric coefficient of LT can be reduced by reducing and blackening LT
wafers [10], which are periodically poled [11] and used for light-frequency converters.
By doping other atoms to improve the relevant optical parameters [12], research into the
properties of LT is able to provide a solid foundation for examining the infinite potential
for the applications of LT.
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The preparation methods for LT include the Czochralski method [13], the double-
crucible Czochralski method [14], and the vapor-transport equilibrium method [15]. At
present, the most popular method is the Czochralski method, which can grow large-size
LT with many defects. Its defects mainly include Ta-on-Li site defects and Li vacancy
defects [16]. These defects have some effects on the properties of LT, including changes to
the Curie temperature [17], the coercive field [18], and photo-conductivity [19].

LT has been considered by scientists because of its excellent performance, its wide
range of applications, and its adjustable usage. On the basis of these excellent features, in
this paper, we discuss the structure of LT, the physical properties of LT, the defect types of
LT, the growth methods of LT, the thin-film preparation of LT, the performance control of LT,
and the applications of LT in optics and acoustics. Future research and applications of LT in
acoustics and optics are proposed. It is expected that the applications of LT in 5G, 6G, SAW
filters, nonlinear optical devices, and waveguides will achieve additional breakthroughs.

2. Crystal Structure and Physical Properties of Lithium Tantalate

Abrahams et al. [20,21] reported that LT belongs to the R3c space group at room
temperature, as does LN, and the performance of LT is similar to that of LN. The structure
of LT can be considered as the alumina-like corundum structure of Ta and Li ions along the
c-axis [22]. The structure is shown in Figure 1.
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Figure 1. Structure of lithium tantalate: spatial structure of the unit cell. Open circles—O; solid
circles—Li; cross-hatched symbols—Ta. Reprinted with permission from the authors of [23]. Copy-
right 1976, American Physical Society.

Table 1 shows that the melting point of LT crystal is 1650 ◦C [24], which is higher than
that of LN. The Curie temperature of LT is lower than that of LN, and the pyroelectric
coefficient of LT [13] is one order of magnitude higher than that of LN. Therefore, LT is more
suitable than LN as a material for manufacturing pyroelectric detectors. Hang et al. [25]
found that the elastic modulus of LT is 125 GPa, and the hardness of LT is about 10 GPa,
while the elastic modulus of sapphire is 353 GPa, and the hardness of sapphire is 33 GPa.
Thus, the hardness of LT is far less than that of sapphire. The material itself is brittle and
prone to cracks during processing.

Table 1. Performance comparison between LT and LN [7,13,24–27].

Performance Melting Point
(◦C) Hardness (GPa) Laser-Damage

Threshold (W/cm2)
Curie

Temperature (◦C)
Pyroelectric

Coefficient (C/(m2·K))

LT 1650 125 1500 610 2.3 × 10−4

LN 1275 40 1210 4 × 10−5
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Miyazawa et al. [28] researched the binary phase diagram of LT and found that the
congruent LT and the near-stoichiometric LT are different. The binary phase diagram is
shown in Figure 2. It can be seen from the binary phase diagram that different compounds
are produced with different raw material ratios. As a result of the decrease in Li content,
the congruent LT has more defects than the near-stoichiometric LT. There are a sea of Li
vacancies and TaLi defects. Therefore, the performance of congruent LT is worse than that
of near-stoichiometric LT [29]. For example, it has a higher coercive field.
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3. Defect Types of LiTaO3 Crystal

The defect structure of LT can be inferred by studying the defect structure of LN,
which is isomorphic to LT. Lerner et al. [31] presented the most widely used model, namely
the Nb anti-occupancy defect model, and this was extended by Kim et al. [32]. The Nb
antisite defect is surrounded by three Li vacancies in the nearest neighborhood, and a
fourth Li vacancy is located along the c-axis (referred to as the M1 model). In the defect
model of LT, the Nb antisite defect is replaced by the Ta antisite defect, and the model is
shown in M1 of Figure 3.

Due to the development of technology, Peterson [33] and Abrahams [34] proposed an
alternative model to add a Nb vacancy to a Li site, based on 93Nb NMR technology [32]
and X-ray single-crystal diffraction data. Zotov [35] and Iyi [36] refined the model based on
certain measurements, and in their model, all excess Nb in the octahedron was composed
of Li vacancies. This model cannot explain the nonstoichiometric LT but can be used
to study the defects of LT together with other defect models. Vyalikh [37] and others
prepared two kinds of congruent LT using the Czochralski method. After heat treatment,
the external diffusion of Li and the distribution of other defects were observed via electron
spin resonance (ESR) spectroscopy, nuclear magnetic resonance (NMR) spectroscopy, and
infrared (FT-IR) spectroscopy. It was found that the defects of LT prepared using the same
method are quite different, so the same defect model cannot be used to represent the model
of congruent LT.
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Based on the LN defect model’s ESR (electron spin resonance), NMR (nuclear magnetic
resonance), and FT-IR (infrared spectrum) results, Vyalikh et al. [37] proposed a more
complex LT defect model, including central defects and external defects. The defect models
include the Li vacancy model, the Ta antisite model, and some other mixed defect models.
On the basis of the different Li content and growth conditions, the corresponding defect
models are also different. Table 2 outlines the characteristics of a variety of defect models.
In the M3 defect model, Ta enters the gap position and contains five Li vacancies, whose
structure is shown in M3 in Table 2. In 2021, Masaif et al. [38] found that nonstoichiometric
LT is more suitable to be described using the Li vacancy model combined with the Ta
vacancy model, which is more consistent with its defect structure. In 2022, Xiao et al. [39]
proposed a mixed defect model by analyzing Ta and Li valence changes in LT crystals
with different Li contents, in which polaritons coexist with Li vacancies and Ta inversions.
The new mixed defect model and the variation law of Ta valence with Li concentration
proposed by this group provide a new direction and experimental basis for the study of the
defects of near-stoichiometric ratio crystals, and the exploring of the Li content in LT under
the best physical properties provides a theoretical basis.

Table 2. Defect clusters with different defect models, their concentrations, and defect formation
energies in LT,YZ

X symbol, where the element Y is located at the position before X; Z denotes the
relative charge (• is positive and ‚ is negative); V and i denote vacancies and gaps, respectively;
a indicates that the model may be present as a stabilizing defect in the congruent lithium tantalate
along with other defective models [37].

Model Central Defect Compensating
Defect Reaction Formation

Energy (eV)

M1 Ta••••Li 4V‚
Li 3Ta2O5→5Tax

Ta+ 15Ox
O+ (1Ta••••Li + 4V‚

Li) +1.94
M2 5Ta••••Li 4V‚‚‚‚

Ta 3Ta2O5→1Tax
Ta+ 15Ox

O+ (5Ta••••Li + 4V‚‚‚‚
Ta) +10.90

M3 Ta•••••i 5V‚
Li 3Ta2O5→5Tax

Ta+ 15Ox
O+(1Ta•••••i + 5V‚

Li) +1.61
M3-1 a V‚‚‚‚‚

Ta 1LiTaO3 → 1LixLi + 3Ox
O+

(
1Ta•••••i + 6V‚‚‚‚‚

Ta ) +4.14
M4-1 a Ta••••Li Li‚‚‚‚Ta 1LiTaO3 → 3Ox

O +
(
Ta••••Li +Li‚‚‚‚Ta

)
+3.01

M5 Ta••••Li , Ta•••••i 9V‚
Li 6Ta2O5→10Tax

Ta+ 30Ox
O+ (1Ta•••••Li + 1Ta•••••i + 9V‚

Li) +7.16
M5-1 4V‚

Li, V‚‚‚‚‚
Ta 3Ta2O5→4Tax

Ta+ 15Ox
O+ (1Ta•••••Li + 1Ta•••••i + 4V‚

Li + 1V‚‚‚‚‚
Ta ) +1.94

M6 Li•i , Ta•••••i 6V‚
Li 3Ta2O5+LiTaO3→6Tax

Ta+ 18Ox
O+ (1Li•Li + 1Ta•••••i + 6V‚

Li) +7.03
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In the reduction process of the LT crystal, there will also be an oxygen vacancy
defect model. Kappers et al. [40] found that reduction will lead to the generation of
oxygen vacancies, which contain two electrons, according to the analysis of the electron
paramagnetic resonance (ESR) spectrum of the reduced wafer. By testing and analyzing
black lithium tantalate chips, Wan et al. [41] found that black lithium tantalate chips have
inherent oxygen vacancy defects. These defects increase the formation efficiency of Ta
defects in the implantation process and further facilitate the preparation of lithium tantalate
films using crystal ion slicing technology.

In conclusion, the defect structure of LT is complex. It mainly includes Li vacancies,
Ta antisites, Ta vacancies, Ta entering the gap, and oxygen vacancy defects appearing on
blackened wafers. LT with different Li contents is described by different defect models. The
defect model of nonstoichiometric LT tends to be described using a mixed vacancy model.

4. Preparation of Lithium Tantalate
4.1. Growth of LiTaO3 Crystals

The basic principle of the Czochralski method is the self-nucleation of LT on iridium
wire with molten metal. A single-crystal rod is then produced by pulling it to a small
diameter [42]. In 1963, Albert et al. [13] prepared LT using the Czochralski method for the
first time and found that the material was ferroelectric, and the Curie temperature of the
material was 665 ◦C.

In 1979, Brandle et al. [43] studied the reason for the cracking of large-size LT devel-
oped using the Czochralski method and found that the material’s cracking has nothing to
do with the quality of seed crystals. The cracking of LT is related to the defect density, and
the quality of the crystal generated using the y-axis is better. Finally, large-size LT with a
diameter of 4 cm and weight of 1200–1700 g were developed.

In 1995, Song et al. [44] used the Czochralski method to grow LT of good quality. By
adjusting the temperature gradient, growth rate, and rotation rate, LT could be fabricated
without macrodefects.

In 2006, Du et al. [45] used an iridium crucible, an improved temperature control
system, an accurate power control system, and a suitable weighing system to grow five-
inch LT to meet the market demand for large-sized LT. In addition, some companies have
fabricated six-inch LT, but so far, there is no documented report. Figure 4 illustrates the
four-inch 36◦-RY LiTaO3 single crystals using the Czochralski method.
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Large-size LiTaO3 crystals can be developed using the Czochralski method [45]. Due
to the defects of this method, segregation occurs in the generated crystals. In addition, high
thermal stress is introduced during crystal development using the Czochralski method,
leading to dislocations that have little effect on properties [46]. From the point of view
of optimizing the device performance, it is still necessary to improve and perfect the
Czochralski method or find a new method for the preparation of large-size LT. In 2020,
Yutaka et al. [46] studied the reason for the formation of twins in LT developed using the
Czochralski method and found that the formation of twins was caused by the occurrence
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of dislocations. The LT commonly used in commercial applications has a Li:Ta ratio of
48.5:51.5 in congruent lithium tantalate (CLT) [47]. The deficiency of lithium inside the CLT
leads to many defects inside the crystal, so there are still many limitations in improving
crystal performance and applications.

4.2. Preparation of Near-Stoichiometric Lithium Tantalate Crystals

Nearly stoichiometric lithium tantalate (NSLT) is a crystal with a Li:Ta ratio close to
1:1, with fewer defects and better properties. After recent advances, new methods have
been proposed for the preparation of NSLT, including the K2O cosolvent method [48–51],
the horizontal-zone melting method [52] the double-crucible Czochralski method [53–55],
and vapor transport equilibration (VTE) [15], all of which can be used to prepare lithium
tantalate crystals with an internal Li content close to the stoichiometric ratio, but all of them
also have different disadvantages. The K2O cosolvent method and the horizontal-zone
melting method require very precise control of the temperature field; the double-crucible
Czochralski method allows for the production of NSLT crystals with better performance
and a higher near-stoichiometric ratio, but it has not been widely promoted because of
the complexity of the process, and only a few Japanese companies have fabricated NSLT
using this method. In contrast, VTE is a simple method to produce NSLT crystals. In this
approach, congruent wafers are simply heated in a crucible with a pre-reacted two-phase
powder containing more lithium than a stoichiometric molar ratio. At high temperatures,
there is a net transfer of lithium from the powder into the crystal through vapor transport
and solid-state diffusion. In 2022, Xiao et al. [56] prepared NSLT via VTE and tested the
electrical, thermal, and mechanical properties of NSLTs with different Li contents using
the four-probe method and laser-pulse thermal conductivity tests. The maximum electrical
conductivity measured was 4.4 × 10−12 Ω−1cm−1, and the maximum thermal conductivity
reached 4.6 W/(mK). The development of NSLT fabrication technology provides more
ways to enhance the quality of lithium tantalate crystals.

4.3. Preparation of LiTaO3 Thin Films

Currently, the preparation methods for LT thin films mainly include the sol–gel
method [57], the magnetron sputtering method [58], and the molecular beam epitaxy
method [59]. In 1988, Imoto et al. [60] prepared LiTaO3 thin films with the wet method,
which can be used in humidity sensors. In 1993, Ye et al. [61] prepared LT thin films on
monocrystalline silicon substrates using the sol–gel method. In 1995, Gitmans et al. [59]
developed LT thin films with the oriented polycrystalline structure on a single-crystal
silicon substrate via molecular beam epitaxy.

With the development of technology, the quality of LiTaO3 thin films has improved in
recent years. Sun et al. [62] used anhydrous acetic acid and tantalum ethanol as starting
materials, propylene glycol as a solvent, and butyric acid to adjust the pH value, and thus
prepared LT sol, which was heated to form LT films. The final test results revealed that
annealing at different temperatures led to different optical band gaps. The advantage of the
sol–gel method is that it can be cost-effective, but has the disadvantage of not being able to
control the quality of the film. In 2019, Sun et al. [63] prepared LiTaO3 thin films on various
substrates via magnetron sputtering. With the increase in annealing temperature, the Li/Ta
ratio changed, and the properties of the films improved. The films annealed at 700 ◦C for
one hour were found to have the best properties, and they could effectively reduce Li and
O vacancies. These films were relatively flat, and their grains were relatively uniform.

Yan et al. [64] prepared a LiTaO3-on-insulator (LTOI) hybrid substrate with submicron
lithium tantalate single-crystal films on silicon wafers through a direct bonding ion-cutting
process. Using wafer bonding, the lithium tantalate crystal film was successfully bonded
to the Si substrate, and the crystal quality was further improved via annealing at 400 ◦C.
Wu et al. [65] prepared a fully insulating LiTaO3-on-insulator (FI-LTOI) substrate and a
trap-rich layer combined with a LiTaO3-on-insulator (TR-LTOI) substrate by cutting the ion
under the same conditions. Their research revealed that the quality factor of the resonator
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prepared using the FI-LTOI substrate can be well maintained at 200 ◦C, and therefore it
is an excellent substrate for 5G band SAW. Wan et al. [41] found that blackened lithium
tantalate wafers have a higher foaming efficiency through their research on blackened
lithium tantalate wafers, which is of great benefit for the preparation of lithium tantalate
films using crystal ion slicing technology.

Ye et al. [66] prepared polycrystalline LT thin films using an improved molecular beam
epitaxy (MBE) method. The ferroelectric properties of ultrathin LiTaO3 films (<0.5 µm)
developed on a silicon substrate were studied for the first time. The phase transition tem-
perature was between 580 and 650 ◦C, the coercive field was 15–22 Kv/cm, and the surface
spontaneous polarization was as high as 1 µC/cm2. The pyroelectric current response was
100–200 µA/W. These experimental results show that LiTaO3 is a promising material for
infrared detector applications. Due to their excellent performance and cost-effectiveness,
these films can be used in many applications, such as microdisk resonators [67], optical
sensors [68], terahertz detectors [69], etc.

5. The Regulation of Properties of LT Crystals
5.1. Optical Properties of Doped LT

The photorefractive effect is a phenomenon in which the local refractive index is
changed due to the spatial variation in light intensity. Holographic storage technology can
produce holograms that can be stored and erased due to this effect [70]. The photorefractive
properties of LT can be improved through doping with other elements. For example, LT
doped with MgO periodically in poles has a high nonlinear coefficient (d33 = 13 pm/V)
and a low threshold for optical damage [71–73].

In 2004, Imbrock et al. [74] studied the photorefractive properties of Fe-doped LiTaO3
developed using the Czochralski method. They analyzed the dark storage time, which
was determined using dark conductivity. In cases where the iron concentration is not too
high, the dark conductivity mainly depends on the concentration of protons, as protons
are mobile in the dark state. However, because of the small mobility of protons, they have
a longer dark storage time. It can be seen from Figure 5 that the refractive index changes
with the change in Fe ions’ concentration, and this is independent of the wavelength of
light. When the Fe-ion concentration reaches 300 × 1023 m−3, the change in refractive
index reaches its peak. At this time, the change in the refractive index of the crystal is the
largest. The change in absorptivity at 310 nm is mainly related to Fe3+, and the change in
absorption at 400 nm is related to Fe2+. By reducing the proton concentration through heat
treatment, the dark storage time can be prolonged and is most sensitive to light at 400 nm.
Thus, it can be used as a holographic storage material.
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LT with the increase in incident light wavelength. In the figure on the right, LT16 is LT doped with an
Fe concentration of 10 × 1023 m−3, and LT18 is LT doped with an Fe concentration of 190 × 1023 m−3.
Reprinted with permission from Ref. [74]. Copyright 2004, Springer Nature.
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In 2015, Irzaman et al. [75] prepared La-doped LiTaO3 thin films via magnetron
sputtering. The addition of La promoted the formation of LiTaO5 and reduced the energy
gap. Doping with 10% La promoted the formation of hexagonal crystals. From the infrared
spectrum, it was found that the higher the doping concentration, the greater the absorption
of Ta-O and Li-O. Through the analysis with a particle size analyzer, it was found that the
doping of lanthanum led to a decrease in particle size, whereas the refractive index of the
LiTaO3 film doped with 5% La increased, as shown in Figure 6. However, the refractive
index of doped La was lower than that of undoped La.
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In 2018, Hao et al. [76] doped In and Nd in LiTaO3 single crystals. This replaces
the anti-Ta and Li vacancies, resulting in a reduction in the number of defects and an
improvement in anti-light damageability. When the amount of In doping reached the
threshold of 3%, the optical damage resistance threshold reached a maximum, and the
photoelectric performance improved. In the same year, Yang et al. [77] found that doping
Ga3+ in LiTaO3 can improve the optical damage of waveguides, and the optical stability
gain was 220 mW. It can be seen from Figure 7 that the maximum gain of the Ti:Er:LT
waveguide measured at 220 mW of pump power is 1.0 dB/cm. By optimizing the process
conditions and improving the overlap degree of Ga3+ and Er3+, a higher optical gain can be
obtained. These results highlight the potential of LT waveguides in photonic devices.
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In 2020, Palatnikov et al. [78] doped Zn in LiNbO3. Zn first occupied the position of
Li ions, and then Zn occupied the position of Nb with increasing Zn. It was found that
when the concentration of Zn reached 5% by mass, there was no photorefractive reaction
under 160 W light irradiation, while the structure of the LiTaO3 crystal was similar to that
of LiNbO3. It was also found that Zn-doped LiTaO3 had a higher calcination temperature,
as well as improved optical stability and uniformity; thus, it has the potential to be used as
a new piezoelectric material.

It can be seen from Table 3 that LiTaO3 doped with Fe can be used as a holographic
storage material to record changes in lighting, which can improve the photorefractive
performance of LiTaO3. The doping of In, Ga, and Zn can improve the photorefractive
ability of the materials. Doped La can be used as a laser material to change the refractive
index and band gap of crystals.

Table 3. Effects of doping using various elements on the optical properties of LiTaO3 crystals [74–78].

Doping Element Performance Impact

Fe
The refractive index and absorption coefficient of LiTaO3 crystals
for different wavelength light intensities change, so they can be

used as holographic storage material.

La
The refractive index of doped 5% lanthanum is higher, and the
refractive index of doped 10% lanthanum is lower than that of

undoped crystal.
In It improves resistance to anti-light damage.
Ga It improves resistance to anti-light damage.
Zn The anti-photorefractive ability and optical stability are improved.

In conclusion, doping other elements can improve the properties of LiTaO3, especially
the refractive index, optical damage resistance threshold, optical stability, and optical uni-
formity. The doped LT can be used as holographic storage materials and new piezoelectric
crystals; they are also expected to be used for lasers in future applications.

5.2. Reduction of LiTaO3 Wafers

The results show that LiTaO3 wafers have a high pyroelectric coefficient
(2.3 × 10−4 C/(m2·K)) and high transmittance. In the fabrication of SAW devices, a high
pyroelectric effect will lead to charge accumulation and damage to the substrate pattern.
In severe cases, the device may even be damaged, and high transmittance will also af-
fect lithography, which is not conducive to wafer processing [79]. Therefore, previous
researchers used the chemical reduction method to reduce the pyroelectric coefficient. After
chemical reduction treatment, the wafer turned black, hence called a “lithium tantalate
black wafer” [27,80].

The pyroelectric properties of LiTaO3 are much better than LiTaO3 blackened wafers.
Xiao et al. [81,82] developed LiTaO3 using the Czochralski method. After LiTaO3 crystals
were developed using the Czochralski method and crystal orientation for Y42◦ direction
single circular wafer polishing, they were reduced with aluminum powder and silicon
powder at 450 ◦C in a vacuum atmosphere for 40 h. Figure 8 shows the lithium tantalate
flakes without reduction and reduced under different conditions, with obvious color
change. Due to the evaporation of oxygen, the surface oxygen content of the reduced
wafers significantly decreased. It was found that the reduction treatment could improve
the conductivity of Lithium tantalate wafers, reduce the pyroelectric effect, and reduce the
specific heat and Vickers hardness of lithium tantalate wafers, and had little effect on the
Curie temperature. The high-temperature annealing of lithium tantalate before reduction
treatment and other types of pre-treatment helped to reduce the stress inside the wafer,
and it was easier to perform the blackening treatment to obtain a uniform blackened wafer.
When the device was applied, it generated heat, leading to the surface charge accumulation
of the device and thus performance degradation or breakdown of the device. Therefore,
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reducing the pyroelectric properties improves the performance stability of some devices;
for example, lithium tantalate black flakes are suitable for producing sound surface wave
filters in comparison to lithium tantalate thin flakes.
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Yan et al. [79] used carbon powder and Li2CO3 powder to reduce the CLT sheet in
nitrogen, and the thin, reduced LiTaO3 sheet turned black without affecting the piezoelectric
properties. Conductivity increased by 4–5 orders of magnitude, and resistivity changed to
109–1012 Ω·cm. Zhang et al. [83] used Zn powder and Si powder to reduce the LT wafer at
400 ◦C and found that the resistivity decreased significantly. It is believed that the reduction
of Ta5+ to Ta4+ is the reason for the decrease in wafer resistivity.

Xia et al. [27] used H2 and CO2 to reduce LiTaO3 wafers and found that this method
can significantly reduce the pyroelectric coefficient. The obvious decrease in crystal trans-
mittance is beneficial to wafer lithography. Zhang et al. [84] used LT black wafers to
produce surface acoustic wave filters. When the ambient temperature changed from 25 ◦C
to 100 ◦C, no electrostatic discharge waveforms exceeding 5 V were detected.

It can be seen from Table 4 that the resistivity of LiTaO3 wafers was reduced using the
chemical reduction method, so the pyroelectric effect was reduced. However, this slightly
reduced the microhardness of the wafer but did not affect its piezoelectric effect.

Table 4. Parameters of LiTaO3 wafers after blackening with different reducing agents [27,79,81,83].

Reducing Agent Reduction
Temperature Color

Piezoelectric
Constant d33

(C·N−1)

Resistivity
(Ω·cm) Shortcoming

Undoped canary yellow 14 × 10−12 4.25 × 1014

Al powder and Si powder 450 ◦C grey 1.6 × 1011 The specific heat and
hardness slightly decrease.

C powder and Li2CO3 powder 460 ◦C light gray 13 × 10−12 5.1 × 1012 Hardness slightly decreases.
C powder and Li2CO3 powder 540 ◦C Black 13 × 10−12 2.8 × 1010 Hardness slightly decreases.

Zn powder and Si powder 400 ◦C Brownish red 14.2 × 10−12 2.83 × 1010

5.3. Periodic Polarization of LiTaO3 Crystal

Periodic poling technology allows for the use of the maximal value of the nonlinear
optical coefficient of LiTaO3 and can be used for laser frequency doubling, frequency
combining, frequency difference, optical parametric oscillation, and optical parametric
amplification. Periodically poled lithium tantalate (PPLT) is one of the most transparent
ferroelectric materials. It has high-frequency doubling efficiency in the ultraviolet band. At
the same time, PPLT can be used as a second harmonic generation (SHG) [85].

Quasi-phase matching (QPM) in PPLT can be used for obtaining highly efficient
frequency doubling. In 1962, Armstrong et al. [86] first proposed the quasi-phase matching
technique. The quasi-phase matching technology can meet the phase matching of the
second harmonic generation in LiTaO3 to obtain high-frequency doubling conversion
efficiency, which is not affected by the crystal orientation. Through periodic inversion, the
frequency-doubling light is continuously superimposed to achieve a certain output power.
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Because the birefringence of LiTaO3 is not obvious, the phase velocity of fundamental
frequency light and double-frequency light is not consistent, which limits the output of
light. Therefore, QPM based on periodical poling is an important way to produce LiTaO3
crystals for laser light frequency transformation [87].

PPLT doped with MgO by Surin et al. [88] is a kind of pump crystal with high efficiency
for single-pass second harmonic generation. The nonlinear coefficient (deff) of the pump
crystal is 9 pm/V, and the thermal conductivity (K) is 8.4 W/(m·◦C). Figure 9 illustrates the
periodically poled structure with a QPM period of 8 mm viewed under a phase contrast
microscope after etching on the z surface.
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In 2022, Zhang et al. [89] compared the nonlinear optical properties of lithium tantalate
and lithium niobate crystals and determined that periodically polarized lithium tantalate
crystals are more suitable for continuous laser frequency doubling from a technical research
perspective. By designing and realizing a dual-optical multiplication with a periodic
structure of 8.1 µm, a 540 nm continuous multiplication laser output of more than 5 W was
obtained.

At present, PPLT has been applied to high-power green and blue lasers [90,91], optical
parametric oscillators [92], etc. Although the technology is not fully developed, it can still
be expected to be applied in the medical and military industries [93].

6. Application of LiTaO3 Crystals

LT is one of the most widely used multifunctional optical crystals, which has many
excellent properties such as electro-optic, nonlinear optical, ferroelectric, piezoelectric,
pyroelectric, and acoustic properties [94]. These properties make LiTaO3 suitable for use in
a broad range of fields, such as integrated optics, pyroelectric detectors, optical waveguides,
acoustic devices, etc. [95–99].

6.1. Integrated Optics

LiTaO3 is a ferroelectric material, which has excellent electro-optic and nonlinear
optical properties [100–103]. When rare-earth ions are doped in LiTaO3, laser emission can
be achieved, or it can be used as a laser pump source [104]. However, due to the broad
effects of photorefractive properties in ferroelectric materials, the output power of the
laser is limited [105], which is also the main reason why ferroelectric materials cannot be
applied to lasers. To solve this problem, researchers found that doping MgO and rare-earth
ions in LiTaO3 can improve the photorefractive properties of the material and increase the
threshold of photorefractive damage [106–109]. LiTaO3 can be used to produce an ultrafast
laser, which is an advantage that other lasers do not have [110]. In addition, LiTaO3 can
also be used in quantum communication and optical information processing in the optical
field [111].
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6.1.1. Laser Applications

Due to the good nonlinear optical properties and double-frequency and difference-
frequency effects of LiTaO3, these crystals have been widely used to make lasers and light
modulators. In 2014, Feng et al. [112] studied Nd, Mg:LiTaO3 lasers with a maximum pulse
energy of 3.2 µJ. Due to the poor quality of Nd, Mg: LiTaO3 crystals, the average output
power is limited. In 2019, Chi et al. [110] used Ag implantation to embed Ag nanoparticles
into LiTaO3 and found that saturated Ag nano-ions embedded in LiTaO3 would produce a
unique local surface plasmon resonance (LSPR) effect. Based on this characteristic, a 1 µm
Q-switched mode-locked laser based on a laser diode with a pulse width of 35 ps and a
repetition rate of 8.74 GHz was developed. This shows that the LiTaO3 laser has great
potential in producing ultrafast lasers. LT has low loss in the visible light band and uniform
birefringence [113], so it can be used to make light-intensity modulators. The principle of
modulation is realized by using the linear electro-optic effect in single-domain LiTaO3. LT
is cut into rod shapes and coupled to the driving circuit as a lumped element. It was found
that an optical extinction of about 15 dB could be achieved on a small-beam cross-section.
However, the disadvantage of this type of modulator is that when the time for light to
pass through the modulation crystal is close to the period of the modulation signal, the
modulation efficiency begins to decline, and the light is difficult to focus.

It is not easy to produce lasers that directly generate visible light [114], so it has
become a research hotspot for scientists to double the second harmonic generated by
materials to develop a random Raman fire laser. In 2021, Cui et al. [114] developed a yellow
laser that can convert an 1178 nm laser into a 589 nm laser with LT. The output power is
1.09 W, and the conversion efficiency is 10.8%. The experimental configuration is shown in
Figure 10 below.
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Although the technology for making laser or light intensity modulators with a LiTaO3
crystal is not mature, at least we can see the application potential of the LiTaO3 crystal in
this field and the unique potential that other materials do not have.

6.1.2. Optical Communication and Optical Storage Applications

Ultraviolet transmission is a new means of information transmission. At present,
technology is not very mature, but it has its unique advantages compared with conventional
communication. First, UV light propagates in the form of scattering [92], so UV light can
bypass obstacles. Second, it has strong anti-jamming ability and high confidentiality;
Finally, UV communication can overcome the complex environment for communication.
LiTaO3 crystals have the potential to be used in UV communication [115].

Meyn et al. [116] polarized LiTaO3 with an electric field of 23 KV/mm and finally
measured the nonlinear coefficient as deff = 4.7 pm/V. In 2016, Rimeika [117] and others
studied the femtosecond laser writing of Z-tangent LiTaO3 and found that the no and ne of
LiTaO3 can be changed, and a beam of light can be divided into two beams with orthogonal
polarization, ordinary refractive index, and special refractive index. The waveguide with
different refractive indices can be produced using different laser treatments of materials,
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that is, the positive change in the refractive index (weak damage of multiple parallel
damages), as well as gap and concave cladding (severe damage). It was found that the
waveguide produced from LiTaO3 can cause the intensity ratio of TE (the longitudinal
component of the electric field is zero, and the longitudinal component of the magnetic
field is not zero) and TM (the longitudinal component of the magnetic field is zero, and the
longitudinal component of the electric field is not zero) of polarized light to be 1:1. This
indicates that LiTaO3 has the potential to perform all-optical information processing.

In 2020, Li et al. [118] studied the direct writing of Mg-doped periodically polarized
near-stoichiometric lithium tantalate (PPMg-NSLT) using a femtosecond laser and found
that ultraviolet light was generated in the cladding waveguide. Finally, the second harmonic
generation (SHG) in the waveguide was successfully realized by using the quasi-phase-
matching (QPM) method. It can be seen from Figure 11 that the wavelength of the generated
secondary UV harmonic wave is 399.2 nm, and its insertion loss is less than 1.5 dB.
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In 2022, Wu et al. [120] reported an integrated 1 × 5 beam splitter based on an optical
waveguide with Type I and Type II modifications for femtosecond laser writing in LT.
The cladding waveguide composed of Type II modified tracks was used for optical signal
transmission, photon crosstalk reduction, and the modulation of the mode field. While Type
I single-line waveguides can be used to produce recoverable and rewritable beamsplitters,
the rewritten structures still have good transmission performance; in addition, Type I
modified waveguides can be rewritten quickly within 1–2 min. These beamsplitters show
good performance in the output of programmable optical signals, which provides a possible
strategy for developing erasable photonic data processors.

The quasi-phase-matching technique can cause LiTaO3 to generate the second har-
monic. The insertion loss is very small, and the nonlinear optical coefficient is relatively
small. Therefore, periodically poled LiTaO3 is suitable for application in the purple light
range, so there is great hope it will be applied in purple light devices [116] in the fu-
ture. PPLT doped with MgO may also be widely used in quantum communication in the
future [118].

6.2. Applications of Pyroelectric Detectors

LiTaO3 has the characteristics of a high pyroelectric coefficient, fast spectral response,
and fast response speed. This material also has a high Curie temperature, good corrosion
resistance, and other structural characteristics. Pyroelectric detectors are a type of detector
based on the pyroelectric effect. Compared with conventional thermal infrared detectors,
their advantage lies in their fast response speed. their principle is to respond to the change
in the temperature change rate. Other heat detectors measure according to the temperature
difference and need to reach a temperature balance quickly. In 2020, Dong et al. [119]
researched on multifunctional terahertz detector, using a lithium tantalate sheet and a
carbon nanotube absorption layer to form a sensitive terahertz pyroelectric detector device.
The terahertz infrared detector was developed using some key technologies, and the final
measured responsivity was 371.8 V/W.
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The progress of devices depends on two aspects: the development of materials and
the progress of processing technology. It has been found that the voltage response rate
and the specific detectivity of the detector are directly proportional to the thickness of
the pyroelectric infrared sensing unit [121]. Thinning and polishing are very helpful in
improving the performance of infrared detectors. It has also been found that the pyroelectric
coefficient is smaller when the crystal thickness is larger [122]. After that, the crystal surface
is polished precisely to reduce the damage from the lattice of the surface so that the charge
that enters the surface is released evenly, and the pyroelectric coefficient is also improved
to a certain extent. Therefore, in order to improve the performance of the detector, we can
improve the pyroelectric properties of materials or prepare thinner LiTaO3 thin films.

Arose et al. [25] developed infrared detectors using LT and AlN. Compared with AlN,
LT has a higher pyroelectric coefficient and a lower thermal absorption coefficient. The
wavelength of the infrared detector fabricated from LT was found to be 5.6 µm. It had a
higher specific detection rate than the AlN detector, and the light absorption rate reached
0.65. Because the thickness of LiTaO3 was larger than that of AlN, the detection time was
longer than that of AlN. This characteristic of LT thermal detectors will facilitate their use
in specialized applications in the future.

6.3. Acoustic Applications

LT is famous for its low acoustic loss, high voltage electrical coupling coefficient, and
excellent piezoelectric properties, which enables its wide application in the manufacture
of SAW filters and resonators for mobile phones. At present, 70% of RF filters based on
surface acoustic waves (SAWs) are manufactured from LT and LN single crystals. RF filters
are generally used at frequencies below 2.5 GHz. In the 4G era, a mobile phone needs
many filters. In the coming 5G era, mobile phones will need more SAW filters, and thus the
performance of these filters deserves more attention.

A basic SAW filter consists of two interdigital transducers and a substrate with a
piezoelectric effect in the middle [123]. The interdigital transducer (IDT) is a key device to
convert electrical and acoustic signals. The main piezoelectric materials are quartz, LT, LN,
and AlN [124,125]. The performance comparison of these materials is shown in Table 5.
The electromechanical coupling coefficient of quartz is too small. The electromechanical
coupling coefficient of LN is greater than that of LT, but its temperature coefficient is
greater than that of LT. The performance of AlN is relatively good, so the three piezoelectric
materials, LT, LN, and AlN, are widely used in the research of acoustic performance.

Table 5. Comparison of parameters of quartz and the three piezoelectric materials [6,44,116,125].

Piezoelectric
Materials TCF Acoustic

Surface Velocity
Electromechanical

Coupling Coefficient
Temperature
Coefficient

quartz 3158 0.14 0.2
AlN −29 ppm 5130 6
LN −83 ppm 3895 0.62 52

Y165◦LT −18 ppm 3294 0.44 22

In 2010, Kim et al. [126] studied an interdigital transducer using LT as a substrate.
Interdigital transducers have an active period (AP) and an inactive period (IP). When
AP and IP are adjusted, the loss of the filter is reduced and the passband is narrowed,
which indicates that the filter can have reduced loss and narrowed passband if its design
is improved.

Due to the requirement of temperature stability, a crystal filter is generally more
suitable for medium- and low-frequency filters, with tens of megabytes, and the core
of the crystal filter is a resonator [127,128]. Crystal filters generate bulk acoustic waves
(BAWs). Tanaka et al. [129] fabricated HAL SAW (hetero-acoustic-layer surface acoustic
wave) resonators to measure frequency characteristics by using direct bonding between
LiTaO3 and the quartz substrate. The impedance ratio was 75 dB, the bandwidth was 5.1%,
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and there were no obvious false responses below 14 GHz. In the same year, Ballandras
et al. [130] fabricated a composite wafer from LiTaO3 crystal and silicon, measured the TCF
of the resonator, as shown in Figure 12, and found that the TCF was 18 ppm/K at 30–80 ◦C.
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In 2019, Najoua et al. [131] fabricated high-frequency resonators using LiTaO3 thin
films. The resonant frequency was up to 5 GHz, the relative bandwidth was 7.3%, and the
impedance ratio was 72 dB. It was found that the temperature frequency coefficient (TCF)
was very small and therefore it could be applied to high-frequency resonators. The positive
temperature frequency coefficient of quartz and the negative temperature coefficient of
LiTaO3 could be compensated. When optimal bonding was achieved, the TCF was only
2 ppm/◦C. Therefore, crystal plane bonding technology is generally used to bond the two
materials together to form resonators [129]. Naumenko et al. [132] bonded quartz and LT
together to fabricate resonators with 75 dB impedance, 5.1% bandwidth, and no spurious
response below 14 GHz. In 2020, Peng et al. [124] developed a crystal resonator, for which
the center frequency was 63 MHz, the stopband loss was 76 dB, and the insertion loss
was 4.6 dB.

In 2022, Hidetaka et al. [133] prepared an LTOI-based ring resonator and tested the
device. It was found that the Q factor of the resonator reached 1.1 million. Wu et al. [65]
tested an SH-SAW resonator on the FI-LTOI substrate, and its quality factor reached 4421.
The TCF of the resonant and anti-resonant frequencies were 11.3 ppm/C and 9.1 ppm/C,
respectively. The most important finding was that even at 200 ◦C, the Q value based on
the FI-LTOI resonator remained good. SAW devices on the FI-LTOI substrate have great
potential for low-loss and temperature-sensitive applications in RF wireless communication.

In conclusion, LiTaO3-based RF filters and crystal resonators can be widely used in the
future, and they are one of the important surface substrate materials for 5G communication
in the future.

7. Expectations

LiTaO3 has excellent piezoelectric, pyroelectric, and photorefractive properties, which
make it possible to use in optical and acoustic fields. In recent years, research on the
reduction of LiTaO3 wafers and LiTaO3 thin films has revealed that in some respects they
have more suitable applications than LiTaO3 due to having better properties. Although
LiTaO3 is a kind of crystal with excellent performance and has been applied in some fields,
there are still some shortcomings in certain technologies.

First, the Czochralski method was optimized to prepare large-size, high-quality lithium
tantalate crystals. Although the Czochralski method is still the main method for lithium
tantalate growth, there are still many shortcomings in the development of LT, which
limit the production of large-size high-quality LT. Improvements in the temperature field
regulation and development process are important factors affecting the formation of LT,
and the regulation of the temperature field system by improving the heating device and
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the insulation layer of crystal formation is one of the important exploration directions for
the development of large-size high-quality LT using the Czochralski method.

Secondly, there are new expectations to use LT films and NSLTs in future applications.
LTs with the same composition are the most widely used LT, but lithium tantalate with the
same composition itself has many defects, and these defects have led to the degradation of
some properties of LT. In order to expand the range of LT applications, lithium tantalate thin
films and NSLTs have become a new research hotspot. Lithium tantalate thin films have
excellent applications in terahertz detectors, infrared material detectors, optical sensors, etc.
NSLTs have fewer defects to help improve the performance of LTs and facilitate the future
applications of LT.

Third, the optimization of the preparation of high-quality low-electrostatic black
lithium tantalate wafers and refinement of the blackening mechanism. Because the most
widely used LTs in commerce are still used in the application of sound surface filters,
chemically reduced lithium tantalate wafers have smaller pyroelectric coefficients and
therefore are more suitable for producing sound surface wave filters. Future filters will
become smaller and smaller, but reduced lithium tantalate wafers are not easily developed
into thin sheets due to their brittle mechanical properties. Thus, the thinning process
during large-batch processing of wafers becomes more important. In addition, different
preparation processes have a great impact on the quality and performance of blackened
lithium tantalate wafers, but the study of the mechanism of lithium tantalate blackening is
still unclear and will remain one of the key research directions in the future.

Finally, a new purposed area of application for lithium tantalate crystals is optical
applications. The application of LT in optics is also one of the key concerns at present.
Recent research revealed that LTs can be used to develop lasers, but this is still in the
theoretical research stage, and the problem of the power output of lasers still restricts their
application. Doping different ions in LTs can facilitate their use in different applications.
The addition of active rare-earth ions can improve their application in laser matrix materials.
The incorporation of a certain amount of anti-photodamage impurities can regulate the
anti-photodamage characteristics of these crystals, thus expanding their application in
electro-optical regulation and optical waveguides. The incorporation of photorefractive ions
can enhance the photorefractive characteristics of LT crystals and improve their application
in optical storage devices. Periodic polarization of lithium tantalate crystals can improve
the nonlinear optical coefficient of LT, which grants it excellent advantages in frequency
doubling, differential frequency, and optical parametric amplification applications based
on quasi-phase-matching technology.

In short, because of their superior performance, LiTaO3 crystals will have more ap-
plications in acoustic and optical fields in the future. Researchers also anticipate new
breakthroughs in the investigation of LiTaO3 crystals.
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