Molecular Dynamics Simulation of the Interaction between Dislocations and Iron–Vanadium Precipitates in Alpha Iron: Effect of Chemical Composition
Abstract
:1. Introduction
2. Simulation Method and Conditions
3. Results and Discussion
3.1. Mechanism of the Interaction
3.2. Dislocation Speed
3.3. Stress–Time Curves
3.4. Void Formation
3.5. Effect of Cutting on Precipitate Structure
4. Conclusions
- With the increasing vanadium concentration in the precipitate, the dislocation slightly bends toward the opposite direction to the applied shear stress, as a result of the reduction in the energy level of the dislocation line, due to the strong interaction with the precipitate. However, at a low vanadium concentration (1:3 atomic ratio), the behavior of the dislocation line is similar to the void and dislocation interaction.
- The dislocation overtakes all precipitate through cutting, and no Orowan loop is formed around the precipitate.
- Increasing the vanadium concentration reduces the dislocation speed, and leads to the formation of multiple junctions between the a/2[111] and a/2[100] dislocation, and a high number of voids, which results in the alloy being strengthened.
- The accumulation of elastic energy in the precipitate during the cutting process changes the structure from crystalline to amorphous, and the degree of amorphization decreases with the increasing vanadium concentration.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chojcan, J. Interactions between V Atoms in Iron-Based Fe–V Solid Solutions. J. Alloys Compd. 2003, 350, 62–67. [Google Scholar] [CrossRef]
- Moskalyk, R.R.; Alfantazi, A.M. Processing of Vanadium: A Review. Miner. Eng. 2003, 16, 793–805. [Google Scholar] [CrossRef]
- Singh, A.P.; Pant, G. Mechanical Behaviour of Vanadium Microalloyed Steel under Control Environment Compression. Mater. Today Proc. 2020, 26, 2525–2527. [Google Scholar] [CrossRef]
- Xue, D.; Wei, W.; Shi, W.; Zhou, X.-R.; Wen, S.-P.; Wu, X.-L.; Gao, K.-Y.; Rong, L.; Qi, P.; Huang, H. Dislocation Evolution and Induced Precipitation on Corrosion Resistance of a Novel Al-Mg-Zn-Er-Zr Alloy during Hot Compression. Rare Met. 2023, 42, 2371–2380. [Google Scholar] [CrossRef]
- Fomin, E.V.; Mayer, A.E.; Krasnikov, V.S. Prediction of Shear Strength of Cluster-Strengthened Aluminum with Multi-Scale Approach Describing Transition from Cutting to Bypass of Precipitates by Dislocations. Int. J. Plast. 2021, 146, 103095. [Google Scholar] [CrossRef]
- Hu, Y.; Curtin, W.A. Modeling of Precipitate Strengthening with Near-Chemical Accuracy: Case Study of Al-6xxx Alloys. Acta Mater. 2022, 237, 118144. [Google Scholar] [CrossRef]
- Krasnikov, V.S.; Bezborodova, P.A.; Mayer, A.E. Effect of Hydrogen Accumulation on θ’precipitates on the Shear Strength of Al-Cu Alloys. Int. J. Plast. 2022, 159, 103475. [Google Scholar] [CrossRef]
- Khoei, A.R.; Youzi, M.; Eshlaghi, G.T. Mechanical Properties and γ/γ’interfacial Misfit Network Evolution: A Study towards the Creep Behavior of Ni-Based Single Crystal Superalloys. Mech. Mater. 2022, 171, 104368. [Google Scholar] [CrossRef]
- Huang, J.; Jiang, Y.; Jiang, F.; Xu, C. The Improved Mechanical Anisotropy of a Commercial Al–Cu–Mg–Mn–Si (2017) Aluminum Alloy by Cross Rolling. Adv. Eng. Mater. 2022, 24, 2100831. [Google Scholar] [CrossRef]
- Zhang, X.; Xiong, J.; Fan, H.; Zaiser, M. Microplasticity and Yielding in Crystals with Heterogeneous Dislocation Distribution. Model. Simul. Mater. Sci. Eng. 2019, 27, 74003. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Song, B.; Cai, Z.; Liu, Z.; Cui, X. Effect of Vanadium Content on Hydrogen Diffusion Behaviors and Hydrogen Induced Ductility Loss of X80 Pipeline Steel. Mater. Sci. Eng. A 2019, 742, 712–721. [Google Scholar] [CrossRef]
- Antillon, E.; Woodward, C.; Rao, S.I.; Akdim, B.; Parthasarathy, T.A. Chemical Short Range Order Strengthening in a Model FCC High Entropy Alloy. Acta Mater. 2020, 190, 29–42. [Google Scholar] [CrossRef]
- Wang, L.; Jin, J.; Cao, J.; Yang, P.; Peng, Q. Interaction of Edge Dislocations with Graphene Nanosheets in Graphene/Fe Composites. Crystals 2018, 8, 160. [Google Scholar] [CrossRef] [Green Version]
- Wu, X. Deformation and Evolution of Life in Crystalline Materials: An Integrated Creep-Fatigue Theory; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Pascuet, M.I.; Martínez, E.; Monnet, G.; Malerba, L. Solute Effects on Edge Dislocation Pinning in Complex Alpha-Fe Alloys. J. Nucl. Mater. 2017, 494, 311–321. [Google Scholar] [CrossRef] [Green Version]
- Terentyev, D.; Bonny, G.; Domain, C.; Monnet, G.; Malerba, L. Mechanisms of Radiation Strengthening in Fe–Cr Alloys as Revealed by Atomistic Studies. J. Nucl. Mater. 2013, 442, 470–485. [Google Scholar] [CrossRef]
- Wu, X.; Wang, X.; Wang, Y.; Liu, W.; Shu, G.; Li, C.; Li, Q.; Xu, B. Softening Effects Due to Reorientations of Cu Precipitates in α-Iron: Atomistic Simulations of Dislocations-Obstacles Interactions. J. Appl. Phys. 2019, 125, 195102. [Google Scholar] [CrossRef]
- Singh, C.V.; Warner, D.H. Mechanisms of Guinier–Preston Zone Hardening in the Athermal Limit. Acta Mater. 2010, 58, 5797–5805. [Google Scholar] [CrossRef]
- Mock, M.; Albe, K. Modelling of Dislocation-Solute Interaction in ODS Steels: Analytic Bond-Order Potential for the Iron-Yttrium System. J. Nucl. Mater. 2018, 509, 102–113. [Google Scholar] [CrossRef]
- Kiani, M.T.; Wang, Y.; Bertin, N.; Cai, W.; Gu, X.W. Strengthening Mechanism of a Single Precipitate in a Metallic Nanocube. Nano Lett. 2018, 19, 255–260. [Google Scholar] [CrossRef]
- Esteban-Manzanares, G.; Ma, A.; Papadimitriou, I.; Martínez, E.; LLorca, J. Basal Dislocation/Precipitate Interactions in Mg–Al Alloys: An Atomistic Investigation. Model. Simul. Mater. Sci. Eng. 2019, 27, 75003. [Google Scholar] [CrossRef] [Green Version]
- Dai, Q.-L.; Li, K.; Meng, K.-R.; Fang, Z.; Chen, W.; Yang, T.-B.; Feng, C.; Wu, J.-M.; Misra, R.D.K. Effect of Vanadium on the Microstructure and Mechanical Properties of 2100 MPa Ultra-High Strength High Plasticity Spring Steel Processed by a Novel Online Rapid-Induction Heat Treatment. Met. Mater. Int. 2023, 29, 922–933. [Google Scholar] [CrossRef]
- Wang, P.; Li, Z.; Lin, G.; Zhou, S.; Yang, C.; Yong, Q. Influence of Vanadium on the Microstructure and Mechanical Properties of Medium-Carbon Steels for Wheels. Metals 2018, 8, 978. [Google Scholar] [CrossRef]
- Zhao, P.; Wu, J.; Chen, H.; Liu, H.; Li, D.; Tan, J. Molecular Dynamics Simulation Study of Interaction Mechanism between Grain Boundaries and Subgrain Boundaries in Nano-Cutting. J. Manuf. Process. 2021, 67, 418–426. [Google Scholar] [CrossRef]
- Liu, H.; Zhao, P.; Guo, Y.; Li, D.; Wang, Y.; Sun, S.; Wu, J. Material Removal Behaviors of FCC Metals in Nanoscale and Microscale Scratching: Theoretical Model and Experiments. J. Mater. Process. Technol. 2023, 312, 117855. [Google Scholar] [CrossRef]
- Sharma, A.; Datta, D.; Balasubramaniam, R. Molecular Dynamics Simulation to Investigate the Orientation Effects on Nanoscale Cutting of Single Crystal Copper. Comput. Mater. Sci. 2018, 153, 241–250. [Google Scholar] [CrossRef]
- Rotondi, S.M.C.; Ailuno, G.; Mattioli, S.L.; Pesce, A.; Cavalleri, O.; Canepa, P. Morphological Investigation of Protein Crystals by Atomic Force Microscopy. Crystals 2023, 13, 1149. [Google Scholar] [CrossRef]
- Liang, L.; Li, S.; Chai, P.; Lan, K.; Yu, R. Molecular Dynamics Simulation of Single-Crystal 4H-SiC Nano Scratching with Different Scratching Directions of the Tool. Crystals 2023, 13, 1044. [Google Scholar] [CrossRef]
- Tafelmeier, S.; Hiebler, S. Molecular Dynamics Simulation of the Crystallization Behavior of Octadecane on a Homogeneous Nucleus. Crystals 2022, 12, 987. [Google Scholar] [CrossRef]
- Yazdani, S.; Vitry, V. Using Molecular Dynamic Simulation to Understand the Deformation Mechanism in Cu, Ni, and Equimolar Cu-Ni Polycrystalline Alloys. Alloys 2023, 2, 77–88. [Google Scholar] [CrossRef]
- Mendelev, M.I.; Han, S.; Son, W.; Ackland, G.J.; Srolovitz, D.J. Simulation of the Interaction between Fe Impurities and Point Defects in V. Phys. Rev. B 2007, 76, 214105. [Google Scholar] [CrossRef] [Green Version]
- Tadmor, E.B.; Miller, R.E. Modeling Materials: Continuum, Atomistic and Multiscale Techniques; Cambridge University Press: Cambridge, UK, 2011. [Google Scholar]
- Stukowski, A. Visualization and Analysis of Atomistic Simulation Data with OVITO–the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 2009, 18, 15012. [Google Scholar] [CrossRef]
- Kelchner, C.L.; Plimpton, S.J.; Hamilton, J.C. Dislocation Nucleation and Defect Structure during Surface Indentation. Phys. Rev. B 1998, 58, 11085. [Google Scholar] [CrossRef]
- Stukowski, A.; Bulatov, V.V.; Arsenlis, A. Automated Identification and Indexing of Dislocations in Crystal Interfaces. Model. Simul. Mater. Sci. Eng. 2012, 20, 85007. [Google Scholar] [CrossRef]
- Wirth, B.D.; Odette, G.R.; Maroudas, D.; Lucas, G.E. Dislocation Loop Structure, Energy and Mobility of Self-Interstitial Atom Clusters in Bcc Iron. J. Nucl. Mater. 2000, 276, 33–40. [Google Scholar] [CrossRef]
- Dezerald, L.; Rodney, D.; Clouet, E.; Ventelon, L.; Willaime, F. Plastic Anisotropy and Dislocation Trajectory in BCC Metals. Nat. Commun. 2016, 7, 11695. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, S.; Doihara, K.; Okita, T.; Itakura, M.; Aichi, M.; Suzuki, K. Screw Dislocation–Spherical Void Interactions in Fcc Metals and Their Dependence on Stacking Fault Energy. J. Mater. Sci. 2019, 54, 11509–11525. [Google Scholar] [CrossRef]
- Antillon, E.; Woodward, C.; Rao, S.I.; Akdim, B.; Parthasarathy, T.A. A Molecular Dynamics Technique for Determining Energy Landscapes as a Dislocation Percolates through a Field of Solutes. Acta Mater. 2019, 166, 658–676. [Google Scholar] [CrossRef]
- Kubin, L.P.; Madec, R.; Devincre, B. Dislocation Intersections and Reactions in FCC and BCC Crystals. MRS Online Proc. Libr. (OPL) 2003, 779. [Google Scholar] [CrossRef] [Green Version]
- Gurrutxaga–Lerma, B.; Verschueren, J.; Sutton, A.P.; Dini, D. The Mechanics and Physics of High-Speed Dislocations: A Critical Review. Int. Mater. Rev. 2021, 66, 215–255. [Google Scholar] [CrossRef]
- Bao, Q.; Huang, M.; Zhu, Y.; Zhao, L.; Li, Z. Abnormal Interactions between High-Speed Edge Dislocation and Microvoid in BCC Metals. Int. J. Plast. 2022, 148, 103125. [Google Scholar] [CrossRef]
- Gao, N.; Yao, Z.W.; Lu, G.H.; Deng, H.Q.; Gao, F. Mechanisms For< 100> Interstitial Dislocation Loops to Diffuse in BCC Iron. Nat. Commun. 2021, 12, 225. [Google Scholar] [PubMed]
- Azeem, M.M.; Wang, Q.; Li, Z.; Zhang, Y. Dislocation-Oxide Interaction in Y2O3 Embedded Fe: A Molecular Dynamics Simulation Study. Nucl. Eng. Technol. 2020, 52, 337–343. [Google Scholar] [CrossRef]
- Ibrahim, S.A.; Wang, Q.; Zhang, Y.; Ado, M.; Chung, G.D.; Azeem, M.M. Molecular Dynamics Simulation of Strengthening Dependence on Precipitate Cr Composition in Fe-15at.% Cr Alloy. Micron 2020, 131, 102823. [Google Scholar] [CrossRef]
- Hafez Haghighat, S.M.; Schäublin, R. Influence of the Stress Field Due to Pressurized Nanometric He Bubbles on the Mobility of an Edge Dislocation in Iron. Philos. Mag. 2010, 90, 1075–1100. [Google Scholar] [CrossRef]
- Osetsky, Y.N.; Bacon, D.J. Atomic-Scale Mechanisms of Void Hardening in Bcc and Fcc Metals. Philos. Mag. 2010, 90, 945–961. [Google Scholar] [CrossRef]
Precipitate Name | Number of Vanadium Atoms in the Precipitate | Number of Iron Atoms in the Precipitate | Total Number of Atoms in the Cell | Total Number of Atoms in the Precipitate |
---|---|---|---|---|
Fe-V (3:1) | 11,200 | 33,594 | 774,960 | 44,794 |
Fe-V (1:3) | 33,666 | 11,128 | 774,960 | 44,794 |
Fe-V (0:1) | 44,794 | 0 | 774,960 | 44,794 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yazdani, S.; Mesbah, M.; Vitry, V. Molecular Dynamics Simulation of the Interaction between Dislocations and Iron–Vanadium Precipitates in Alpha Iron: Effect of Chemical Composition. Crystals 2023, 13, 1247. https://doi.org/10.3390/cryst13081247
Yazdani S, Mesbah M, Vitry V. Molecular Dynamics Simulation of the Interaction between Dislocations and Iron–Vanadium Precipitates in Alpha Iron: Effect of Chemical Composition. Crystals. 2023; 13(8):1247. https://doi.org/10.3390/cryst13081247
Chicago/Turabian StyleYazdani, Sepehr, Mohsen Mesbah, and Veronique Vitry. 2023. "Molecular Dynamics Simulation of the Interaction between Dislocations and Iron–Vanadium Precipitates in Alpha Iron: Effect of Chemical Composition" Crystals 13, no. 8: 1247. https://doi.org/10.3390/cryst13081247
APA StyleYazdani, S., Mesbah, M., & Vitry, V. (2023). Molecular Dynamics Simulation of the Interaction between Dislocations and Iron–Vanadium Precipitates in Alpha Iron: Effect of Chemical Composition. Crystals, 13(8), 1247. https://doi.org/10.3390/cryst13081247