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Abstract: Mg2SiO4 and MgSiO3 ceramics with superior microwave dielectric properties are con-
sidered to be promising candidates for 5G applications. However, a slight deviation from the
stoichiometric Mg/Si ratio will significantly influence their microwave dielectric properties, which
will hinder their practical applications. In this work, the xMgO-SiO2 (x = 1~2) ceramics were synthe-
sized by a solid-state reaction method. The influence of the Mg/Si ratio x on the crystalline phase,
microstructure, and microwave dielectric properties was investigated through X-ray diffraction
(XRD), a scanning electron microscope (SEM), and the resonant cavity method. The XRD patterns
revealed the coexistence of Mg2SiO4 and MgSiO3 within the x range of 1~2, which was further
demonstrated by the energy-dispersive X-ray spectra. The SEM images show a typical polycrys-
talline morphology of ceramics with an inhomogeneous grain size distribution. It is found that the
microwave dielectric properties fluctuate at both sides of the x range while those remain relatively
stable with minor changes at the intermediate components, indicating an obvious low composition
dependence helpful for practical applications. Further, a demonstrator of a microstrip patch antenna
for 5G applications using the 1.5MgO-SiO2 ceramic was designed and fabricated, and a return loss of
−16.2 dB was demonstrated, which demonstrated the potential applications.

Keywords: MgO-SiO2 systems; 5G application; microwave dielectric ceramics; phase composition

1. Introduction

In recent years, 5G communication applications have demonstrated tremendous po-
tential owing to their low latency and high-speed capabilities [1,2]. With the continuous
advancement of higher frequencies, faster speeds, and reduced power consumption, these
applications have a brilliant future in various fields such as the Internet of Things (IoT),
intelligent transport systems (ITS), and cloud computing. As a critical dielectric component
in 5G communication, microwave dielectric ceramics (MWDCs) play a vital role in the
form of dielectric antennas, filters, resonators, substrates, and more [3–5]. To meet the
increasing performance demands, MWDCs must possess a relatively low dielectric constant
and low dielectric loss. Additionally, for practical applications and large-scale production,
it is essential to consider factors such as the cost effectiveness, ease of manufacturing, and
consistent reliability of MWDCs.
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Considering the aforementioned factors, there has been extensive research on low-cost
MWDCs with low dielectric constants, particularly those below 10, due to their significant
relevance. For instance, cordierite ceramics with a dielectric constant around 6 have gained
much attention. However, their composition is complex. It is challenging to control the
phase transition between cordierite and indialite. Therefore, the presence of the secondary
phase always affects the dielectric loss, and the Q × f value usually remains relatively low,
at less than approximately 40,000 GHz [6,7]. Another example is alumina (Al2O3) ceramics
with a dielectric constant of 10, exhibiting exceptionally low dielectric loss and a Q × f
value that can exceed 300,000 GHz [8,9]. However, a prolonged high-temperature sintering
is necessary to obtain dense ceramics [10,11]. Similarly, MgO microwave dielectric ceramics
also require a high sintering temperature with a prolonged sintering time above 1500 ◦C,
though they have an ultrahigh Q × f value exceeding 200,000 GHz with a dielectric constant
of approximately 9~10 [12,13]. On the other hand, SiO2 has a low dielectric constant, which
can be as low as less than 4. It exhibits exceptionally ultralow dielectric loss with very high
Q × f values of above 1,000,000 GHz in single-crystal form [14]. However, the preparation
of ceramics is difficult and the Q × f value is quite low due to high sensitivity with sintering
temperature and various accompanying defects, such as inhomogeneous microstructures
originating from complex polymorphs and phase transformations [15]. Fang et al. have
prepared cristobalite ceramics with a Q × f value of 80,000 GHz and a dielectric constant
of 3.8 [16].

In the MgO-SiO2 binary system, Mg2SiO4 (Mg/Si = 2) has emerged as a promising
microwave dielectric ceramic with a high Q × f value of up to 200,000 GHz and a low
dielectric constant of about 7 [17–19]. However, there are fluctuations in the component near
Mg/Si = 2 during the actual synthesis and preparation process, resulting in a small amount
of the MgSiO3 (Mg/Si = 1) phase that deteriorates the Q × f value [20,21]. MgSiO3 ceramics
synthesized by Song et al. also have good microwave dielectric properties of εr = 6.7 and
Q × f = 121,200 GHz [22]. Nevertheless, Mg2SiO4 usually appears at the stochiometric ratio
(Mg/Si = 1), which can also cause fluctuations in microwave dielectric properties [19]. On
the other hand, Yeon et al. achieved a coexistence of Mg2SiO4 and MgO in a multi-phase
ceramic by varying the Mg/Si ratio (2~5) [23]. Inspired by the above consideration, in
order to find the composition interval with stable properties, there is potential to achieve
MgSiO3-Mg2SiO4 coexisting ceramics in the MgO-SiO2 system by adjusting the Mg/Si
ratio in the range of 1~2, which would reduce the sensitivity to composition during the
ceramic preparation process to facilitate practical applications.

In this paper, xMgO-SiO2 (x = 1~2) ceramics were synthesized and prepared using a
solid-state reaction method. The influence of the ratio x on the crystalline phase, microstruc-
ture and microwave dielectric property was investigated. Based on this, a demonstrator
of microstrip patch antenna for 5G application using MgO-SiO2 system ceramics was
designed, fabricated, and evaluated.

2. Materials and Methods

The xMgO-SiO2 (x = 1, 1.05, 1.2, 1.36, 1.5, 1.66, 1.8, 1.98, and 2) ceramics were synthe-
sized and prepared by a solid-state reaction method. High-purity oxides (>99.9%, all from
aladdin) of MgO and SiO2 were dried before use and weighed according to the different
molar ratios of the compositions. The mixed raw material powder was ball-milled for 24 h
in ethanol and then dried at 60 ◦C for 24 h. The dried powders were ground and calcined
at 1150 ◦C for 3 h. After that, the calcined powders were ball-milled again. Subsequently,
the dried powders were mixed with 8 wt% binder (polyvinyl alcohol, PVA) and pressed
into green pellets at a pressure of 98 MPa. The pellets were firstly heated at 650 ◦C in
atmosphere for 2 h to burn out the PVA, then sintered at 1375 ◦C~1425 ◦C for 3 h. The
heating and cooling rates were set as 5 ◦C/min and 2 ◦C/min, respectively.

The densities of the sintered xMgO-SiO2 ceramics were measured by the Archimedes
method. The phase structures of the ceramics were analyzed with an X-ray diffractometer
(XRD, Bruker D2 Phaser, Bruker, Karlsruhe, Germany) using CuKα radiation in the 2θ
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range of 10–80◦ at a step of 0.02◦. The microstructure and grain size characterization
were carried out by scanning electron microscopy (SEM, Sigma Zeiss 300, Carl Zeiss, Jena,
Germany). The dielectric constant (εr) and Q × f of the sintered ceramics were measured
through a network analyzer (Keysight N5234B, Keysight Technologies, Santa Rosa, CA,
USA) using a resonant cavity method, while the values of the temperature coefficient of
resonant frequency (τf) were determined by the following formula:

τf =
f2 − f1

f1 × (T2 − T1)
× 106(ppm/◦C) (1)

where f 1 and f 2 are the resonant frequencies measured at 20 ◦C and 80 ◦C, respectively.
The design and simulation of the microstrip patch antenna prototype using xMgO-

SiO2 ceramics were conducted by the Computer Simulation Technology (CST) software.
The as-sintered dried xMgO-SiO2 ceramic powder was added with 10 wt% PVA and then
pressed into a 4 mm thick sample in a 30 mm × 30 mm custom-made mold. The green
body was sintered at 1400 ◦C for 5 h to obtain the ceramic substrate. With the help of the
CST simulation, double-sided conductive copper foil was attached to the ceramic substrate.
A Sub-Miniature version A (SMA) connector was also soldered onto the patch to connect
the ground plane and surface electrode.

3. Results

Figure 1a,b exhibit the room-temperature X-ray diffraction patterns within the 2θ range
of 10◦~80◦ and the enlargement of 26◦~34◦ for xMgO-SiO2 ceramics with various Mg/Si
ratios. The pattern of x = 1 is composed of the peaks of major MgSiO3 (Protoenstatile, PEN,
PDF#11-0273), minor MgSiO3 (Clinoenstatite, CEN, PDF#76-0526), and residual SiO2 (see
Figure 1b). The existence of CEN could be related to the phase transition from PEN to CEN
during the cooling process of ceramic sintering [24]. Actually, there is a very weak peak of
Mg2SiO4 (Forsterite, PDF#85-1346) at about 32.3◦. As x slightly increases to 1.05, the weak
characteristic peaks of Mg2SiO4 appear near both 22.9◦ and 32.3◦. Further, when x increases
to 1.2, the peak of CEN almost disappears within the accuracy, which could be attributed
to the decrease in PEN. Subsequently, the intensity of Mg2SiO4 peaks gradually increases
while the intensity of PEN peaks decreases. This indicates that the content of Mg2SiO4
gradually increases with the increasing Mg/Si ratio, while the content of PEN decreases.
Although the peak intensity of PEN has been weakening, the characteristic peaks of PEN
are still observed when x = 2. A similar scenario also occurred in previous reports [20,21].
Meanwhile, the trace SiO2 always exists within the x range of 1~2. According to the
study of Kazakos et al., the above phenomena demonstrate the incompleteness of the
chemical reaction in the preparation process of xMgO-SiO2 ceramics [25]. Overall, the
phase development of xMgO-SiO2 system ceramics essentially leads to the composite of
MgSiO3 and Mg2SiO4. This may be related to two aspects. On the one hand, the diffusion
rate of MgO and SiO2 is relatively slow during the reaction process, which results in
the reaction process being affected by the degree of diffusion. On the other hand, the
thermodynamic and kinetic factors of the reaction of MgSiO3 and Mg2SiO4 could be
affected by local compositional fluctuations [25,26].

In order to gain a more intuitive understanding of the influence of Mg/Si on the phase
composition of the system, Figure 2a,b depict the schematic diagram of the ideal case of
a xMgO-SiO2 ceramic phase diagram and the semi-quantitative calculation results of the
phase content. Generally speaking, when Mg/Si is less than 1, the phase composition
is mainly composed of MgSiO3 and SiO2. When Mg/Si is larger than 2, Mg2SiO4 will
be the major composition accompanied by excessive MgO [23]. As for Mg/Si within the
range of 1~2, the phase compositions can be considered to be the coexistence of MgSiO3
and Mg2SiO4. To further analyze the phase composition, the semi-quantitative calculation
results of the phase content are obtained from the X-ray diffraction patterns by the RIR
(Ratio of Intensity Reference) of PDF data. It can be discovered that the contents of MgSiO3
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and Mg2SiO4 exhibit a decreasing and increasing trend with an almost linear relationship
as increasing x, though a trace of residual SiO2 also exists.

Crystals 2023, 13, x FOR PEER REVIEW 4 of 11 
 

 

 

Figure 1. Room-temperature X-ray diffraction patterns of xMgO-SiO2 (x = 1~2) ceramics in the range 

of 2θ: (a) 10°–80°; (b) 26°–34°. 

In order to gain a more intuitive understanding of the influence of Mg/Si on the phase 

composition of the system, Figure 2a,b depict the schematic diagram of the ideal case of a 

xMgO-SiO2 ceramic phase diagram and the semi-quantitative calculation results of the 

phase content. Generally speaking, when Mg/Si is less than 1, the phase composition is 

mainly composed of MgSiO3 and SiO2. When Mg/Si is larger than 2, Mg2SiO4 will be the 

major composition accompanied by excessive MgO [23]. As for Mg/Si within the range of 

1~2, the phase compositions can be considered to be the coexistence of MgSiO3 and 

Mg2SiO4. To further analyze the phase composition, the semi-quantitative calculation re-

sults of the phase content are obtained from the X-ray diffraction patterns by the RIR (Ra-

tio of Intensity Reference) of PDF data. It can be discovered that the contents of MgSiO3 

and Mg2SiO4 exhibit a decreasing and increasing trend with an almost linear relationship 

as increasing x, though a trace of residual SiO2 also exists. 

Figure 3 shows the curve of the relative density of the ceramics versus the sintering 

temperature. The sintering temperatures of microwave ceramics in MgO-SiO2 systems are 

generally between 1300 °C and 1500 °C. Herein, 1375 °C, 1400 °C, and 1425 °C were se-

lected as sintering temperatures. It can be observed that the maximum relative densities 

for all samples were obtained at almost 1400 °C. Based on this, the subsequent experi-

mental measurements were carried out on the samples sintered at 1400 °C. 

Figure 1. Room-temperature X-ray diffraction patterns of xMgO-SiO2 (x = 1~2) ceramics in the range
of 2θ: (a) 10◦–80◦; (b) 26◦–34◦.

Crystals 2023, 13, x FOR PEER REVIEW 5 of 11 
 

 

 

Figure 2. (a) Schematic diagram of phase composition of xMgO-SiO2 ceramics; (b) semi-quantitative 

calculation results of the phase content of xMgO-SiO2 ceramics. 

 

Figure 3. The relative densities of xMgO-SiO2 (x = 1, 1.05, 1.2, 1.36, 1.5, 1.66, 1.8, 1.98, and 2) ceramics 

at different temperatures. 

Figure 4a–i show the SEM images of xMgO-SiO2 (x = 1~2) as-sintered ceramics at 1400 

°C. Though more or less pores can be observed for all the components, the SEM images 

Figure 2. (a) Schematic diagram of phase composition of xMgO-SiO2 ceramics; (b) semi-quantitative
calculation results of the phase content of xMgO-SiO2 ceramics.



Crystals 2023, 13, 1296 5 of 11

Figure 3 shows the curve of the relative density of the ceramics versus the sintering
temperature. The sintering temperatures of microwave ceramics in MgO-SiO2 systems
are generally between 1300 ◦C and 1500 ◦C. Herein, 1375 ◦C, 1400 ◦C, and 1425 ◦C were
selected as sintering temperatures. It can be observed that the maximum relative densities
for all samples were obtained at almost 1400 ◦C. Based on this, the subsequent experimental
measurements were carried out on the samples sintered at 1400 ◦C.
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Figure 3. The relative densities of xMgO-SiO2 (x = 1, 1.05, 1.2, 1.36, 1.5, 1.66, 1.8, 1.98, and 2) ceramics
at different temperatures.

Figure 4a–i show the SEM images of xMgO-SiO2 (x = 1~2) as-sintered ceramics at
1400 ◦C. Though more or less pores can be observed for all the components, the SEM
images show the typical polycrystalline morphology of ceramics with well grain crystalline.
However, the grain size and shape vary. In order to analyze the variation in grain size with
Mg/Si, the grain size of each component in the SEM images was calculated statistically. The
statistical results of grain size are presented as insets in each figure, while the variation in
average grain size with Mg/Si changing is shown in Figure 5a. It is observed that there is a
significant variation in grain size at both ends of the range of x = 1~2. The average grain size
increases from 0.77 mm at x = 1 to 1.04 mm at x = 1.2, while that decreases from 1.56 mm
at x = 1.8 to 1.07 mm at x = 2. However, the average grain size and distribution at the
intermediate components (x = 1.36, 1.5, and 1.66) keep quite close to each other, which could
be ascribed to the coexistence of two phases of MgSiO3 and Mg2SiO4 with comparable
contents. In addition, the large average grain size at x = 1.8 should be related to the
involvement of the liquid phase with the residual traces, which can be observed with some
bending morphological features at the grain boundary in Figure 4g. This leads to irregular
grain growth in local areas, which is detrimental to the densification of ceramics [27,28].

For further analyzing the coexistence of MgSiO3 and Mg2SiO4 in xMgO-SiO2 ceram-
ics, EDS were collected from the selected areas of some representative components (see
Figure 5b–g). At x = 1.36, the two circled areas of A and B were selected to analyze the
element composition. It is observed that there are five peaks referring to C, O, Mg, Si, and
Pt, respectively, in the EDS patterns for area A. The C signal comes from the background of
the sample, while the Pt signal comes from the surface coating of the sample. The contents
of elements O, Mg, and Si are shown in the figure. The Mg/Si ratio is calculated to be
approximately 0.95, indicating that it should be MgSiO3. For area B, the Mg/Si ratio is
obtained as being about 1.19, indicating that it should contain both MgSiO3 and Mg2SiO4.
At x = 1.66, the analysis results of areas C and D from the EDS signals show that the Mg/Si
ratios are 1.6 and 1.49, respectively, which are close to the nominal x value of 1.66. It also
indicates the presence of both MgSiO3 and Mg2SiO4 phases. For both areas E and F at x = 2,
the Mg/Si ratios increase to 1.79 and 1.49, respectively, indicating that Mg2SiO4 should be
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the main phase with a small amount of MgSiO3 as the minor phase. The above results are
consistent with the previous XRD results.
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The dielectric constant and relative density with various Mg/Si ratios of the xMgO-
SiO2 ceramics are plotted in Figure 6a, where εL and εexp are the theoretical dielectric
constant and the experimental data. In general, the dielectric constant of ceramics is
determined by numerous factors such as ion polarizability, phase composition, porosity, etc.
Herein, according to the results of XRD and EDS analyses, xMgO-SiO2 (x = 1~2) ceramics
can be considered as composites with the coexistence of Mg2SiO4 and MgSiO3. In this case,
the theoretical dielectric constant εL of the composite can be calculated by the Lichteneker
mixing rule [29], given as

ln εL =
n

∑
i=1

Viεi (2)

where n is the number of phases and Vi and εi are divided into the volume fraction and
dielectric constant of the i-th phase. As can be seen from Figure 6a, the calculated εL
value increases monotonically, which can be attributed to the larger dielectric constant of
Mg2SiO4 (εr~7) than MgSiO3 (εr~6.7). On the other hand, the values of εexp also increase
monotonically as the Mg/Si ratio increases. However, the trend of εL has a deviation from
the εexp value, which may imply that the influence of phase composition on the dielectric
constant is not dominant in xMgO-SiO2 ceramics. In addition, the variation in relative
density with various Mg/Si ratios is also plotted in Figure 6a. With an increasing Mg/Si
ratio, the relative density basically shows a monotonic increasing trend with an exception
at x = 1.8, where a significant decrease occurs relating to the involvement of the liquid
phase. Interestingly, the trend of relative density is somewhat similar to the experimental
data εexp, suggesting the decisive role of porosity in controlling the dielectric constant for
xMgO-SiO2 ceramics.
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Figure 6b records the Q × f and τf of the xMgO-SiO2 (x = 1~2) ceramics to evaluate
the influence of Mg/Si ratios on microwave performance. The Q × f value reaches about
53,300 GHz at x = 1 and drops significantly to 34,500 GHz at x = 1.05. At the other end
of the x range, the Q × f value increases from 40,600 GHz at x = 1.8 to a maximum of
102,900 GHz at x = 1.98 and then descends to 81,500 GHz at x = 2. Overall, the Q × f
value fluctuates significantly at both ends of the x range. However, the Q × f values at the
intermediate components of the x range (x = 1.36, 1.5, and 1.66) change little and remain
basically between 50,000 and 60,000 GHz. Further, considering the deviation, it is calculated
that the rate of change of Q × f is found to be less than ±10% when x is in the range of
1.36~1.66. Generally speaking, there are intrinsic and extrinsic factors that affect the Q × f
value. The former are mainly related to the phonon system within the crystal, while the
latter are related to many factors such as secondary phases, grain boundaries, dislocations,
oxygen vacancies, inclusions, pores, etc. [30]. Here, the fluctuation at both ends may be
mainly related to the inhomogeneous distribution of two phases of MgSiO3 and Mg2SiO4
and the fluctuation of the microstructure, while the relative stability of the Q × f values at
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the intermediate components should be related to the relatively homogeneous composition
and microstructure of the two phases. The decrease in sensitivity of the Q × f value to
components is beneficial for industrial production.

In addition, τf is also an important parameter for evaluating microwave performance.
Similarly, τf remains relatively stable with less variation at intermediate components, while
it fluctuates at both ends. In general, the τf value of a two-phase composite can be written
as the following equation [31]:

τf mix = V1τf 1 + V2τf 2 (3)

where τfmix is the temperature coefficient of the resonant frequency of the two-phase
composite and V1, V2 and τf1, τf2 are the volume fraction of each phase (here mainly
MgSiO3 and Mg2SiO4) and the corresponding τf value, respectively. On the other hand,
the τf value is also influenced by other factors such as crystal structure, microstructure, and
porosity [32]. The final τf value is determined by a combination of multiple factors.

Considering the relatively stable performance at the intermediate components with
low sensitivity, in order to evaluate the feasibility of practical applications, a microstrip
patch antenna based on the 1.5MgO-SiO2 ceramic was simulated and fabricated. The initial
dimensions of the patch were calculated based on Equations (4)–(7) and then adjusted
according to the simulation results [33].

Wp =
c

2 fr

√
2

εr + 1
(4)

Lp =
c

2 frεe f f
− 2∆L (5)

εe f f =
εr + 1

2
+

εr − 1
2
√

1 + 12h/Wp
(6)

∆L = 0.412h
(εe f f + 0.3)(Wp/h + 0.264)
(εe f f − 0.258)(Wp/h + 0.8)

(7)

where c denotes the velocity of light in a vacuum, fr is the resonant frequency (7.08 GHz in
this study), εeff and ∆L represent the effective dielectric constant and correction length, Wp
and Lp are the width and length of the patch, and h is the thickness of the 1.5MgO-SiO2
ceramic substrate. Figure 7a displays the schematic image and the photograph of the
antenna substrate and patch. The dimension of the fabricated 1.5MgO-SiO2 substrate is
28 mm × 28 mm × 1.3 mm. An ultrathin copper foil (thickness: ~0.06 mm) was adopted
as the conducting electrode on both sides of the substrate. In addition, a 50 Ω SMA (Sub-
Miniature version A) connector was assembled at the bottom of the antenna as the feeding.
Figure 7b plots the measured and simulated S11 curves of the microstrip patch antenna,
which represents the return loss characteristics and describes the ratio of incident power to
reflected power (i.e., radiation efficiency) [34]. Herein, the profile of the measured S11 curve
has a deviation from the simulated one. The resonant frequency of the measured results is
7.20 GHz with a bandwidth of 120 MHz, which is slightly larger than the simulated one
(7.08 GHz and 102 MHz). The above phenomena can be ascribed to the size deviation during
antenna handmaking and the ambient humidity of the test environment [35]. However,
it is worth mentioning that the optimum value of S11 measured was −16.2 dB, which is
obviously lower than −10 dB, indicating that more than 90% of the power is radiated
through the antenna and demonstrating the commercial potential of the 1.5MgO-SiO2
microstrip patch antenna for 5G applications.
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Figure 7. (a) The schematic image and the photographs of antenna substrate and patch; (b) simulated
and measured S11 of the microstrip patch antenna.

4. Conclusions

In this paper, xMgO-SiO2 (x = 1, 1.05, 1.2, 1.36, 1.5, 1.66, 1.8, 1.98, and 2) ceramics
were synthesized and prepared by a solid-state reaction method. The XRD results show
that the phase composition is mainly MgSiO3 and Mg2SiO4 with a trace residual SiO2. As
x increases from 1 to 2, the content of MgSiO3 continues to decrease, while the amount
of Mg2SiO4 continues to increase. The SEM images show that the grain size of ceramics
is inhomogeneous with a significant variation in average grain size at both ends of the x
range. The results of the EDS confirm that MgSiO3 and Mg2SiO4 coexist. The dielectric
constant of xMgO-SiO2 ceramics is greatly influenced by the relative density. Both Q
× f and τf values show a significant change at both ends of the x range, while they
remain relatively stable with slight changes at the intermediate component. This may
be related to the microstructure and two-phase constitution and distribution of ceramics.
Finally, a microstrip patch antenna based on the 1.5MgO-SiO2 ceramic was designed and
fabricated, demonstrating excellent performance to indicate its commercial potential in 5G
applications.
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