Effects of Sintering Processes on Microstructure Evolution, Crystallite, and Grain Growth of MoO2 Powder
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- De Castro, I.; Datta, R.; Ou, J.; Castellanos-Gomez, A.; Sriram, S.; Daeneke, T.; Kalantar-Zadeh, K. Molybdenum Oxides—From Fundamentals to Functionality. Adv. Mater. 2017, 29, 1701619. [Google Scholar] [CrossRef]
- Yin, H.; Kuwahara, Y.; Mori, K.; Cheng, H.; Wen, M.; Yamashita, H. High-surface-area plasmonic MoO3−x: Rational synthesis and enhanced ammonia borane dehydrogenation activity. J. Mater. Chem. A 2017, 5, 8946–8953. [Google Scholar] [CrossRef]
- Xia, W.; Xu, F.; Zhu, C.; Xin, H.; Xu, Q.; Sun, P.; Sun, L. Sea urchin-like NiCoO2@C nanocomposites for Li-ion batteries and supercapacitors. Nano Energy 2016, 27, 457–465. [Google Scholar] [CrossRef]
- Bessonov, A.; Kirikova, M.; Petukhov, D.; Allen, M.; Ryhänen, T.; Bailey, M. Layered memristive and memcapacitive switches for printable electronics. Nat. Mater. 2015, 14, 199–204. [Google Scholar] [CrossRef] [PubMed]
- Bin, X.; Tian, Y.; Luo, Y.; Sheng, M.; Luo, Y.; Ju, M.; Que, W. High-performance flexible and free-standing N-doped Ti3C2Tx/MoOx films as electrodes for supercapacitors. Electrochim. Acta 2021, 389, 138774. [Google Scholar] [CrossRef]
- Brewer, L.; Lamoreaux, R. The Mo-O system (Molybdenum-Oxygen). Bull. Alloy Phase Diagr. 1980, 1, 85–89. [Google Scholar] [CrossRef]
- Clentsmith, G.; Cloke, F.; Green, J.; Hanks, J.; Hitchcock, P.; Nixon, J. Stabilization of Low-Oxidation-State Early Transition-Metal Complexes Bearing 1,2,4-Triphosphacyclopentadienyl Ligands: Structure of [{Sc(P3C2tBu2)2}2]; ScII or Mixed Oxidation State? Angew. Chem. Int. Ed. Engl. 2003, 42, 1068–1071. [Google Scholar] [CrossRef]
- Scanlon, D.; Watson, G.; Payne, D.; Atkinson, G.; Egdell, R.; Law, D. Theoretical and Experimental Study of the Electronic Structures of MoO3 and MoO2. J. Phys. Chem. C 2010, 114, 4636–4645. [Google Scholar] [CrossRef]
- Magnéli, A.; Andersson, G. Studies on the Hexagonal Tungsten Bronzes of Potassium, Rubidium, and Cesium. Acta Chem. Scand. 1995, 9, 315–324. [Google Scholar] [CrossRef]
- Zhao, X.; Cao, M.; Liu, B.; Tian, Y.; Hu, C. Interconnected core–shell MoO2 microcapsules with nanorod-assembled shells as high-performance lithium-ion battery anodes. J. Mater. Chem. 2012, 22, 13334–13340. [Google Scholar] [CrossRef]
- Shi, Y.; Guo, B.; Corr, S.; Shi, Q.; Hu, Y.; Heier, K.; Chen, L.; Seshadri, R.; Stucky, G. Ordered Mesoporous Metallic MoO2 Materials with Highly Reversible Lithium Storage Capacity. Nano Lett. 2009, 9, 4215–4220. [Google Scholar] [CrossRef]
- Miyata, N.; Akiyoshi, S. Preparation and electrochromic properties of rf-sputtered molybdenum oxide films. J. Appl. Phys. 1985, 58, 1651–1655. [Google Scholar] [CrossRef]
- Mohamed, S.; Kappertz, O.; Ngaruiya, J.; Leervad Pedersen, T.; Drese, R.; Wuttig, M. Correlation between structure, stress and optical properties in direct current sputtered molybdenum oxide films. Thin Solid Films 2003, 429, 135–143. [Google Scholar] [CrossRef]
- Zhang, W.; Desikan, A.; Oyama, S. Effect of Support in Ethanol Oxidation on Molybdenum Oxide. J. Phys. Chem. 1995, 99, 14468–14476. [Google Scholar] [CrossRef]
- Katrib, A.; Leflaive, P.; Hilaire, L.; Maire, G. Molybdenum based catalysts. I. MoO2 as the active species in the reforming of hydrocarbons. Catal. Lett. 1995, 38, 95–99. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, C.; Chen, D.; Tang, S.; Zhang, J.; Wang, Y.; Han, G.; Xu, S.; Hao, Y. Flexible ITO-Free Organic Solar Cells Based on MoO3/Ag Anodes. IEEE Photonics J. 2015, 7, 8400109. Available online: https://ieeexplore.ieee.org/document/7021946 (accessed on 1 August 2023).
- Wang, S.; Guo, H.; Song, Y.; Ma, G.; Li, S.; Zhang, L.; Shao, X. P-63: Lower Reflective TFT Materials and Technology Innovation. SID Symp. Dig. Tech. Pap. 2017, 48, 1478–1481. [Google Scholar] [CrossRef]
- Fernandes Cauduro, A.L.; Fabrim, Z.E.; Ahmadpour, M.; Fichtner, P.F.P.; Hassing, S.; Rubahn, H.-G.; Madsen, M. Tuning the optoelectronic properties of amorphous MoOx films by reactive sputtering. Appl. Phys. Lett. 2015, 106, 202101. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, H.; Ouyang, P.; Chen, W.; Wang, Y.; Li, Z. High electrochemical performance and phase evolution of magnetron sputtered MoO2 thin films with hierarchical structure for Li-ion battery electrodes. J. Mater. Chem. A 2014, 2, 4714–4721. [Google Scholar] [CrossRef]
- Qiu, L.; Chen, K.; Yang, D.; Zhang, M.; Hao, X.; Li, W.; Zhang, J.; Wang, W. Metal copper induced the phase transition of MoO3 to MoO2 thin films for the CdTe solar cells. Mater. Sci. Semicond. 2021, 122, 105475. [Google Scholar] [CrossRef]
- Fujiwara, K.; Tsukazaki, A. Formation of distorted rutile-type NbO2, MoO2, and WO2 films by reactive sputtering. J. Appl. Phys. 2019, 125, 085301. [Google Scholar] [CrossRef]
- Ahn, E.; Lee, J.; Koh, Y.; Lee, J.; Park, B.; Kim, J.; Lee, I.; Lee, C.; Jeen, H. Low Temperature Nanoscale Oxygen-Ion Intercalation into Epitaxial MoO2 Thin Films. J. Phys. Chem. C 2017, 121, 3410–3415. [Google Scholar] [CrossRef]
- Martı́nez, M.A.; Guillén, C. Comparison between large area dc-magnetron sputtered and e-beam evaporated molybdenum as thin film electrical contacts. J. Mater. Process. Technol. 2003, 143–144, 326–331. [Google Scholar] [CrossRef]
- Pachlhofer, J.; Martín-Luengo, A.; Franz, R.; Franzke, E.; Köstenbauer, H.; Winkler, J.; Bonanni, A.; Mitterer, C. Industrial-scale sputter deposition of molybdenum oxide thin films: Microstructure evolution and properties. J. Vac. Sci. Technol. A 2017, 35, 021504. [Google Scholar] [CrossRef]
- Park, H.; Ryu, J.; Youn, H.; Yang, J.; Oh, I. Fabrication and Property Evaluation of Mo Compacts for Sputtering Target Application by Spark Plasma Sintering Process. Mater. Trans. 2012, 53, 1056–1061. [Google Scholar] [CrossRef]
- Durnez, A.; Petitbon-Thévenet, W.; Fortuna, F.; Radioanal, J. Preparation of molybdenum target by centrifugal method. J. Radioanal. Nucl. Chem. 2014, 299, 1149–1154. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, Q.; Chen, D.; Liu, X.; Xiong, X. Microstructure and Magnetron Sputtering Properties of Molybdenum Target Prepared by Low-Pressure Plasma Spraying. J. Therm Spray Technol. 2019, 28, 1983–1994. [Google Scholar] [CrossRef]
- Kitchamsetti, N.; Choudhary, R.; Phase, D.; Devan, R. Structural correlation of a nanoparticle-embedded mesoporous CoTiO3 perovskite for an efficient electrochemical supercapacitor. RSC Adv. 2020, 10, 23446. [Google Scholar] [CrossRef]
- Ganapathi, S.; Owen, D.; Chokshi, A. The kinetics of grain growth in nanocrystalline copper. Scr. Metall. Mater. 1991, 25, 2699–2704. [Google Scholar] [CrossRef]
- Adrian, A.B.; Brendan, J.K.; Christopher, J.H. Neutron Powder Diffraction Study of Molybdenum and Tungsten Dioxides. Aust. J. Chem. 1995, 48, 1473–1477. [Google Scholar] [CrossRef]
- Jacob, K.; Saji, V.; Gopalakrishnan, J.; Waseda, Y. Thermodynamic evidence for phase transition in MoO2-d. J. Chem. Thermodyn. 2007, 39, 1539–1545. [Google Scholar] [CrossRef]
- Wakai, F.; Yoshida, M.; Shinoda, Y.; Akatsu, T. Coarsening and grain growth in sintering of two particles of different sizes. Acta Metall. 2005, 53, 1361–1371. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der Grosse und inneren Struktur von Kolloidteilchen mittels Rontgenstrahlen. Nach. Ges. Wiss. Gottingen. 1918, 2, 98–100. [Google Scholar]
- Holzwarth, U.; Gibson, N. The Scherrer equation versus the ‘Debye-Scherrer equation’. Nat. Nanotechnol. 2011, 6, 534. [Google Scholar] [CrossRef] [PubMed]
- Klug, H.; Alexander, L. X-ray Diffraction Procedures: For Polycrystalline and Amorphous Materials, 2nd ed.; Wiley: Hoboken, NJ, USA, 1974; Available online: https://ui.adsabs.harvard.edu/abs/1974xdpf.book.....K/abstract (accessed on 1 August 2023).
- Dos Reis, M.; Giret, Y.; Carrez, P.; Cordier, P. Efficiency of the vacancy pipe diffusion along an edge dislocation in MgO. Comput. Mater. Sci. 2022, 211, 111490. [Google Scholar] [CrossRef]
- Burke, J.; Turnbull, D. Recrystallization and grain growth. Prog. Phys. Met. 1952, 3, 275–292. [Google Scholar] [CrossRef]
- Wang, F. Ceramic Fabrication Processes: Treatise on Materials Science and Technology; Academic Press Inc.: Orlando, FL, USA, 1976; Volume 9, Available online: https://books.google.co.kr/books?hl=en&lr=&id=00MvBQAAQBAJ&oi=fnd&pg=PP1&ots=-hofU5QfJ6&sig=MtR1oCG1XwI-BY5xhn7jhpW39ZA&redir_esc=y#v=onepage&q&f=false (accessed on 1 August 2023).
- Lu, K. Nanocrystalline metals crystallized from amorphous solids: Nanocrystallization, structure, and properties. Mater. Sci. Eng. R. 1996, 16, 161–221. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, J.; Jeong, J.; Lee, H.; Park, J.; Jang, J.; Jeong, H. Effects of Sintering Processes on Microstructure Evolution, Crystallite, and Grain Growth of MoO2 Powder. Crystals 2023, 13, 1311. https://doi.org/10.3390/cryst13091311
Lee J, Jeong J, Lee H, Park J, Jang J, Jeong H. Effects of Sintering Processes on Microstructure Evolution, Crystallite, and Grain Growth of MoO2 Powder. Crystals. 2023; 13(9):1311. https://doi.org/10.3390/cryst13091311
Chicago/Turabian StyleLee, Jongbeom, Jinyoung Jeong, Hyowon Lee, Jaesoung Park, Jinman Jang, and Haguk Jeong. 2023. "Effects of Sintering Processes on Microstructure Evolution, Crystallite, and Grain Growth of MoO2 Powder" Crystals 13, no. 9: 1311. https://doi.org/10.3390/cryst13091311
APA StyleLee, J., Jeong, J., Lee, H., Park, J., Jang, J., & Jeong, H. (2023). Effects of Sintering Processes on Microstructure Evolution, Crystallite, and Grain Growth of MoO2 Powder. Crystals, 13(9), 1311. https://doi.org/10.3390/cryst13091311