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Abstract: Hexagonal BN (h-BN) has emerged as an important ultrawide bandgap (UWBG) semicon-
ductor (Eg~6 eV). The crystal growth technologies for producing semi-bulk crystals/epilayers in
large wafer sizes and understanding of defect properties lag decades behind conventional III-nitride
wide bandgap (WBG) semiconductors. Here we report probing of boron vacancy (VB)-related defects
in freestanding h-BN semi-bulk wafers synthesized by hydride vapor phase epitaxy (HVPE). A
photocurrent excitation spectroscopy (PES) was designed to monitor the transport of photoexcited
holes from deep-level acceptors. A dominant transition line at 1.66 eV with a side band near 1.62 eV
has been directly observed, which matches well with the calculated energy levels of 1.65 for the
VB-H deep acceptor in h-BN. The identification of VB complexes via PES measurement was further
corroborated by the temperature-dependent dark resistivity and secondary ion mass spectrometry
measurements. The results presented here suggested that it is necessary to focus on the optimiza-
tion of V/III ratio during HVPE growth to minimize the generation of VB-related defects and to
improve the overall material quality of h-BN semi-bulk crystals. The work also provided a better
understanding of how VB complexes behave and affect the electronic and optical properties of h-BN.

Keywords: ultrawide bandgap semiconductor; hexagonal boron nitride; hydride vapor phase epitaxy;
neutron detectors; deep level defects; photocurrent excitation spectroscopy

1. Introduction

III-nitride wide bandgap (WBG) semiconductors have revolutionized the consumer
electronics and lighting industries [1–3] and are also making inroads in power electronics
and full-spectrum solar energy conversion applications [4–6]. In the development of III-
nitride WBG semiconductors, how to achieve electrical conductivity control was a critical
issue because many important devices rely on the ability of n- and p-type doping. The
properties of Ga vacancy (VGa) in GaN have been discussed and investigated throughout
the development history of III-nitrides. In terms of its effect on the optical properties
of GaN, the presence of a Ga vacancy complex with a double negatively charged state
(VGa-complex)−2 was thought to be the origin of the yellow line (YL) at about 2.2 eV [7–17].
More recently, the acceptor involving a substitutional carbon on nitrogen site (CN) being
the source of the YL in GaN has also been proposed [15]. In terms of its effects on the
electrical properties, VGa and (VGa-complex) are deep-level acceptors, and they can capture
electrons. While YL in GaN was extensively studied, the violet line (VL) appearing at
around 3.4 eV in AlN related to the presence of Al vacancies (VAl) is less well known.
Theoretical calculations revealed that the formation energy of VIII in AlGaN decreases
with increasing Al-content and becomes very low forming a triple negatively charged state
in AlN (V−3

Al

)
[7,16,17]. As a direct consequence, achieving n-type conductivity control

in AlGaN alloys with high Al-contents was challenging because each V−3
Al can trap three

electrons. It was clearly shown that the nature of an effective mass state of Si donors can be
revealed and highly conductive Al-rich AlGaN alloys can be achieved only after VIII has
been suppressed [10,18].
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Among III-nitrides, h-BN is quite unique. In addition, its ultrawide bandgap (UWBG)
of ~6.0 eV [19–21] makes it attractive for deep ultraviolet (UV) photonic devices [22].
Its atomic constituent B-10 has a large thermal neutron capture cross-section [23–28], a
distinctive property that makes h-BN an excellent material for realizing direct-conversion
thermal neutron detectors with a theoretical detection efficiency of 100% possible [27,28].
Its outstanding chemical and thermal properties [29–31], together with its UWBG imply
that h-BN potentially is also an excellent next-generation electronic material. In its 2D
forms, native defects, related to boron vacancy (VB) in h-BN, appear to be excellent single
photon emitters [32–34].

The properties of native defects and impurities in h-BN have been studied using
density functional theory [35]. The results indicated that VB-hydrogen complexes form
deep-level acceptors and have a (0/−) charge state [35]. Comparatively, there have been
several experimental studies concerning the behaviors of silicon, carbon, and oxygen impu-
rities in h-BN [36–38]. The energy level of Si donors in h-BN appears rather deep at around
1.2 eV [36,39]. Oxygen in h-BN occupies the nitrogen site and is a donor with a measured
energy level of 0.56 eV [38] and a calculated energy level of 0.6 eV [35]. The presence of
oxygen impurities was attributed to oxygen diffusion from the sapphire substrate because
higher growth temperatures are required for h-BN than those of AlN and GaN. As of today,
while thermal neutron detectors fabricated from 100 µm thick B-10 enriched h-BN (h-10BN)
wafers have attained a record high detection efficiency of η = 59% among all solid-state
detectors [28], they still fall short of the theoretical efficiency of 88% expected from h-10BN
wafers with a thickness of t = 100 µm, according to η = 1 − e−t/λ, where the absorption
length (λ) of thermal neutrons in h-10BN is λ = 47.3 µm [27,28]. It is expected that the
presence of native defects profoundly affects the performance of h-BN devices as they
are charge carrier traps and scattering centers and play a big role in limiting the charge
collection efficiency and hence the total efficiency of h-BN detectors.

Previously, a photocurrent excitation spectroscopy (PES) measurement technique was
employed to determine the minimum direct energy bandgap of h-BN [40], which together
with the energy levels of O donors (measured in ref. [38]) and VB-hydrogen complexes
(VB-2H/VB-H) (calculated in ref. [35]) offered a modified energy diagram to capture the
unique band edge structure and its associated dominant impurities/defects in h-BN [40].
However, direct observation of VB-2H and VB-H complexes in h-BN by an experimental
technique has not been reported. In this work, we report the probing of boron vacancy
(VB)-related defects in freestanding h-BN semi-bulk wafers synthesized by hydride vapor
phase epitaxy (HVPE). A photocurrent excitation spectroscopy was designed to monitor the
transport of photoexcited holes from VB-related deep-level acceptors. The measured energy
levels of VB-complexes agree well with those of theoretical prediction. The properties
of VB and complexes are also compared with their equivalents in GaN and AlN. The
results reported here, together with what we have already learned from AlGaN, provided
important insights for an improved understanding of defects/impurities in h-BN.

2. Materials and Methods

The h-BN semi-bulk wafers used in this study were produced by HVPE. Natural
boron trichloride (BCl3) and NH3 were used as precursors for B and N, respectively, and
H2 was used as a carrier gas [41]. The growth was conducted on a c-plane sapphire of
2-inches in diameter. In contrast to the metal-organic chemical vapor deposition (MOCVD)
growth technique, the precursors used in HVPE growth contain no carbon impurities and
it provides a faster growth rate than MOCVD. Due to h-BN’s layered structure, a thick
h-BN wafer self-separates from the sapphire substrate after growth during the process
of cooling down, from which a freestanding h-BN wafer was obtained [28,38,40–42]. A
micrograph of a representative freestanding h-BN wafer of 2-inches in diameter is shown in
Figure 1a. Figure 1b shows an X-ray diffraction (XRD) spectrum in θ-2θ scan, which reveals
a single (002) peak at 26.70 and a c-lattice constant of 6.67 Å associated with the hexagonal
phase of BN. The turbostratic- (t-) phase of BN, which is often observable at around 260 in
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MOCVD-grown thick wafers [42] is completely absent in Figure 1b, reflecting an improved
crystalline quality and ordering in the c-direction over those of MOCVD-grown h-BN
thick wafers reported earlier by our group [42]. However, the full width at half-maximum
(FWHM) of the (002) plane of 0.280 (~1000 arcsec) is still broader than those of AlN wafers
produced by MOCVD [27]. Moreover, the true c-lattice constant of h-BN bulk crystal is
6.66 Å. The XRD results shown in Figure 1b indicate that the h-BN semi-bulk wafers do
not yet possess a perfect crystalline structure and further improvements are still needed.
Benchmarking XRD results of h-BN against those of state-of-the-art AlN epilayers with a
comparable bandgap and true bulk h-BN serves as a good guideline to further improve
the overall crystalline quality of h-BN via reducing the linewidth and shifting the peak
position of the h-BN (002) diffraction peak towards the larger angles.
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Figure 1. (a) A micrograph of a 100 µm thick freestanding h-BN wafer of 2-inches in diameter.
(b) X-ray diffraction (XRD) spectrum in θ-2θ scan of the h-BN sample used in this study, revealing a
single (002) peak at 26.70 and a c-lattice constant of 6.67 Å associated with the hexagonal phase of BN
(Figure adapted with permission from ref. [41], Appl. Phys. Lett. 122, 012,105 (2023), AIP Publishing).

For the electrical property characterization, as illustrated in Figure 2a, a lateral device
was fabricated from a diced piece of freestanding h-BN. The detailed device processing
procedures have been described previously [41]. The utilization of a lateral geometry is
based on the fact that the lateral transport properties of h-BN are superior to its vertical
transport properties [27,28,41]. Ohmic contacts consisting of a bi-layer of Ni (100 nm)/Au
(40 nm) were deposited on the two edges of the h-BN sample using e-beam evaporation
via a mask, leaving ~100 µm of metal overlapping the sample edges. Wire bonding
was then performed to electrically connect the deposited metal contacts to the pads of a
semiconductor device package. Figure 2b is a micrograph of a fabricated detector with
1.3 mm in width and 10 mm in length. A broad light source covering the wavelength
range between 170 and 2100 nm together with a monochromator was used as a variable
wavelength excitation source. For photoluminescence (PL) measurements, an excimer laser
of wavelength 193 nm was used as an excitation source.
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Figure 2. (a) Schematic of a h-BN device in a lateral geometry. (b) Micrograph of a fabricated h-BN
lateral device with 1.3 mm in width and 10 mm in length. (c) The Arrhenius plot of the measured
electrical resistivity (ρ) of the h-BN device shown in (b). The energy level of the impurity/defect
which determines the dark resistivity was estimated to be around 1.6 eV. The inset are plots of dark
I-V characteristics measured at several representative temperatures.

3. Results and Discussion

First, we conducted electrical resistivity (ρ) measurements at varying temperatures.
Figure 2c is an Arrhenius plot of the measured temperature-dependent ρ. The inset are
plots of dark I-V characteristics measured at several representative temperatures. The
resistivity at room temperature is ~1 × 1014 Ω.cm. The energy level of the impurity/defect
which determines the dark resistivity can be estimated from Figure 2c and is ~1.6 eV. We
were unable to conduct Hall-effect measurements due to the extremely high resistivity of
the material. As such, the energy level estimated here does not include the temperature
dependence of the carrier mobility. It is worth noting that the dark I–V characteristics
at higher temperatures of 650 K and 700 K are not perfectly linear. This is because the
ohmic contacts on h-BN are not optimized and no post-thermal annealing processes were
employed. Achieving high-quality ohmic contacts to a new UWBG semiconductor is
another challenging research topic and much more work is needed. However, we believe
that the results shown in Figure 2c provide a reasonable estimate of the energy level of
the impurity/defect involved. Overall, the energy level obtained from the dark resistivity
measurements is very close to the calculated energy levels of VB-2H and VB-H complexes,
which are predicted to be deep-level acceptors in h-BN [35]. It is also interesting to compare
with the results of MOCVD-grown wafers, in which the dark current (or the background
carrier concentration) is generally controlled by the presence of oxygen impurities, which
are donors with a measured activation energy of about 0.56 eV [38].

To directly probe the presence of VB-2H and VB-H complexes, photocurrent excitation
spectroscopy measurement technique was employed, which is a powerful technique for
measuring the impurity/defect energy levels and direct energy bandgap in a semiconductor.
Photocurrent generation involves a two-step process: (1) direct excitation of carriers from
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the impurity/defect levels to a band and (2) photoexcited carriers drift in the applied
field and collected by the electrodes. Therefore, the observed spectral peak positions in a
photocurrent excitation spectrum directly correspond to the impurity/defect energy levels
in a semiconductor.

The photocurrent excitation spectroscopy measurement setup is schematically shown
in the inset of Figure 3. In this experimental setup, a 300 µm wide metal slit was used to
allow light to enter and illuminate only near the metal contact on the left side of the detector
strip. Under a bias voltage application with a polarity shown in the inset, only photoexcited
free holes (h+) will be able to drift across the detector and be collected by the electrode on
the right. Figure 3 plots the measured photocurrent excitation spectrum in the excitation
photon energy range of 1.55 and 1.75 eV. Shown in Figure 3 is a dominant spectral peak
at 1.66 eV. Another peak observed near 1.65 eV could be due to a phonon replica related
to a defect-induced local breathing mode of about 8 meV [43]. Because we are measuring
the hole transport, the dominant spectral peak must correspond to the photoexcitation of
acceptor impurities/defects with an energy level at EA = 1.66 eV above the valence band.
The measured energy level of 1.66 eV matches well with the calculated energy level of
1.65 for the VB-H deep acceptor in h-BN [35]. There appears to be another weak peak near
1.62 eV, possibly associated with the VB-2H deep acceptor in h-BN. However, the observed
value of 1.62 eV is not a perfect match with the calculated energy level of 1.54 eV for VB-2H
in h-BN [35] and the signal is also near the noise level. The value of EA = 1.6 eV obtained
from the dark resistivity measurement results shown in Figure 2 can be considered as the
average of the two energy levels among VB-H and VB-H deep acceptors. These results
together reinforce that the VB-hydrogen complexes are the dominant acceptor-type defects
in h-BN semi-bulk crystals produced by HVPE.
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Figure 3. The photocurrent excitation spectrum of hole transport in an h-BN lateral device measured
in the excitation photon energy range of 1.55 and 1.75 eV. The black arrows indicate the observed
peak positions. The inset is a schematic of the photocurrent excitation spectroscopy experimental
setup. The red arrow in the inset indicates the direction of the applied electric field. Under a bias
voltage application with a polarity shown in the inset, only photoexcited free holes (h+) will be able
to drift across the detector and be collected by the electrode on the right so that the spectral peaks
must correspond to the photoexcitation of acceptor impurities/defects above the valence band.
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To further confirm the presence of VB-hydrogen complexes in the h-BN wafer studied
here, we examined the stoichiometry by secondary ion mass spectrometry (SIMS) measure-
ments to assess the possibility of the presence of native defects of either boron vacancies
(VB) or nitrogen vacancies (VN). The choice of using the SIMS technique over other more
common surface-sensitive techniques such as X-ray photoelectron spectroscopy (XPS) for
this study is because the h-BN surface is prone to oxidation [44] without a proper treatment
which can result in misinterpretation of XPS data, whereas SIMS is capable to probe into
the sample’s interior. Figure 4 shows B and N concentrations, [B] and [N], in the same
h-BN wafer, probed by SIMS. At first sight, SIMS results in Figure 4 hardly reveal any
difference between B and N concentrations. We therefore calculated the ratio of [B]/[N] by
averaging data points in the wafer’s interior, which revealed that the boron concentration is
slightly less than the N concentration with a ratio of boron to nitrogen, [B]/[N] of 49.8/50.2.
Knowing that the atomic density of h-BN is 1.1 × 1023/cm3, this small deficiency in B
content (0.2%) could potentially render a concentration of VB and its complex on the order
of ~1020 cm−3. This defect concentration is expected to have a significant effect on the
device performance since the typical doping levels in p-n junction devices are normally
below 1019 cm−3.
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Figure 4. B and N contents in a h-BN wafer produced by HVPE probed by secondary ion mass
spectroscopy (SIMS) measurements. Averaging data points in the wafer’s interior reveals that the
ratio of boron to nitrogen, [B]/[N], is 49.8/50.2. This small deficiency in B content (0.2%) could
potentially render a concentration of VB and its complex on the order of ~1020 cm−3.

The properties and energy levels of various defects and impurities in h-BN have
been theoretically investigated [35], which revealed that VB-2H and VB-H complexes
are deep-level acceptors in h-BN with their energy positions located respectively at 1.54
and 1.65 eV above the valence band [35]. Because the results of Figure 3 are for hole
transport and SIMS data also imply that the h-BN wafer used in this study is slightly
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boron deficient, comparing the measured acceptor energy level to the calculated energy
level of VB-H confirms that the nature of the acceptors with energy levels in the range of
1.6–1.7 eV observed in Figure 3 is VB-complexes. Figure 5 summarizes the energy levels of
the deep-level acceptors related to VB-H and VB-2H obtained by (a) calculation [35] and
(b) photocurrent excitation spectroscopy measurements here.
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Our results lead to several implications and understandings. First, the presence of ON
donors with a concentration of [ND] due to oxygen diffusion from sapphire is expected in
the material system. However, these donors have been completely compensated by [VB-
complex]. This argument can be understood because we are measuring the photocurrent
excitation spectrum of free holes, which can only be excited via the photoexcitation process
of A0 + hν→A− + h+. This means that free holes contributed to the photocurrent excitation
spectrum can only be photo-generated by exciting electrons from the valence band to the
neutral [VB-complex]0 leaving behind free holes in the valance band. No free holes can
be photo-excited at this energy from the negatively charged acceptors. Therefore, [ND]
due to oxygen must be less than [VB-complex] to observe this photoexcitation process. All
ND will become positively charged donors with [ND

+] = [ND] = [VB-complex]-, whereas
[VB-complex]− + [VB-complex]0 = [VB-complex]. Secondly, holes act as the majority charge
carriers in the dark as well as under photoexcitation in h-BN samples studied here, in
contrast to MOCVD-grown h-BN thick wafers in which electrons tend to act as the majority
carriers because oxygen was found to be the dominant impurities [38]. As such, the
Fermi level of the system should be closer to the valence band than the conduction band.
Lastly, based on the energy level diagram shown in Figure 5, photoluminescence (PL)
emission lines in the photon energy range of 3.6–3.8 eV due to donor-acceptor pair (DAP)
recombination are possible. To investigate this possibility, room temperature PL emission
spectroscopy measurements were carried out. Figure 6 shows a representative PL emission
spectrum, which indeed reveals a dominant emission line near 3.65 eV, which agrees
remarkably well with the expected emission energy of 3.67 eV (solid vertical arrow) from
Figure 5b. The broadness of the PL emission spectrum is a typical characteristic of a DAP
transition. Moreover, the dominant DAP transition in h-BN is usually accompanied by
many phonon replicas [45], although they are not clearly resolved in the case here. The
observation of the dominant emission being related to a DAP recombination in h-BN semi-
bulk crystals also indicates the overall material quality is still some distance away from
those of the state-of-the-art conventional III-nitride such as GaN and AlN as well as from
those of thin h-BN epitaxial layers [27]. We need to focus on pushing the XRD h-BN (002)
diffraction peak in 2θ scan to an even larger angle so that the c-lattice constant approaches
the true bulk value of 6.66 Å and the PL spectrum is dominated by the band edge emission
lines [27].
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Now, let us return to look at the overall picture of cation vacancy-related deep-level
acceptors in III-nitride semiconductors. Due to the difference in the crystalline structures
between h-BN and AlN with a comparable bandgap, there are some interesting and stark
differences between the properties of cation vacancy-related defects in these materials. The
dominant cation vacancy in AlN is VAl, whereas the most dominant cation vacancy-related
defects in h-BN are VB-H and VB-2H complexes. The dominant charge state of the VAl deep-
level acceptor in AlN is (−3), while that in h-BN is (0/−1), suggesting that the detrimental
effects of VB–complexes to the n-type doping in h-BN are less severe than those of V−3

Al to
the n-type doping in AlN, if an effective mass shallow donor can be identified for h-BN.
In terms of their effects on the optical properties, deep-level transitions involving cation
vacancies and complexes in AlGaN alloys and their implications to the UV optoelectronic
devices based on AlGaN alloys have been systematically studied [7–18], whereas similar
studies for h-BN are still needed. For device applications such as power electronic devices,
UV emitters and detectors, and neutron detectors, VB-related defects not only act as electron
traps but also affect the device’s quantum efficiency by acting as charge scattering centers.

4. Conclusions

In summary, a photocurrent excitation spectroscopy of hole transport has been em-
ployed to study the photoexcitation of deep-level acceptors in h-BN semi-bulk wafers
produced by HVPE. A dominant transition line at 1.66 eV above the valence band has been
detected, which agrees well with the calculated energy levels of 1.65 eV for VB-H deep
acceptors in h-BN. Both the temperature-dependent dark I-V characteristics revealing a de-
fect/impurity with an activation energy of 1.6 eV and SIMS measurement revealing a slight
boron deficiency further supported the photocurrent excitation spectroscopy results. Our
results suggested that the key to further improving the material quality of h-BN semi-bulk
crystals is to minimize the generation of VB-related defects via optimization of V/III ratio
during HVPE growth. Similar to the developments of GaN and AlN in the past, achieving
defect-free h-BN is highly challenging in the near future and therefore, it is important to
gain a better understanding of how defects such as B vacancies and complexes behave and
affect the electronic properties of h-BN.
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