A Linear Strain-Free Matching Algorithm for Twisted Two-Dimensional Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Algorithm Details
2.1.1. Lattice Redefinition
2.1.2. Supercell Matching
2.1.3. Angular Bisector Matching Method
2.1.4. Successive Approximation Method
2.1.5. Supercell Sizes Evaluation
2.2. Elastic Contribution to the Interface Energy
2.3. Accuracy
2.4. Cartesian Coordinate System Conversions
3. Results
3.1. Computational Details
3.2. Twisted Bilayer Borophene
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akinwande, D.; Petrone, N.; Hone, J. Two-dimensional flexible nanoelectronics. Nat. Commun. 2014, 5, 5678. [Google Scholar] [CrossRef]
- Lee, S.; Zhong, Z. Nanoelectronic circuits based on two-dimensional atomic layer crystals. Nanoscale 2014, 6, 13283–13300. [Google Scholar] [CrossRef]
- Hwang, H.Y.; Iwasa, Y.; Kawasaki, M.; Keimer, B.; Nagaosa, N.; Tokura, Y. Emergent phenomena at oxide interfaces. Nat. Mater. 2012, 11, 103–113. [Google Scholar] [CrossRef]
- Ohtomo, A.; Hwang, H.Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423–426. [Google Scholar] [CrossRef]
- Sun, R.; Wang, Z.; Saito, M.; Shibata, N.; Ikuhara, Y. Atomistic mechanisms of nonstoichiometry-induced twin boundary structural transformation in titanium dioxide. Nat. Commun. 2015, 6, 7120. [Google Scholar] [CrossRef]
- Chen, H. Surface/interface X-ray diffraction. Mater. Chem. Phys. 1996, 43, 116–125. [Google Scholar] [CrossRef]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef]
- Bediako, D.K.; Rezaee, M.; Yoo, H.; Larson, D.T.; Zhao, S.Y.; Taniguchi, T.; Watanabe, K.; Brower-Thomas, T.L.; Kaxiras, E.; Kim, P. Heterointerface effects in the electrointercalation of vdW heterostructures. Nature 2018, 558, 425–429. [Google Scholar] [CrossRef]
- Liu, R.; Hou, C.; Liang, X.; Wu, Z.; Tai, G. Borophene-ZnO heterostructures: Preparation and application as broadband photonic nonvolatile memory. Nano Res. 2023, 16, 5826–5833. [Google Scholar] [CrossRef]
- Hou, C.; Tai, G.; Liu, B.; Wu, Z.; Yin, Y. Borophene-graphene heterostructure: Preparation and ultrasensitive humidity sensing. Nano Res. 2021, 14, 2337–2344. [Google Scholar] [CrossRef]
- Slepchenkov, M.M.; Kolosov, D.A.; Glukhova, O.E. Novel Van Der Waals Heterostructures Based on Borophene, Graphene-like GaN and ZnO for Nanoelectronics: A First Principles Study. Materials 2022, 15, 4084. [Google Scholar] [CrossRef]
- Katoch, N.; Kumar, A.; Sharma, R.; Ahluwalia, P.K.; Kumar, J. Strain tunable Schottky barriers and tunneling characteristics of borophene/MX2 van der Waals heterostructures. Phys. E Low Dimens. Syst. Nanostruct. 2020, 120, 113842. [Google Scholar] [CrossRef]
- Jing, S.; Chen, W.; Pan, J.; Li, W.; Bian, B.; Liao, B.; Wang, G. Electronic properties of Borophene/InSe van der Waals heterostructures. Mater. Sci. Semicond. Process. 2022, 146, 106673. [Google Scholar] [CrossRef]
- Lazić, P. CellMatch: Combining two unit cells into a common supercell with minimal strain. Comput. Phys. Commun. 2015, 197, 324–334. [Google Scholar] [CrossRef]
- Stradi, D.; Jelver, L.; Smidstrup, S.; Stokbro, K. Method for determining optimal supercell representation of interfaces. J. Phys. Condens. Mat. 2017, 29, 185901. [Google Scholar] [CrossRef]
- Jelver, L.; Larsen, P.M.; Stradi, D.; Stokbro, K.; Jacobsen, K.W. Determination of low-strain interfaces via geometric matching. Phys. Rev. B 2017, 96, 085306. [Google Scholar] [CrossRef]
- Taylor, N.T.; Davies, F.H.; Rudkin, I.E.M.; Price, C.J.; Chan, T.H.; Hepplestone, S.P. ARTEMIS: Ab initio restructuring tool enabling the modelling of interface structures. Comput. Phys. Commun. 2020, 257, 107515. [Google Scholar] [CrossRef]
- Koda, D.S.; Bechstedt, F.; Marques, M.; Teles, L.K. Coincidence lattices of 2D crystals: Heterostructure predictions and applications. J. Phys. Chem. C 2016, 120, 10895–10908. [Google Scholar] [CrossRef]
- Gao, B.; Gao, P.; Lu, S.; Lv, J.; Wang, Y.; Ma, Y. Interface structure prediction via CALYPSO method. Sci. Bull. 2019, 64, 301–309. [Google Scholar] [CrossRef]
- Therrien, F.; Graf, P.; Stevanović, V. Matching crystal structures atom-to-atom. J. Chem. Phys. 2020, 152, 074106. [Google Scholar] [CrossRef]
- Paul, S.; Torsi, R.; Robinson, J.A.; Momeni, K. Effect of the substrate on MoS2 monolayer morphology: An integrated computational and experimental study. ACS Appl. Mater. Inter. 2022, 14, 18835–18844. [Google Scholar] [CrossRef]
- Dumcenco, D.; Ovchinnikov, D.; Marinov, K.; Lasic, P.; Gibertini, M.; Marzari, N. Large-Area Epitaxial Monolayer MoS2. ACS Nano 2015, 9, 4611–4620. [Google Scholar] [CrossRef]
- Ji, Y.; Yang, Q.; Zhang, X.; Xu, R.; Liang, W.; Zhao, R.; Li, W.; Ou, X.; Yang, H. Tuning critical phase transition in VO2 via interfacial control of normal and shear strain. Appl. Phys. Lett. 2019, 115, 201603. [Google Scholar] [CrossRef]
- Park, R.L.; Madden, H.H., Jr. Annealing changes on the surface of palladium and their effect on CO adsorption. Surf. Sci. 1968, 11, 188–202. [Google Scholar] [CrossRef]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Peng, B.; Zhang, H.; Shao, H.; Ning, Z.; Xu, Y.; Ni, G.; Lu, H.; Zhang, D.W.; Zhu, H. Stability and strength of atomically thin borophene from first principles calculations. Mater. Res. Lett. 2017, 5, 399–407. [Google Scholar] [CrossRef]
- Liu, X.; Li, Q.; Ruan, Q.; Rahn, M.S.; Yakobson, B.I.; Hersam, M.C. Borophene synthesis beyond the single-atomic-layer limit. Nat. Mater. 2022, 21, 35–40. [Google Scholar] [CrossRef]
- Chen, C.; Lv, H.; Zhang, P.; Zhuo, Z.; Wang, Y.; Ma, C.; Li, W.; Wang, X.; Feng, B.; Cheng, P.; et al. Synthesis of bilayer borophene. Nat. Chem. 2022, 14, 25–31. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Fang, S.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; Jarillo-Herrero, P. Unconventional superconductivity in magic-angle graphene superlattices. Nature 2018, 556, 43–50. [Google Scholar] [CrossRef]
- Cao, Y.; Fatemi, V.; Demir, A.; Fang, S.; Tomarken, S.L.; Luo, J.Y.; Sanchez-Yamagishi, J.D.; Watanabe, K.; Taniguchi, T.; Kaxiras, E.; et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 2018, 556, 80–84. [Google Scholar] [CrossRef]
- Jin, X.; Wang, X.; Wu, R.; Gao, Y.; Yan, Y.; Xuan, F.J. Tuning Band Gaps in Twisted Bilayer Borophene. Phys. Chem. C 2022, 126, 17769–17776. [Google Scholar] [CrossRef]
- Wang, X.; Wu, R.; Xu, T.; Yang, G. Mechanical and electrical properties of borophene and its band structure modulation via strain and electric fields: A first-principles study. Mater. Res. Express 2021, 8, 065003. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.; Jin, X.; Wu, R.; Gao, Y.; Wang, X. A Linear Strain-Free Matching Algorithm for Twisted Two-Dimensional Materials. Crystals 2023, 13, 1383. https://doi.org/10.3390/cryst13091383
Wang C, Jin X, Wu R, Gao Y, Wang X. A Linear Strain-Free Matching Algorithm for Twisted Two-Dimensional Materials. Crystals. 2023; 13(9):1383. https://doi.org/10.3390/cryst13091383
Chicago/Turabian StyleWang, Chunyu, Xujie Jin, Rongyao Wu, Yang Gao, and Xiaoyuan Wang. 2023. "A Linear Strain-Free Matching Algorithm for Twisted Two-Dimensional Materials" Crystals 13, no. 9: 1383. https://doi.org/10.3390/cryst13091383
APA StyleWang, C., Jin, X., Wu, R., Gao, Y., & Wang, X. (2023). A Linear Strain-Free Matching Algorithm for Twisted Two-Dimensional Materials. Crystals, 13(9), 1383. https://doi.org/10.3390/cryst13091383