D,L-Citrullinato-bipyridine Copper Complex: Experimental and Theoretical Characterization
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Spectroscopic Characterization
2.2. Synthesis of D,L-[Cu(Bipy)(Citr)(H2O)(NO3)]·H2O (Compound 1)
2.3. Crystallographic Refinement
2.4. Theoretical Calculations
3. Results
3.1. Structural Description of Compound 1
3.2. UV-Visible Spectroscopy
3.3. Infrared Spectroscopy
3.4. Raman Spectroscopy
3.5. Mass Spectrometry
3.6. Molecular Structure and Non-Covalent Interactions
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aguayo, E.; Martínez-Sánchez, A.; Fernández-Lobato, B.; Alacid, F. L-Citrulline: A Non-Essential Amino Acid with Important Roles in Human Health. Appl. Sci. 2021, 11, 3293. [Google Scholar] [CrossRef]
- Zamuz, S.; Munekata, P.E.S.; Gullón, B.; Rocchetti, G.; Montesano, D.; Lorenzo, J.M. Citrullus lanatus as source of bioactive components: An up-to-date review. Trends Food Sci. Technol. 2021, 111, 208–222. [Google Scholar] [CrossRef]
- Wada, M. On the Occurrence of a New Amino Acid in Watermelon, Citrullus Vulgaris, Schrad. Bull. Agric. Chem. Soc. Japan 1930, 6, 32–34. [Google Scholar] [CrossRef]
- Fragkos, K.C.; Forbes, A. Was Citrulline First a Laxative Substance? The Truth about Modern Citrulline and Its Isolation. Nihon Ishigaku Zasshi 2011, 57, 275–292. [Google Scholar]
- Manivannan, A.; Lee, E.-S.; Han, K.; Lee, H.-E.; Kim, D.-S. Versatile nutraceutical potentials of watermelon—A modest fruit loaded with pharmaceutically valuable phytochemicals. Molecules 2020, 25, 5258. [Google Scholar] [CrossRef]
- Rimando, A.M.; Perkins-Veazie, P.M. Determination of citrulline in watermelon rind. J. Chromatogr. A 2005, 1078, 196–200. [Google Scholar] [CrossRef]
- Curis, E.; Crenn, P.; Cynober, L. Citrulline and the gut. Curr. Opin. Clin. Nutr. Metab. Care 2007, 10, 620–626. [Google Scholar] [CrossRef]
- Papadia, C.; Osowska, S.; Cynober, L.; Forbes, A. Citrulline in Health and Disease. Review on Human Studies. Clin. Nutr. 2018, 37, 1823–1828. [Google Scholar] [CrossRef] [PubMed]
- Curis, E.; Nicolis, I.; Moinard, C.; Osowska, S.; Zerrouk, N.; Bénazeth, S.; Cynober, L. Almost all about Citrulline in mammals. Amino Acids 2005, 29, 177–205. [Google Scholar] [CrossRef]
- Kurtz, A.C. A Simple Synthesis of dl-Citrulline. J. Biol. Chem. 1938, 122, 477–484. [Google Scholar] [CrossRef]
- Ganadu, M.L.; Leoni, V.; Crisponi, G.; Nurchi, V. An investigation on the interaction between palladium(II) and L-citrulline by 1H and 13C NMR spectroscopy and potentiometry. Polyhedron 1991, 10, 333–336. [Google Scholar] [CrossRef]
- Mascaliovas, B.Z.; Bergamini, F.R.G.; Cuin, A.; Corbi, P.P. Synthesis and crystal structure of a palladium(II) complex with the amino acid L-citrulline. Powder Diffr. 2015, 30, 357–361. [Google Scholar] [CrossRef]
- Ramírez-Contreras, D.; García-García, A.; Sánchez-Gaytán, B.L.; Serrano-de la Rosa, L.E.; Melendez, F.J.; Choquesillo-Lazarte, D.; Rodríguez-Diéguez, A.; Castro, M.E.; González-Vergara, E. Bis-Citrullinato Copper(II) Complex: Synthesis, Crystal Structure, and Non-Covalent Interactions. Crystals 2022, 12, 1386. [Google Scholar] [CrossRef]
- González-Ballesteros, M.M.; Mejía, C.; Ruiz-Azuara, L. Metallodrugs: An approach against invasion and metastasis in cancer treatment. FEBS Open Bio 2022, 12, 880–899. [Google Scholar] [CrossRef] [PubMed]
- Molinaro, C.; Martoriati, A.; Pelinski, L.; Cailliau, K. Copper Complexes as Anticancer Agents Targeting Topoisomerases I and II. Cancers 2020, 12, 2883. [Google Scholar] [CrossRef]
- Chavez-Gonzalez, A.; Centeno-Llanos, S.; Moreno-Lorenzana, D.; Sandoval-Esquivel, M.A.; Aviles-Vazquez, S.; Bravo-Gomez, M.E.; Ruiz-Azuara, L.; Ayala-Sanchez, M.; Torres-Martinez, H.; Mayani, H. Casiopeina III-Ea, a copper-containing small molecule, inhibits the in vitro growth of primitive hematopoietic cells from chronic myeloid leukemia. Leuk. Res. 2017, 52, 8–19. [Google Scholar] [CrossRef]
- Bravo-Gómez, M.E.; García-Ramos, J.C.; Gracia-Mora, I.; Ruiz-Azuara, L. Antiproliferative activity and QSAR study of copper(II) mixed chelate [Cu(N-N)(acetylacetonato)]NO3 and [Cu(N-N)(glycinato)]NO3 complexes, (Casiopeínas). J. Inorg. Biochem. 2009, 103, 299–309. [Google Scholar] [CrossRef]
- Trejo-Solís, C.; Palencia, G.; Zúñiga, S.; Rodríguez-Ropon, A.; Osorio-Rico, L.; Luvia, S.T.; Gracia-Mora, I.; Marquez-Rosado, L.; Sánchez, A.; Moreno-García, M.E.; et al. Cas IIgly induces apoptosis in glioma C6 cells in vitro and in vivo through caspase-dependent and caspase-independent mechanisms. Neoplasia 2005, 7, 563–574. [Google Scholar] [CrossRef]
- Kachadourian, R.; Brechbuhl, H.M.; Ruiz-Azuara, L.; Gracia-Mora, I.; Day, B.J. Casiopeína IIgly-induced oxidative stress and mitochondrial dysfunction in human lung cancer A549 and H157 cells. Toxicology 2010, 268, 176–183. [Google Scholar] [CrossRef]
- Martínez-Valencia, B.; Corona-Motolinia, N.D.; Sánchez-Lara, E.; Noriega, L.; Sánchez-Gaytán, B.L.; Castro, M.E.; Meléndez-Bustamante, F.; González-Vergara, E. Cyclo-tetravanadate bridged copper complexes as potential double bullet pro-metallodrugs for cancer treatment. J. Inorg. Biochem. 2020, 208, 111081. [Google Scholar] [CrossRef]
- Martínez-Valencia, B.; Corona-Motolinia, N.D.; Sánchez-Lara, E.; Sánchez-Gaytán, B.L.; Cerro-López, M.; Mendoza, A.; Castro, M.E.; Meléndez-Bustamante, F.J.; González-Vergara, E. Synthesis and Experimental-Computational Characterization of a Copper/Vanadium Compound with Potential Anticancer Activity. Crystals 2020, 10, 492. [Google Scholar] [CrossRef]
- Corona-Motolinia, N.D.; Martínez-Valencia, B.; Noriega, L.; Sánchez-Gaytán, B.L.; Mendoza, A.; Meléndez-Bustamante, F.J.; Castro, M.E.; González-Vergara, E. Ternary Copper Complex of L-Glutamine and Phenanthroline as Counterions of Cyclo-Tetravanadate Anion: Experimental–Theoretical Characterization and Potential Antineoplastic Activity. Metals 2021, 11, 1541. [Google Scholar] [CrossRef]
- Vazquez-Rodriguez, S.; Ramírez-Contreras, D.; Noriega, L.; García-García, A.; Sánchez-Gaytán, B.L.; Melendez, F.J.; Castro, M.E.; González-Vergara, E. Interaction of copper potential metallodrugs with TMPRSS2: A comparative study of docking tools and its implications on COVID-19. Front. Chem. 2023, 11, 1128859. [Google Scholar] [CrossRef]
- Su, C.-C.; Tai, T.-Y.; Wu, S.-P.; Wang, S.-L.; Liao, F.-L. Spectroscopic and electronic properties of mixed ligand aminoacidatocopper(II) complexes: Molecular structure of [Cu(4,7-dimethyl-1,10-phenanthroline)(l-phenylalaninato)](ClO4). Polyhedron 1999, 18, 2361–2368. [Google Scholar] [CrossRef]
- CrysAlisCCD, CrysAlisRED; Version 1.171.35.11; Oxford_Diffraction: Yarnton, UK, 2009.
- Sheldrick, G.M. SHELXT—Integrated Space-Group and Crystal-Structure Determination. Acta Crystallogr. Sect. A Found. Adv. 2015, 71, 3–8. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Adamo, C.; Jacquemin, D. The calculations of excited-state properties with Time-Dependent Density Functional Theory. Chem. Soc. Rev. 2013, 42, 845–856. [Google Scholar] [CrossRef]
- Adamo, C.; Barone, V. Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 1999, 110, 6158–6169. [Google Scholar] [CrossRef]
- Hay, P.J.; Wadt, W.R. Ab initio effective core potentials for molecular calculations. Potentials for K to Au including the outermost core orbitals. J. Chem. Phys. 1985, 82, 299–310. [Google Scholar] [CrossRef]
- Marenich, A.V.; Cramer, C.J.; Truhlar, D.G. Universal Solvation Model Based on Solute Electron Density and on a Continuum Model of the Solvent Defined by the Bulk Dielectric Constant and Atomic Surface Tensions. J. Phys. Chem. B 2009, 113, 6378–6396. [Google Scholar] [CrossRef] [PubMed]
- Jin, Y.X.; Zhong, A.G.; Zhang, Y.J.; Pan, F.Y. Synthesis, crystal structure, spectroscopic properties, antibacterial activity and theoretical studies of a novel difunctional acylhydrazone. J. Mol. Struct. 2011, 1002, 45–50. [Google Scholar] [CrossRef]
- Frisch, M.J.; Trucks, G.W.; Schlegel, H.B.; Scuseria, G.E.; Robb, M.A.; Cheeseman, J.R. Gaussian 16; Revision, B.01; Gaussian Inc.: Wallingford, CT, USA, 2016. [Google Scholar]
- Dennington, R.D.; Keith, T.A.; Millam, J.M. GaussView; Version 6.0.16; Semi-Chem Inc.: Shawnee Mission, UK, 2016. [Google Scholar]
- Keith, T.A. TK Gristmill Software; Version 19.02.13; AIMAll: Overland Park, KS, USA, 2019. [Google Scholar]
- Turner, M.J.; MacKiinnon, J.J.; Wolff, S.K.; Grimwood, D.J.; Spackman, P.R.; Jayatilaka, D.; Spackman, M.A. CrystalExplorer17. Available online: https://crystalexplorer.scb.uwa.edu.au/ (accessed on 24 July 2023).
- Halcrow, M.A. Jahn-Teller distortions in transition metal compounds, and their importance in functional molecular and inorganic materials. Chem. Soc. Rev. 2013, 42, 1784–1795. [Google Scholar] [CrossRef] [PubMed]
- Veidis, M.V.; Schreiber, G.H.; Gough, T.E.; Palenik, G.J. Jahn-Teller distortions in octahedral copper (II) complexes. J. Am. Chem. Soc. 1969, 91, 1859–1860. [Google Scholar] [CrossRef]
- Smith, D.W. Ligand field splittings in copper(II) compounds. In Structure and Bonding; Cardin, C., Duan, X., Gade, L.H., Sainz, L.G.-H., Lu, Y., Macgregor, S.A., Pariente, J.P., Schneider, S., Stalke, D., Eds.; Springer: Berlin/Heidelberg, Germany, 1972; Volume 12, pp. 49–112. [Google Scholar]
- Hathaway, B.J. A new look at the stereochemistry and electronic properties of complexes of the copper(II) ion. In Complex Chemistry. Structure and Bonding; Emslev, J., Ernst, R.D., Hathaway, B.J., Warren, K.D., Eds.; Springer: Berlin/Heidelberg, Germany, 1984; Volume 57, pp. 55–118. [Google Scholar]
- Stanila, A.; Marcu, A.; Rusu, D.; Rusu, M.; David, L. Spectroscopic studies of some copper(II) complexes with amino acids. J. Mol. Struct. 2007, 834–836, 364–368. [Google Scholar] [CrossRef]
- Cuevas, A.; Viera, I.; Torre, M.H.; Kremer, E.; Etcheverry, S.B.; Baran, E.J. Infrared Spectra of the Copper(II) Complexes of Amino Acids with Hydrophobic Residues. Acta Farm. Bonaer. 1998, 17, 213–218. [Google Scholar]
- Castellucci, E.; Angeloni, L.; Neto, N.; Sbrana, G. IR and Raman spectra of A 2, 2′-bipyridine single crystal: Internal modes. Chem. Phys. 1979, 43, 365–373. [Google Scholar] [CrossRef]
- Jinnah, M.M.A.; Sasirekha, V.; Ramakrishnan, V. Vibrational spectral studies of l-citrullinium perchlorate. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2005, 62, 840–844. [Google Scholar] [CrossRef]
- Baran, E.; Wagner, C.C.; Torre, M.; Kremer, E.; Kögerler, P. Vibrational spectra of the Cu(II) complexes of aspartic and glutamic acids. Acta Farm. Bonaer. 2000, 19, 231–234. [Google Scholar]
- Zapata, F.; García-Ruiz, C. The discrimination of 72 nitrate, chlorate, and perchlorate salts using IR and Raman spectroscopy. Spectrochim. Acta A. Mol. Biomol. Spectrosc. 2018, 189, 535–542. [Google Scholar] [CrossRef]
- Sreevalsa, V.G.; Jayalekshmi, S. Investigations on the Growth and Characterization of L-Citrulline Oxalate Monohydrate Single Crystal. J. Cryst. Growth 2011, 324, 172–176. [Google Scholar] [CrossRef]
- Strukl, J.S.; Walter, J.L. Infrared and Raman spectra of heterocyclic compounds—III: The infrared studies and normal vibrations of 2,2’-bipyridine. Spectrochim. Acta A. Mol. Spectrosc. 1971, 27, 209–221. [Google Scholar] [CrossRef]
- Corona-Motolinia, N.D.; Martínez-Valencia, B.; Noriega, L.; Sánchez-Gaytán, B.L.; Méndez-Rojas, M.Á.; Melendez, F.J.; Castro, M.E.; González-Vergara, E. Synthesis, Crystal Structure, and Computational Methods of Vanadium and Copper Compounds as Potential Drugs for Cancer Treatment. Molecules 2020, 25, 4679. [Google Scholar] [CrossRef] [PubMed]
- Caruso, A.; Rossi, M.; Gahn, C.; Caruso, F. A structural and computational study of Citrulline in biochemical reactions. Struct. Chem. 2017, 28, 1581–1589. [Google Scholar] [CrossRef]
- Fu, R.; So, S.M.; Lough, A.J.; Chin, J. Hydrogen Bond Assisted L to D Conversion of Amino Acids. Angew. Chem. Int. Ed. 2020, 59, 4335–4339. [Google Scholar] [CrossRef] [PubMed]
- Kolarovĭc, A.; Jakubec, P. State of the Art in Crystallization-Induced Diastereomer Transformations. Adv. Synth. Catal. 2021, 363, 4110–4158. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Y.; Tang, J.; Yang, Z.; Zhang, L.; Huang, X. New insights into the interactions between Pb (II) and fruit waste biosorbent. Chemosphere 2022, 303, 135048. [Google Scholar] [CrossRef]
- Singh, M.; Sinha, S.; Krishna, V. Computed Distribution of Quaternary Complexes of Cu (II), Zn (II) Co (II) and Ni (II) with Citrulline and Tryphtophan as Primary Ligand and Thymine as Secondary Ligand. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2021, 91, 1–7. [Google Scholar] [CrossRef]
- Figueroa-DePaz, Y.; Resendiz-Acevedo, K.; Dávila-Manzanilla, S.G.; García-Ramos, J.C.; Ortiz-Frade, L.; Serment-Guerrero, J.; Ruiz-Azuara, L. DNA, a target of mixed chelate copper (II) compounds (Casiopeinas®) studied by electrophoresis, UV–vis and circular dichroism techniques. J. Inorg. Biochem. 2022, 231, 111772. [Google Scholar] [CrossRef]
- Gracia-Mora, I.; Ruiz-Ramírez, L.; Gómez-Ruiz, C.; Tinoco-Méndez, M.; Márquez-Quiñones, A.; De Lira, L.R.; Marín-Hernández, A.; Macías-Rosales, L.; Bravo-Gómez, M.E. Knigth’s move in the periodic table, from copper to platinum, novel antitumor mixed chelate copper compounds, casiopeinas, evaluated by an in vitro human and murine cancer cell line panel. Met.-Based Drugs 2001, 8, 19–28. [Google Scholar] [CrossRef]
- Santini, C.; Pellei, M.; Gandin, V.; Porchia, M.; Tisato, F.; Marzano, C. Advances in copper complexes as anticancer agents. Chem. Rev. 2014, 114, 815–862. [Google Scholar] [CrossRef] [PubMed]
- Carvallo-Chaigneau, F.; Trejo-Solís, C.; Gómez-Ruiz, C.; Rodríguez-Aguilera, E.; Macías-Rosales, L.; Cortés-Barberena, E.; Cedillo-Peláez, C.; Gracia-Mora, I.; Ruiz-Azuara, L.; Madrid-Marina, V.; et al. Casiopeina III-ia induces apoptosis in HCT-15 cells in vitro through caspase-dependent mechanisms and has antitumor effect in vivo. BioMetals 2008, 21, 17–28. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, A.G.; Vázquez-Aguirre, A.; García-Ramos, J.C.; Flores-Alamo, M.; Hernández-Lemus, E.; Ruiz-Azuara, L.; Mejía, C. Copper(II) mixed chelate compounds induce apoptosis through reactive oxygen species in neuroblastoma cell line CHP-212. J. Inorg. Biochem. 2013, 126, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Esquivel, L.; Marín-Hernández, A.; Pavón, N.; Carvajal, K.; Moreno-Sánchez, R. Cardiotoxicity of copper-based antineoplastic drugs casiopeinas is related to inhibition of energy metabolism. Toxicol. Appl. Pharmacol. 2006, 212, 79–88. [Google Scholar] [CrossRef]
- Marín-Hernández, A.; Gracia-Mora, I.; Ruiz-Ramírez, L.; Moreno-Sánchez, R. Toxic effects of copper-based antineoplastic drugs (Casiopeinas®) on mitochondrial functions. Biochem. Pharmacol. 2003, 65, 1979–1989. [Google Scholar] [CrossRef] [PubMed]
- Serment-Guerrero, J.; Bravo-Gomez, M.E.; Lara-Rivera, E.; Ruiz-Azuara, L. Genotoxic assessment of the copper chelated compounds Casiopeinas: Clues about their mechanisms of action. J. Inorg. Biochem. 2017, 166, 68–75. [Google Scholar] [CrossRef]
- Becco, L.; García-Ramos, J.C.; Ruiz-Azuara, L.; Gambino, D.; Garat, B. Analysis of the DNA interaction of copper compounds belonging to the Casiopeinas Antitumoral series. Biol. Trace Elem. Res. 2014, 161, 210–215. [Google Scholar] [CrossRef]
- Bravo-Gómez, M.E.; Campero-Peredo, C.; García-Conde, D.; Mosqueira-Santillán, M.J.; Serment-Guerrero, J.; Ruiz-Azuara, L. DNA-binding mode of antitumoral copper compounds (Casiopeinas®) and analysis of its biological meaning. Polyhedron 2015, 102, 530–538. [Google Scholar] [CrossRef]
- Reina, M.; Talavera-Contreras, L.G.; Figueroa-DePaz, Y.; Ruiz-Azuara, L.; Hernández-Ayala, L.F. Casiopeinas® as SARS-CoV-2 main protease (Mpro) inhibitors: A combined DFT, molecular docking and ONIOM approach. New J. Chem. 2022, 46, 12500–12511. [Google Scholar] [CrossRef]
- Lucaciu, R.L.; Hangan, A.C.; Sevastre, B.; Oprean, L.S. Metallo-drugs in cancer therapy: Past, present and future. Molecules 2022, 27, 6485. [Google Scholar] [CrossRef]
[Cu(Bipy)(Citr)(H2O)(NO3)]·H2O | |
---|---|
Chemical formula | C16H24CuN6O8 |
Mr (g·mol−1) | 491.95 |
Crystal system, space group | Triclinic, P-1 |
Temperature (K) | 293(2) |
a, b, c (Å) | 7.2136(3), 12.2497(6), 14.1356(6) |
α, β, γ (°) | 65.430(4), 77.331(3), 82.046(3) |
V (Å3) | 1106.75(9) |
Z | 2 |
Radiation type | Mo Kα (λ = 0.71073 Å) |
ρcald (g·cm−3) | 1.476 |
μ (mm−1) | 1.040 |
Crystal size (mm) | 0.32 × 0.25 × 0.20 |
GoF on F2 | 1.054 |
R1 [I > 2σ(I)]/[all data] | 0.0484/0.0624 |
wR2 [I > 2σ(I)]/[all data] | 0.1211/0.1295 |
D-H···A | Distance D-H | Distance H···A | Distance D···A | Angle |
---|---|---|---|---|
O14-H14B···O10 i | 0.85 | 1.95 | 2.788(3) | 168.3 |
O27-H27A···O2 ii | 0.85 | 1.96 | 2.806(3) | 172.3 |
O27-H27B···O10 | 0.85 | 1.99 | 2.825(3) | 168.2 |
λexp (nm) | λtheo (nm) | Eexc. (eV) | Osc. Strengths | Major Contributions |
---|---|---|---|---|
700 | 786 | 1.58 | 0.0010 | H-1→L + 1 (3%) |
656 | 1.89 | 0.0001 | H-3→L (5%) | |
610 | 617 | 2.01 | 0.0049 | H→L (97%) |
608 | 2.04 | 0.0002 | H-5→L (60%) | |
602 | 2.06 | 0.0001 | H-1→L (44%) | |
550 | 544 | 2.28 | 0.0003 | H-8→L + 1 (5%) |
513 | 2.42 | 0.0002 | H-7→L + 2 (1%) | |
506 | 2.45 | 0.0001 | H-4→L + 5 (2%) |
Experimental (cm−1) | PBEPBE (cm−1) | Assignments PED (%) |
---|---|---|
3461 | 3495 | 65 νas(OH)w |
3451 | 3472 | 76 νas(NH2)amide |
3375−3216 | 3367 | 64 νs(NH2)amide + 11 νas(NH)amide |
3351 | ||
3269 | 87 νas(NH2)amino | |
3066−3000 | 3029 | 28 νs(CH)ring1_py + 55 νas(CH)ring2_py |
3013 | 63 νas(CH)ring1_py + 31 νas(CH)ring2_py | |
2960−2860 | 2874 | 5 νs(CH)aliph + 23 νas(CH)aliph + 21 νas(CH)aliph + 25 νas(CH)aliph |
2832 | 11 νs(CH)aliph + 15 νs(CH)aliph + 24 νas(CH)aliph + 26 νas(CH)aliph | |
1605 | 1543 | 72 ν(C=O)carboxyl group + 9 δ(HOH)w |
1538 | 1520 | 68 δ(NH2)amino |
1475 | 1509 | 87 δ(NH2)amide |
1396 | 1410 | 63 νas(O=C)carboxylate group + 27 δ(O=C–O−)carboxylate group |
1326 | 1341 | 85 νas(NO3)free |
775 | 809 | 95 τ(CH)bipy |
471 | 56 ν(Cu=O)carbonyl group | |
266 | 49 ν(Cu–Ow) | |
232 | 53 ν(Cu–ONO3) |
Experimental (cm−1) | PBEPBE (cm−1) | Assignments PED (%) |
---|---|---|
3217 | 86 νs(OH)w | |
3166 | 3159 | 89 νs(NH2)amino |
3077 | 3042 | 46 νs(CH)ring1_py + 46 νs(CH)ring2_py |
2955 | 2928 | 9 νs(CH)aliph + 31 νs(CH)aliph + 29 νs(CH)aliph + 15 νs(CH)aliph |
2850 | 2859 | 45 νs(CH)aliph + 13 νs(CH)aliph |
1318 | 1312 | 89 νs(NO3)free |
1036 | 1045 | 14 νs(O=C–O−)carboxylate group + 65 νs(NH2)amino + 10 νs(NO3)ion |
766 | 764 | 89 ω(CH)bipy |
BCP | ρ(r) | ∇2ρ(r) | EH···Y |
---|---|---|---|
Cu1···O1 | 0.0687 | 0.4405 | 33.95 |
Cu1···N1 | 0.0797 | 0.4018 | 36.87 |
Cu1···N2 | 0.0809 | 0.4560 | 40.73 |
Cu1···N3 | 0.0756 | 0.4215 | 36.36 |
Cu1···O3 | 0.0097 | 0.0230 | 2.26 |
H2···O1 | 0.0090 | 0.0429 | 1.79 |
H3···O1 | 0.0308 | 0.1089 | 8.57 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramírez-Contreras, D.; García-García, A.; Mendoza, A.; Serrano-de la Rosa, L.E.; Sánchez-Gaytán, B.L.; Melendez, F.J.; Castro, M.E.; González-Vergara, E. D,L-Citrullinato-bipyridine Copper Complex: Experimental and Theoretical Characterization. Crystals 2023, 13, 1391. https://doi.org/10.3390/cryst13091391
Ramírez-Contreras D, García-García A, Mendoza A, Serrano-de la Rosa LE, Sánchez-Gaytán BL, Melendez FJ, Castro ME, González-Vergara E. D,L-Citrullinato-bipyridine Copper Complex: Experimental and Theoretical Characterization. Crystals. 2023; 13(9):1391. https://doi.org/10.3390/cryst13091391
Chicago/Turabian StyleRamírez-Contreras, Diego, Amalia García-García, Angel Mendoza, Laura E. Serrano-de la Rosa, Brenda L. Sánchez-Gaytán, Francisco J. Melendez, María Eugenia Castro, and Enrique González-Vergara. 2023. "D,L-Citrullinato-bipyridine Copper Complex: Experimental and Theoretical Characterization" Crystals 13, no. 9: 1391. https://doi.org/10.3390/cryst13091391
APA StyleRamírez-Contreras, D., García-García, A., Mendoza, A., Serrano-de la Rosa, L. E., Sánchez-Gaytán, B. L., Melendez, F. J., Castro, M. E., & González-Vergara, E. (2023). D,L-Citrullinato-bipyridine Copper Complex: Experimental and Theoretical Characterization. Crystals, 13(9), 1391. https://doi.org/10.3390/cryst13091391