Enhancement in the Capillary Performance of Aluminum Groove through Laser Textured Deposition
Abstract
:1. Introduction
2. Experimental Section
2.1. Sample Preparation and Laser Processing
2.2. Measurement and Characterization
3. Results and Discussion
3.1. Surface Structure and Wettability
3.2. Surface Chemistry
3.3. Theoretical Analysis and Capillary Rise Test
4. Conclusions
- (1)
- The formation of high surface energy oxides and porous micro/nanostructures on the surfaces of grooves treated by LT and LTD processes caused the groove surfaces to exhibit superhydrophilicity, which significantly enhanced the wettability of the grooves.
- (2)
- The LTD process deposited SiO2 on the surface of the groove, which formed dense fluff, resulting in an increase in porosity and a reduction in the effective capillary radius. This increased the capillary pressure of the rectangular groove and was the main reason for the enhanced capillary performance.
- (3)
- The rise height of the LTD groove increased by factors of 2.42 and 1.07 compared to Raw and LT grooves, respectively, whereas the capillary performance factor increased by factors of 2.83 and 1.04 compared to Raw and LT grooves, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhang, S.; Chen, C.; Chen, G.; Sun, Y.; Tang, Y.; Wang, Z. Capillary performance characterization of porous sintered stainless steel powder wicks for stainless steel heat pipes. Int. Commun. Heat Mass Transf. 2020, 116, 104702. [Google Scholar] [CrossRef]
- Zhang, J.; Lian, L.-X.; Liu, Y.; Wang, R.-Q. The heat transfer capability prediction of heat pipes based on capillary rise test of wicks. Int. J. Heat Mass Transf. 2021, 164, 120536. [Google Scholar] [CrossRef]
- Wang, H.; Wang, Q.; Huo, L.; Liu, J.; Bai, Z. High-efficient laser-based bionic surface structuring for enhanced surface functionalization and self-cleaning effect. Surf. Interfaces 2023, 37, 102691. [Google Scholar] [CrossRef]
- Lee, J.; So, J.; Bae, W.G.; Won, Y. The Design of Hydrophilic Nanochannel-Macrostripe Fog Collector: Enabling Wicking-Assisted Vertical Liquid Delivery for the Enhancement in Fog Collection Efficiency. Adv. Mater. Interfaces 2020, 7, 1902150. [Google Scholar] [CrossRef]
- Chen, H.; Ran, T.; Zhang, K.; Chen, D.; Gan, Y.; Wang, Z.; Jiang, L. Highly Efficient Multiscale Fog Collector Inspired by Sarracenia Trichome Hierarchical Structure. Glob. Chall. 2021, 5, 2100087. [Google Scholar] [CrossRef]
- Keshav, T.R.; Basu, S. Spreading of liquid droplets on proton exchange membrane of a direct alcohol fuel cell. Chem. Eng. Sci. 2007, 62, 7515–7522. [Google Scholar] [CrossRef]
- Wang, H.; He, M.; Liu, H.; Guan, Y. Controllable water behaviors on V-shape micro-grooved titanium alloy surfaces depending on the depth-to-width aspect ratio. Mater. Today Phys. 2021, 20, 100461. [Google Scholar] [CrossRef]
- Cai, J.; Jin, T.; Kou, J.; Zou, S.; Xiao, J.; Meng, Q. Lucas–Washburn Equation-Based Modeling of Capillary-Driven Flow in Porous Systems. Langmuir 2021, 37, 1623–1636. [Google Scholar] [CrossRef]
- Duan, L.; Wang, Z.; Chen, G.; Tang, Y.; Sun, Y.; Zhong, G.; Xi, X.; Xu, Y. Capillary wicking in double-scale composite microgroove wicks for copper-aluminum composite vapor chambers. Int. Commun. Heat Mass Transf. 2021, 126, 105449. [Google Scholar] [CrossRef]
- Laguna, G.; Vilarrubí, M.; Ibañez, M.; Betancourt, Y.; Illa, J.; Azarkish, H.; Amnache, A.; Collin, L.-M.; Coudrain, P.; Fréchette, L.; et al. Numerical parametric study of a hotspot-targeted microfluidic cooling array for microelectronics. Appl. Therm. Eng. 2018, 144, 71–80. [Google Scholar] [CrossRef]
- Huang, G.; Liu, W.; Luo, Y.; Li, Y.; Chen, H. Fabrication and capillary performance of a novel composite wick for ultra-thin heat pipes. Int. J. Heat Mass Transf. 2021, 176, 121467. [Google Scholar] [CrossRef]
- Gukeh, M.J.; Damoulakis, G.; Megaridis, C.M. Low-profile heat pipe consisting of wick-lined and non-adiabatic wickless wettability-patterned surfaces. Appl. Therm. Eng. 2022, 211, 118433. [Google Scholar] [CrossRef]
- Zhou, W.; Li, Y.; Chen, Z.; Deng, L.; Gan, Y. A novel ultra-thin flattened heat pipe with biporous spiral woven mesh wick for cooling electronic devices. Energy Convers. Manag. 2019, 180, 769–783. [Google Scholar] [CrossRef]
- Chen, G.; Fan, D.; Zhang, S.; Sun, Y.; Zhong, G.; Wang, Z.; Wan, Z.; Tang, Y. Wicking capability evaluation of multilayer composite micromesh wicks for ultrathin two-phase heat transfer devices. Renew. Energy 2021, 163, 921–929. [Google Scholar] [CrossRef]
- Dai, X.; Yang, F.; Yang, R.; Lee, Y.C.; Li, C. Micromembrane-enhanced capillary evaporation. Int. J. Heat Mass Transf. 2013, 64, 1101–1108. [Google Scholar] [CrossRef]
- Deng, D.; Tang, Y.; Huang, G.; Lu, L.; Yuan, D. Characterization of capillary performance of composite wicks for two-phase heat transfer devices. Int. J. Heat Mass Transf. 2013, 56, 283–293. [Google Scholar] [CrossRef]
- Zhong, G.; Tang, Y.; Ding, X.; Chen, G.; Li, Z. Experimental investigation on wettability and capillary performance of ultrasonic modified grooved aluminum wicks. Int. J. Heat Mass Transf. 2021, 179, 121642. [Google Scholar] [CrossRef]
- Niu, J.; Xie, N.; Gao, X.; Fang, Y.; Zhang, Z. Capillary performance analysis of copper powder-fiber composite wick for ultra-thin heat pipe. Heat Mass Transf. 2020, 57, 949–960. [Google Scholar] [CrossRef]
- Huang, G.; Yuan, W.; Tang, Y.; Zhang, B.; Zhang, S.; Lu, L. Enhanced capillary performance in axially grooved aluminium wicks by alkaline corrosion treatment. Exp. Therm. Fluid Sci. 2017, 82, 212–221. [Google Scholar] [CrossRef]
- Xie, D.; Sun, Y.; Wang, G.; Chen, S.; Ding, G. Significant factors affecting heat transfer performance of vapor chamber and strategies to promote it: A critical review. Int. J. Heat Mass Transf. 2021, 175, 121132. [Google Scholar] [CrossRef]
- Li, J.; Zhang, M. Enhanced capillary performance of grooved nanocarbon foams as wicks for heat pipes. Int. Commun. Heat Mass Transf. 2022, 130, 105763. [Google Scholar] [CrossRef]
- Liu, T.; Yan, W.; Wu, W.; Wang, S. Thermal performance enhancement of vapor chamber with modified thin screen mesh wick by laser etching. Case Stud. Therm. Eng. 2021, 28, 101525. [Google Scholar] [CrossRef]
- Long, J.; Chu, P.; Li, Y.; Lin, J.; Cao, Z.; Xu, M.; Ren, Q.; Xie, X. Dual-scale porous/grooved microstructures prepared by nanosecond laser surface texturing for high-performance vapor chambers. J. Manuf. Process. 2022, 73, 914–923. [Google Scholar] [CrossRef]
- Jiang, G.; Tian, Z.; Luo, X.; Chen, C.; Hu, X.; Wang, L.; Peng, R.; Zhang, H.; Zhong, M. Ultrathin aluminum wick with dual-scale microgrooves for enhanced capillary performance. Int. J. Heat Mass Transf. 2022, 190, 122762. [Google Scholar] [CrossRef]
- Wu, C.; Tang, Y.; Zhang, S.; Yuan, X.; Yan, C.; Tang, H. Analytical and experimental on the capillary rise of aluminum multi-scale microgroove wick structures. Phys. Fluids 2023, 35, 052016. [Google Scholar] [CrossRef]
- Tang, H.; Tang, Y.; Yuan, W.; Peng, R.; Lu, L.; Wan, Z. Fabrication and capillary characterization of axially micro-grooved wicks for aluminium flat-plate heat pipes. Appl. Therm. Eng. 2018, 129, 907–915. [Google Scholar] [CrossRef]
- Espinosa, F.D.; Peters, T.B.; Brisson, J.G. Effect of fabrication parameters on the thermophysical properties of sintered wicks for heat pipe applications. Int. J. Heat Mass Transf. 2012, 55, 7471–7486. [Google Scholar] [CrossRef]
- Weislogel, M.M. Compound capillary rise. J. Fluid Mech. 2012, 709, 622–647. [Google Scholar] [CrossRef]
Wavelength | Pulse Width | Repeat Frequency | Laser Energy Density | Speed |
---|---|---|---|---|
1064 nm | 230 ns | 140 kHz | 35.3 J/cm2 | 1400 mm/s |
Wt% | Al | O | Si | Mg |
---|---|---|---|---|
Raw | 36.91 | 61.97 | 0 | 1.13 |
LT | 30.57 | 68.44 | 0 | 0.98 |
LTD | 11.19 | 75.19 | 13.07 | 0.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lou, D.; Chen, P.; Jiang, H.; Yang, D.; Yang, Q.; Tao, Q.; Liu, D. Enhancement in the Capillary Performance of Aluminum Groove through Laser Textured Deposition. Crystals 2023, 13, 1397. https://doi.org/10.3390/cryst13091397
Lou D, Chen P, Jiang H, Yang D, Yang Q, Tao Q, Liu D. Enhancement in the Capillary Performance of Aluminum Groove through Laser Textured Deposition. Crystals. 2023; 13(9):1397. https://doi.org/10.3390/cryst13091397
Chicago/Turabian StyleLou, Deyuan, Pengjian Chen, Hongliang Jiang, Dongchao Yang, Qibiao Yang, Qing Tao, and Dun Liu. 2023. "Enhancement in the Capillary Performance of Aluminum Groove through Laser Textured Deposition" Crystals 13, no. 9: 1397. https://doi.org/10.3390/cryst13091397
APA StyleLou, D., Chen, P., Jiang, H., Yang, D., Yang, Q., Tao, Q., & Liu, D. (2023). Enhancement in the Capillary Performance of Aluminum Groove through Laser Textured Deposition. Crystals, 13(9), 1397. https://doi.org/10.3390/cryst13091397