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Abstract: Bismuth-based oxides with chemical formula ABiO3, where A = Ca, Zn, Mg, have been
recently synthesized and suggested to host ferroelectricity. As these materials possess favorable
optical properties, the presence of ferroelectricity with large polarization would further enhance the
possible applications, for example, in photovoltaics by improving the separation of charge carriers.
In this work, first-principles Density Functional Theory (DFT) calculations are performed to study
the relative stability of the different polymorphs and to investigate the structural, electronic, and
ferroelectric properties. Furthermore, the effect of compressive and tensile in-plane strain on the
polarization and electronic properties is also considered. Our study suggests that CaBiO3 should have
a large electric polarization (1.8 C/m2) comparable to the one of BiFeO3. Interestingly, the very high
polarization appears with only slightly anomalous values of Born effective charges, which would
point out a dominant ionic contribution. Our results call for further studies, both from experimental
and theoretical sides, to confirm the large electric polarization CaBiO3 predicted in this work. For
ZnBiO3 and MgBiO3, we have demonstrated that, up to large values of strain, the perovskite structure
retains favorable ferroelectric and electronic (band gap) properties.

Keywords: ABO3-type perovskite; ferroelectric polarization; strain; non-perovskite

1. Introduction

Ferroelectric materials are characterized by the presence of spontaneous electric polar-
ization, which can be switched by an applied external electric field. A necessary condition
for the presence of electric polarization is the non-centrosymmetry of the crystal and a
remnant polarization at zero external electric field. There are over 250 materials known
to have ferroelectric properties, and a wide range of ferroelectric applications have been
considered [1]. The permittivity of ferroelectric materials is very high especially when close
to the phase transition temperature, and, therefore, they are used to make capacitors with
tunable capacitance. Ferroelectric capacitors comprise a pair of electrodes sandwiching
a layer of ferroelectric material. The presence of polarization allows or facilitates carrier
separation: electron-hole pairs excited in a ferroelectric are driven apart by the inherent
electric field, allowing for the passive collection of energy carriers. Aside from carrier
separation, another feature of ferroelectrics that can be used in solar cells is the “anoma-
lous photovoltaic effect,” which occurs in inhomogeneous samples, so named because it
produces photovoltages 100–1000 times the band gap [2].

Ferroelectric materials have a wide range of useful applications, such as infrared
detectors or non-volatile memories due to their bistable polar states [3,4] (for example,
using ferroelectric field-effect transistor devices [5,6]). The piezoelectric properties make
them useful for actuators, radio frequency filters, sensors, and transducer devices, while
ferroelectric capacitors are used due to their good dielectric behavior. They are available in
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different forms, such as single crystals, ceramics, thin films, polymers, and composites, ac-
cording to the necessity of the application. Among the most studied classes of ferroelectrics,
the family of perovskite materials certainly has a relevant role.

Perovskite materials such as the calcium titanate (CaTiO3) mineral on which the name
perovskite is based, have the prototype undistorted structure with ABX3 chemical formula
and cubic symmetry [7]. A well-studied simple perovskite is barium titanate (BaTiO3),
which has a measured spontaneous polarization of 0.21 C/m2 in the [001] direction in its
tetragonal phase [8]. BaTiO3 material is often used as a dielectric in capacitors, and it is a UV-
responsive semiconductor photocatalyst due to the relatively large bandgap of 3.4 eV [8].
Ferroelectric materials have shown potential in storage with ferroelectric memories [9]
and have notable promise in the field of sustainable energy with ferroelectric photovoltaic
devices, which can be improved through the use of nanomaterials [10]. Additionally,
ferroelectrics are thought to be promising for overcoming some deficiencies of present
photocatalysts, such as charge recombination, surface reaction barriers, and poor light
absorption [11]. Wang and colleagues first converted mechanical energy to electricity using
piezoelectric ZnO nanowires [12], which sparked the use of non-centrosymmetric materials
in photocatalysis. Ferroelectrics and ferroelectric-related compounds have been discovered
to have excellent e-h separation and catalytic efficiency in photocatalysis due to internal
spontaneous polarization. These materials are also promising semiconductor photocatalyst
candidates for reducing water and air pollution, as well as for the energy crisis.

Recently, bismuth-based oxides with the formula ABiO3 (with A alkali or alkaline
earth elements) have been studied as photocatalysts for the degradation of undesirable
compounds under solar irradiation [13]. They are also expected to have favorable optical
absorption properties for photovoltaic applications due to the small band gap and high
charge mobilities, which have been recently predicted by a computational study and are
associated with the charge disproportionation of bismuth ions [14]. A renewed interest
in ABiO3 materials comes also from their superconducting state [15]. Topological nature
with Dirac surface states has also been predicted in ABiO3 compounds, in their valence and
conduction bands [16,17], due to the covalent interactions in Bi{s,p}-O{p} states between Bi
and the octahedral oxygen complex, with bonding states producing the valence topological
state and anti-bonding states producing the conduction band state [17].

For CaBiO3, there has been a recent study proposing a highly distorted non-perovskite
structure [18]. This structure was found by an evolutionary crystal structure prediction
method for zero pressure (Section II. A. 3 of Reference [18]). There are no measurements
that allow us to confirm the proposed structure. Only lattice parameters are estimated
in nanoflakes [19], which does not allow us to differentiate between the calculated struc-
tures and the possible occurrence of a non-polar space group, (as discussed in Section 3).
Therefore, we have considered the new distorted CaBiO3 structure for the computational
study of its structural, electronic, and ferroelectric properties. Furthermore, we have also
investigated the strain effects on ABiO3 materials with A = Ca, Mg, and Zn, which may be
relevant for epitaxial thin films.

Our computational study suggests a large polarization for all materials, in particular
for CaBiO3, where it is predicted to be 1.8 C/m2. Variations of in-plane strain suggest
that growing thin films in adequate substrates should not affect the band gap, which is
favorable for optoelectronic applications while keeping the large values of polarization
with moderate variations. However, our computational study does not prove that the
actual materials could be synthesized in thin films since we did not consider all possible
competing structures or some other effects not included in this discussion, such as the
interaction with the substrate. Nevertheless, the calculated properties suggest more detailed
experimental investigations of these compounds, particularly the ferroelectric properties.

2. Materials and Methods

We performed density functional theory calculations using QUANTUM ESPRESSO

(QE) [20,21]. The pseudopotentials were taken from the SSSP precision v1.1.2 [22] database.
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For most calculations, and except noted otherwise, we used the PBEsol [23] exchange-
correlation functional. The HSE06 [24,25] hybrid functional has also been used in some
cases as a check and for the calculation of more accurate band gaps. We considered a
7 × 7 × 3 k-points grid for Brillouin zone integrations, with the structure in the hexagonal
setting. The wave functions were expanded with an energy cutoff of 65 Ry and the density
with a cutoff of 520 Ry. The structural optimization stopped when the energy difference
between consecutive steps was less than 0.14 meV and the atomic forces were less than
0.26 meV/Å.

The systems considered in this study are CaBiO3, ZnBiO3, and MgBiO3. After the
initial structural optimization considering two candidate structures (perovskite and non-
perovskite, as detailed in the Section 3), the stable, optimized structures for each composi-
tion are used to study the electronic structure and ferroelectric properties. The electronic
polarization was calculated using the modern theory with the Berry phase [26,27], and
Born effective charge tensors were calculated with Density-Functional Perturbation The-
ory [28] using the PHonon package (part of QE [20,21]). For calculations with strain, the
hexagonal lattice parameters of the structures in their hexagonal setting, a = b were changed
between −2% and +2% (−4% to +6% in CaBiO3) concerning its optimized value, with the
c lattice constant relaxed for each case. All the methods used here can be easily used in
other, possibly more complex, compositions, as long as there is a well-defined starting
structural model.

3. Results
3.1. CaBiO3
3.1.1. Trigonal Non-Perovskite Structure

We first studied CaBiO3 by considering the trigonal structure which Smolyanyuk
et al. found at zero and low pressures using an evolutionary method for crystal structure
prediction [18]. This structure has been described as a non-perovskite structure due to the
different Bi-Bi and Ca-Ca environments, tetrahedral instead of octahedral [18]. The dis-
torted trigonal structure with the R3 space group is competing with a perovskite structure
previously proposed by He et al. [14]. Smolyanyuk et al. showed that the non-perovskite
structure is 12 (PBE) to 17 (HSE) meV/fu lower in energy. Our calculations support the
result by Smolyanyuk et al. with a calculated energy difference between non-perovskite
and perovskite structures about 77 meV/fu, with the non-perovskite structure more sta-
ble. Recently, Xu et al. have calculated the ferroelectric and photocatalytic properties of
CaBiO3 [29] for the perovskite structure. Figure 1 shows a planar view of both structures,
which are seen to be different in the layering of Ca/Bi atoms along the c axis. While in
the perovskite structure, Ca and Bi layers alternate along the c axis, in the non-perovskite
structure, two layers of Ca alternate with two layers of Bi.
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Figure 1. Planar view of the perovskite structure from (a) He et al. [14] and (b) the non-perovskite
structure from Smolyanyuk et al. [18] after our structural optimization. Ca atom is shown as blue-
spheres, Bi as gray spheres, and O as small red spheres.
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We first performed a structural optimization with the PBEsol exchange-correlation
approximation, starting from the predicted non-perovskite structure of Reference [18]. For
further checks, we performed the structural optimization with both QE and VASP, obtaining
similar values for the lattice parameters in both codes, as shown in Table 1. The small
difference between our values and Reference [18] is expected since they used PBE while we
used the PBEsol approximation. Khosya et al. [19] have synthesized CaBiO3 nanoflakes,
with lattice parameters estimated at a = 5.81 and c = 15.50 Å. The lattice parameters are in
reasonable agreement with our estimate: while a is very close, c is underestimated (−4.5%);
however, they have assigned the structure to the R3c space group, which is non-polar and
it does not fit from the R3 group space. They have measured a small polarization of 0.02
µC cm−2, which is nonconsistent with the non-polar space group assignment. This calls for
more structural and ferroelectric characterizations on this compound.

Table 1. Optimized lattice parameters of CaBiO3, with the trigonal non-perovskite structure from
Smolyanyuk et al. [18] (first row) or after variable cell relaxation with PBEsol approximation (QE and
VASP codes).

Method/Lattice Parameters a (Å) c (Å)

PBE, previous work [18] 5.92 15.17
PBEsol, QE 5.85 14.85

PBEsol, VASP (PAW method) 5.86 14.87

Figure 2 presents the calculated density of states (DOS) using the PBEsol relaxed
structure. The shape of the DOS is similar to the HSE06 functional but the band gap is 1.8
eV with PBEsol and 3.2 eV with HSE. As expected, the PBEsol underestimates the band
gap with respect to the HSE06. The perovskite structure has a smaller band gap of 1.58 eV
as calculated with HSE [14] and mBJ [29] functionals.
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Figure 2. The electronic total density of states calculated with PBEsol (black line) and HSE (red
dashed line).

Figure 3 shows the spontaneous polarization of the same structure relative to a refer-
ence higher symmetry structure (space group R−3) obtained from the PSEUDO tool of the
Bilbao Crystallographic Server [30,31].
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Figure 3. Polarization lattice as a function of a distortion parameter between the centrosymmetric
reference structure R-3 and the calculated trigonal structure for non-perovskite CaBiO3. The blue line
is the choice of points to calculate the polarization variation, which results in ∆P = 1.82 C/m2.

Due to the multi-valuedness of the bulk polarization [26,27], with the polarization
quantum equal to 0.54 C/m2, several points are considered in the polarization path, from
the centrosymmetric space group R-3 (λ = 0) to the non-perovskite structure R3 to remove
the ambiguity. The calculated polarization difference is shown by the blue line and amounts
to 1.82 C/m2 (or 182 µC/cm2) along the [001] direction in the hexagonal setting, which
is a very high value when compared with most ferroelectric compounds. For example,
BiFeO3 is known to have a very high polarization ~1.0 C/m2, which is still much smaller
than the value calculated here. We checked the polarization with the VASP code and PAW
method, with the optimized VASP lattice parameters shown in Table 1 (very similar to the
QE parameters), and obtained the same final total polarization difference. Materials with
high polarization would benefit applications such as ferroelectric random-access memories
(FeRAM) and capacitors [32].

3.1.2. Born Effective Charges

To investigate the origin of the polarization, we calculated the Born effective charge
tensors (BEC), defined as Z∗

k,αβ = (Ω/e)∂Pα/∂uk,β where Pα is the polarization in direction
α, uk,β is the displacement of atom k in direction β, Ω is the primitive cell volume, and e
is the elementary charge. Table 2 presents the eigenvalues of the BEC tensors in CaBiO3
(computed with numpy [33], for example). Due to the low symmetry in the structure,
some eigenvalues are complex but with small imaginary components. We focus on the real
values. We see that the charges are close to +4 for Bi, +2.7 for Ca, and −3 for O. They can be
compared with the nominal ionic charges of +4 for Bi, +2 for Ca, and −2 for O. The charges
are somewhat anomalous, with slightly higher values than formal ionic charges for Ca and
O ions, but they are not highly anomalous as in other perovskite oxides. This indicates
that the polarization is due, in large part, to the geometric distortion, with a less important
component due to hybridization changes.
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Table 2. BEC eigenvalues (λ1,2,3), in e units, for non-perovskite CaBiO3 with PBEsol approximation.

BEC Eigenvalues λ3 λ2 λ1

Z*(Bi1) 4.22 + 0.33i 4.22 − 0.33i 4.50

Z*(Bi2) 3.94 + 0.37i 3.94 − 0.37i 5.29

Z*(Ca1) 2.88 + 0.46i 2.88 − 0.46i 2.35

Z*(Ca2) 2.65 + 0.23i 2.65 − 0.23i 2.15

Z*(O1) −3.38 −1.52 −2.18
Z*(O2) −2.89 −2.39 −1.54

3.1.3. Strain

We investigated the application of in-plane strain, which could model the growth
of epitaxial thin films in different substrates. The out-of-plane lattice parameter and the
atomic positions are fully relaxed for each strain state with the PBEsol approximation.

There are small changes in both the total DOS and band gap with strain, as shown
in Figures 4 and 5. The band gap is largest at ~1.8 eV for the unstrained structure and
decreases a bit to 1.6–1.7 eV for strained structures. The center of valence states is slightly
pushed up to the Fermi level with increasing tensile strain, as can be seen by the decreasing
gap between the peak just before the Fermi level and the wide band before that peak. The
same happens in other oxides [34].
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On the other hand, the polarization has more significant changes with strain. The
1.8 C/m2 value of the unstrained structure increases to 2 C/m2 with compressive in-plane
strain and decreases to 1.6 C/m2 with tensile strain of a few percent, as shown in Figure 6.
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3.2. ZnBiO3 and MgBiO3

For MgBiO3 and ZnBiO3, we first tested the trigonal distorted variant found for
CaBiO3 also in these compositions by starting from the CaBiO3 structure, replacing the
A site, and optimizing within PBEsol. In these cases, the perovskite-derived structure (as
calculated by He et al. [14]) was found to have lower energy, by 87 meV/fu for MgBiO3 and
147 meV/fu for ZnBiO3. Then, we continued with the perovskite R3 structure for a more
detailed study. The optimized bulk lattice parameters (a = 5.47, c = 14.58 Å for MgBiO3,
a = 5.50, c = 14.62 Å for ZnBiO3) are similar to the ones obtained by He et al. (a = 5.48,
c = 14.60 Å for MgBiO3, a = 5.51, c = 14.65 Å for ZnBiO3) [14].

Figure 7 shows the band gap obtained with PBEsol for in-plane strains. The zero strain
values of 0.89 eV for ZnBiO3 and 0.97 eV are close to the PBEsol values of He et al. [14]
(0.86 eV and 0.94 eV, respectively). The results show that the band gap variation is small,
within 0.06 eV.
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The variation of spontaneous polarization is shown in Figure 8. The results are in
qualitative agreement with Reference [14] for zero strain, confirming their estimation—
where the BEC tensors and the distortion are used to estimate the polarization.
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While He et al. [14] estimated the polarization based on BECs, they did not discuss
them. To better understand the origin of the polarization, in Tables 3 and 4, we report the
obtained BECs for ZnBiO3 and MgBiO3, respectively. The BEC principal components are
slightly more anomalous here than in the CaBiO3 distorted structure, with O components
−3.2 to −3.8 |e|. There is a larger difference between the inequivalent Bi atoms (1 to
1.3 |e| difference) when compared to 0.3 |e| in CaBiO3. The polarization change as
a function of strain is shown in Figure 7. It has very small changes in MgBiO3 (0.75 to
0.77 C/m2) and greater changes in ZnBiO3 (0.58 to 0.70 C/m2). CaBiO3 with the non-
perovskite structure still has the higher change of polarization in this interval of strain (1.55
to 2.05 C/m2 between −2% and +2% strain). Compared with well-known ferroelectric
oxides [35], the large change of CaBiO3 is closer to the BaTiO3 and PbTiO3 changes (though
not so high in relative terms), while the smaller changes of ZnBiO3 and MgBiO3 are closer
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to the LiNbO3 and BiFeO3 (R3c) cases. To summarize, concerning previous works [14,18],
we present additional detailed calculations of the predicted structures for its electronic
structure and band gap, BECs, and variation of polarization and band gaps with strain,
which is important to predict the possible tuning of functionalities with the growth of thin
films on appropriate substrates.

Table 3. BEC eigenvalues (λ1,2,3), in e units, for perovskite ZnBiO3 with PBEsol approximation.

BEC Eigenvalues λ3 λ2 λ1

Z*Bi1 4.22 4.92 − 0.62i 4.92 + 0.62i

Z*Bi2 5.53 5.02 − 1.02i 5.02 + 1.02i

Z*Zn1 2.36 2.51 − 0.24i 2.51 + 0.24i

Z*Zn2 2.14 2.48 − 0.25i 2.48 + 0.25i

Z*O1 −3.84 −2.15 −1.66
Z*O2 −3.36 −1.53 −2.17

Table 4. BEC eigenvalues (λ1,2,3), in e units, for perovskite MgBiO3 with PBEsol approximation.

BEC Eigenvalues λ3 λ2 λ1

Z*(Bi1) 4.012 4.90 − 0.81i 4.90 + 0.81i

Z*(Bi2) 5.49 4.83 − 1.26i 4.83 + 1.26i

Z*(Mg1) 2.06 2.15 − 0.44i 2.15 + 0.44i

Z*(Mg2) 1.91 2.17 − 0.38i 2.17 + 0.38i

Z*(O1) −3.77 −1.59 −1.75
Z*(O2) −3.22 −1.50 −2.01

The main new results of this work are in two points: (i) for CaBiO3, the detailed
calculation of the non-perovskite structure, confirming its stability and showing it has
much higher polarization than the perovskite structure, which should encourage more
detailed experimental studies on this compound in the future to confirm or disprove this
structure and its properties; (ii) for ZnBiO3 and MgBiO3, we have shown that, up to
large values of strain, the perovskite structure retains favorable ferroelectric and electronic
properties, which should encourage the study of these materials also in epitaxial thin
film form.

4. Discussion

First-principles calculations confirm the non-perovskite structure for CaBiO3 and the
perovskite-derived structure for MgBiO3 and ZnBiO3. The polarization is very high in
CaBiO3, and the variations with in-plane strain are also higher than for Mg/Zn compounds,
nevertheless keeping a high polarization for reasonable strain variations in all materials.
The electronic structure and band gap, on the other hand, show only small changes up to
strains of about 4%. The giant polarization predicted for CaBiO3 makes it a particularly
interesting material for future studies, which requires experimental confirmation. The Born
effective charges indicate the origin of the polarization to be due to electronic changes as
well as geometric displacements in all materials.
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