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Abstract: Alumina (Al2O3) ceramics are interesting for low-weight and mid-high temperature
applications. The addition of indium (In) and graphene nanoplatelets (GNPs) can be used to reduce
the density and modify the functional properties and mechanical performance of the ceramic matrix.
GNP and In-reinforced Al2O3 matrix composites were prepared by the spark plasma sintering
(SPS) technique. Monolithic Al2O3 and Al2O3 matrix composites with either 5 or 10 wt.% of In
and 2 wt.% of GNPs (Al2O3-5In-2GNPs and Al2O3-10In-2GNPs) were compacted into disc-shaped
samples. The microstructure was studied and characterized with light-optical microscopy (LOM)
and scanning electron microscopy (SEM). Hardness was determined using the Vickers technique and
tribological properties were studied by the ball-on-disk method. The coefficient of friction (COF) and
specific wear rates were evaluated from tribological tests. Worn surfaces were studied by SEM and
confocal microscopy. Interdiffusion transition regions were formed among individual microstructural
constituents (Al2O3, In, GNPs) under high sintering temperatures, which were responsible for the
balanced hardness and low porosity of the produced composites. The addition of In and graphene
nanoplatelets resulted in smaller COF and wear rates indicating good improvement in the tribological
behavior. The prepared Al2O3-5In-2GNP and Al2O3-10In-2GNP composites represent promising
nanocomposites for self-lubricating applications.
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1. Introduction

Aluminum oxide is used widely in materials science, especially in the field of ceramics
as it can be used in ceramics, polishing and abrasive applications, etc. Alloys based on
aluminum oxides, including their composites, have a very wide range of uses in industrial
practice. It is their low weight and excellent mechanical properties that support the possi-
bilities of their use, ranging from electronics to space technologies [1]. Over the years of
research into aluminum oxide, and other structural ceramics, these materials have been
improved by the addition of various constituents into their matrix to improve their me-
chanical, electrical, and tribological properties. Graphene has become the most promising
and mainly used material to achieve improvement in these properties. Most of the stud-
ies were focused on improving the electrical conductivity and the fracture toughness of
the ceramic matrix by adding graphene as a nanofiller, because of its superior electrical
conductivity [2–5]. As friction is one of the major forms of energy loss and, to a lesser
extent, material loss, it is/was necessary to find suitable mechanisms for lowering these
losses. By focusing on the mechanical and tribological properties, it has been reported that
graphene has also proven to be an excellent lubricant additive due to its two-dimensional
layered structure [6–13]. Graphene is a good candidate for solid lubrication that reduces
the friction force between contact surfaces at micro- and nanoscale while protecting the
coated surface by forming a carbon-rich tribo-film acting as a lubricant and protection on
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contact surfaces [14–16]. Research has shown that even at relatively low contents, graphene
can significantly improve tribological properties [17,18]. It is added to the ceramic matrix
in various forms, such as graphene oxide (GO), reduced graphene oxide (rGO), exfoliated
graphene sheets, graphene nanoplatelets (GNPs), or carbon nanotubes or nanofibers (CNTs,
CNFs). Kim et al. [13] investigated Al2O3 with graphene after sintering at low pressure.
They achieved an order-of-magnitude increase in wear resistance even under normal
load (25N) caused by the tribo-effect of graphene, even with the proportion of ultra-thin
graphene (0.25–0.5 vol.%). However, in another study, a striking effect of graphene was
revealed at about 10 vol.%. Solid lubricants have promising potential to replace liquid
lubricants in cases where it is necessary to prevent their sublimation, especially for appli-
cations in vacuum, space, and other extreme conditions. The replacement of liquid and
grease lubricants with solid lubricants is/was carried out in practice by applying coatings
by chemical or physical vaporing to create a solid lubricating layer, but these have a limited
lifetime, poor adhesion, with difficulties in replenishment, oxidation, and aging-related
degradation [19]. Therefore, research efforts have been focused on adding toughening and
lubricating fillers into the matrix. The research focused on the use of carbon materials in
various forms (CNT, CNF, GO, rGO, . . .) and the result was the self-lubricating ability of
aluminum-metal matrix composites with added graphene [20]. Increasing demands for
the lowest possible friction losses in various applications force research to be increasingly
focused on self-lubricating materials [21,22], which are expected to provide excellent tri-
bological properties under extreme conditions. In addition to methods of adding solid
self-lubricating materials onto various functional surfaces (magnetron sputtering, laser
cladding, thermal spraying, and vapor deposition techniques), powder metallurgy is a
method of incorporating solid lubricants into a matrix [23–34]. There are several types of
solid lubricants used for self-lubricating materials; among them are soft metals such as Ag,
Sn, Au, Pb, In, Pt, etc., exhibiting multiple slip planes. The destruction of lattice defects,
such as dislocations and vacancies, results in improper work hardening, leading to excellent
lubricity under extreme conditions [35]. Puchy et al. [36] published a work devoted to
the tribological properties of composites based on Si3N4 with the addition of graphene
and silver, prepared by SPS. As a result, silver in combination with GNPs improved the
sintering ability, and limited the occurrence of sintering-related structural defects, thus
neither pores nor microcracks were observed in the material. The COF decreased from
0.63 to 0.57 with the addition of 5 vol.% Ag compared to monolithic Si3N4. Wardzinski
et al. [37] investigated the possibilities of replacing lead with indium. Lead is used for its
operating life in a vacuum. However, lead is toxic, so its use has been limited in recent
years and replacements suitable for use in applications in extreme conditions are being
sought. Their research results show that PVD-indium coating exhibits very low in-vacuum
friction compared to that with lead.

The aim of the present work is to explore the possibilities of using indium as a solid
lubricant in an alumina matrix with the addition of graphene nanoplatelets (GNPs) and to
create a ceramic–metal composite with the ability of self-lubrication and promising potential
for use/application in extreme conditions. The samples of Al2O3-In-GNPs composites,
prepared by the SPS technique, were subjected to tribological tests and microstructural
analyses in order to investigate the effects of indium additions to Al2O3/GNP composites
on their resulting tribological behavior in correlation with observed wear mechanisms.

2. Materials and Methods

Commercial pure aluminum oxide, α-phase < 1.0 micron powder with purity 99.9%
was used as the matrix material and was obtained from Thermo Scientific Chemicals,
ThermoFisher (Kandel) GmbH, Kandel, Germany. Also materials graphene nanoplatelets
aggregates S.A. 500 m2/g, sub-micronparticles powder and Indium powder, -325 mesh,
Puratronic™, purity 99.995% were supplied by Thermo Scientific Chemicals, ThermoFisher
(Kandel) GmbH Germany. The prepared powders were mixed and homogenized in a
3D Turbula mixer (WAB AG, Muttenz, Switzerland) for 60 min at 30 rpm under an air
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atmosphere. Tungsten carbide balls with a diameter of 10 mm were used in the mixing
and homogenizing process. Ball-to-powder weight ratio was selected to be 5:1. The SPS
(Type HP D 10SD, FCT Systeme, Frankenblick, Germany) with a graphite tool assembly
was used to produce specimens with a processing temperature of 1750 ◦C and a maximum
sintering pressure of 62.8 MPa in a vacuum 5 Pa. As shown in Figure 1, specimens were
heated to 1750 ◦C within 12 min, followed by 10 min of holding at peak temperature and
a controlled cooling step within 12 min. For comparison, a pure alumina sample was
also fabricated under the same conditions. The final samples had a disc shape with circa
3 mm thickness and 20 mm in diameter. The relative densities of the sintered samples
were determined by the Archimedes method with deionized water. First, the weight of the
samples was measured in air and then in water, and then the difference between the two
weights was calculated. The relative density was then calculated by dividing the weight of
the object in air by the difference between the weight of the object in air and the weight of
the object in water.
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The average grain size of each composite was determined using the line method on 
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influenced less by specimen surface flatness, parallelism, and surface finish than Knoop 
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Vickers Hardness Tester) under the load of 1 N with a dwell time of 10 s at the maximum 
load. At least a set of 10 indents per specimen was introduced. Then, the average value 
was calculated and its standard error was also calculated. Tribology tests were performed 
on HTT automatic tribometer (CSM instruments, Switzerland) in rotational dry sliding 
conditions, using ball-on-disc geometry, at room temperature and pressure. A SiC ce-
ramic ball with a 6 mm diameter was used as a tribological partner. The number of sam-
ples for friction and wear measurements was one from each kind. All tests were carried 

Figure 1. Sintering curves as well as punch displacement (shrinkage) plots of the monolith and
composites containing 5 wt.% and 10 wt.% In, with maximum load of 20 kN equaling an applied
pressure of 62.8 MPa.

The sintered samples were embedded in the conductive resin. Next, the surfaces of
the samples were ground and mechanically polished using colloidal diamond suspensions
(from 30 to 1 µm). The microstructure observations of specimens prepared in this way were
carried out using a light optical microscope (LOM) OLYMPUS GX71 (Olympus Corporation,
Tokyo, Japan) equipped with a digital camera. The local microstructures were observed
using the scanning electron microscope (SEM) JEOL JSM-7000F (Jeol Ltd., Tokyo, Japan).
The observations were performed with the use of backscattering electron (BSE) mode.

The average grain size of each composite was determined using the line method on
scanning electron microscopy (SEM) images. The microhardness (HV1) was measured
according to standard methods for ceramics, ASTM C1327 (Standard Test Method for
Vickers Indentation Hardness of Advanced Ceramics). For measuring the indentation
hardness of prepared samples, we selected this method because Vickers indentations are
influenced less by specimen surface flatness, parallelism, and surface finish than Knoop
indentations. Microhardness was determined by Vickers indentation (Wilson 1102/1202
Vickers Hardness Tester) under the load of 1 N with a dwell time of 10 s at the maximum
load. At least a set of 10 indents per specimen was introduced. Then, the average value
was calculated and its standard error was also calculated. Tribology tests were performed
on HTT automatic tribometer (CSM instruments, Switzerland) in rotational dry sliding
conditions, using ball-on-disc geometry, at room temperature and pressure. A SiC ceramic
ball with a 6 mm diameter was used as a tribological partner. The number of samples for
friction and wear measurements was one from each kind. All tests were carried out under
2 N normal load, 0.1 m/s sliding velocity, and 5 mm track radius. The total sliding distance
was 300 m. The coefficient of friction (COF) was calculated by taking the ratio of the
tangential and normal forces and it was reported versus the sliding distance. Topographical
measurements of tribological profiles and specific wear rate determination were performed
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using a confocal microscope PLu neox 3D Optical Profiler (SENSOFAR, Barcelona, Spain).
The wear rate, W, was determined in terms of the volume loss V per distance L and applied
load F according to the following equation:

W =
V

L× F
(1)

3. Results and Discussion

Sintering curves as well as punch displacement (shrinkage) plots of the monolith
and composites are shown in Figure 1. The samples were heated with a heating rate of
100 ◦C/min. Four regions were detected in the shrinkage. In the first region with the
temperature below 1500 ◦C, no changes were detected in the shrinkage of any samples.
Shrinkage of the samples started in the second region between 1500 ◦C and 1625 ◦C.
This displacement may be due to various reasons such as particle rearrangement, plastic
deformation of the metallic phase, formation of a liquid phase, plastic deformation of
graphite foils, and sintering, and a reduction in the porosities. In the third region, a
relatively sharp displacement could be observed, related to increasing the uniaxial pressure
from 4 kN to 20 kN at 1625 ◦C. In the fourth region related to the dwell time at a maximum
sintering temperature of 1750 ◦C, the minimum value of the displacement changes could
be observed which indicated the complete densification of the samples.

The analysis of the X-ray spectra obtained from the sintered materials in disc form re-
vealed the presence of strong characteristic peaks located at 2θ angles, which corresponded
to the alumina, indium, and carbon phases (Figure 2). In particular, the alumina matrix
and the indium-graphene reinforced composites were compared.
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Figure 2. X-ray diffraction spectra of sintered Al2O3, Al2O3-5In-2GNP composite, and Al2O3-10In-
2GNP composite.

The microstructures of monolithic Al2O3, Al2O3-5In-2GNP, and Al2O3-10In-2GNP
composites produced by the SPS method were examined by Jeol SEM examination (Figure 3).
Microstructural analysis showed that in the monolithic Al2O3 material, a dense microstruc-
ture with very low porosity was found. In the Al2O3-5In-2GNP composite material, the
relatively homogenous distribution of In and GNPs was determined. According to anal-
yses (Figure 4), it was observed that In has a globular shape located between grains and
GNPs are distributed around individual grains which can enhance the sintering process. It
seemed that, in some local regions, there was no adequate homogeneous distribution. It
was observed that the In and GNP elements clustered towards the grain boundaries.

The performed investigations indicated that changes in the amount of indium pow-
der directly affected the decrease in the hardness of the spark plasma sintered composites
(Figure 5). The hardness measurements showed that the decrease in the hardness was almost
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linear. For the lower value (5 wt.%), the obtained hardness was 12.83 ± 1.84 GPa, while the
10 wt.% of added indium powder led to a hardness decrease even to 9.90 ± 2.67 GPa, respec-
tively. According to the literature, theoretically, Vickers hardness of alumina ceramic (99.0%
Al2O3) is about 10 GPa and depends on the sintering process and powder purity (grades).
The experiments also revealed that Al2O3-5In-2GNP spark plasma sintered composites
produced with 5 wt.% of indium powder were characterized by a slightly lower density.
The rise in incorporated indium metal caused the formation of a less dense microstructure.
The relative density of the samples, calculated according to Archimedes principle, was
approximately 97.6%, 95.7%, and 93.2%, respectively (Figure 5).

The obtained results showed that incorporating metal particles and carbon nanopar-
ticles like indium and graphene nanoplatelets had a significant influence on matrix mi-
crostructure, its hardness, and defect formation, such as cracks and porosity. The literature
data indicate that the COF of alumina–graphene composite materials prepared with the use
of the SPS method and similar process parameters was approximately two times higher but
wear was considerably lower compared to our composites. It could be due to the fact that
the composites obtained by Gutierrez-Gonzalez et al. [38] had a graphene concentration in
the composite of only 0.22 wt.%.

In alumina composite samples, a mechanical mixing time of 0.5 h was chosen to
ensure that the In and GNPs particles were dispersed as homogeneously as possible in the
alumina matrix. It was observed in the previous study that if the GNP ratio in ceramic
composites exceeds 1 wt.%, the graphene particles may create clusters in the structure and
cause agglomeration [19].
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To achieve high performance and better friction properties in alumina composites,
it is desirable that the reinforcement particles should be distributed as homogeneously
as possible in the matrix, and a good interface bond should also be formed between the
reinforcement particles and the matrix. To increase the homogeneity, the mechanical mixing
time can be increased, and the ball-to-powder ratio can be changed to eliminate undesirable
problems such as low hardness, poor sintering, and poor wear resistance in the mechanical
and tribological properties of the composites. Figure 6 shows the microscopic morphology
on the sliding surface of the Al2O3, Al2O3-5In-2GNP, and Al2O3-10In-2GNP composites. In
Figure 7, the element distribution of the SEM-EDS analysis of the composites is shown. It
should be pointed out that red, green, blue, dark blue and yellow color areas correspond to
the phases of Al2O3, In, SiC, and graphene nanoplatelets, respectively.
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Figure 7. SEM micrographs with EDS analyses of wear tracks on Al2O3 (a), Al2O3-5In-2GNP
composite (b), and Al2O3-10In-2GNP composite (c) at a rotational speed of 0.1 m/s, length of 300 m
and friction force of 2 N, obtained from tests under dry conditions.

The SiC ball was used for the ball-on-disc friction test as a friction partner. The ball
radius was 6mm. The length of the friction track on the surface was set at 300 m in all
samples. The measured widths of the friction traces on the surface were 420, 380, and
390 µm, respectively. The pitting depths in the friction traces of the composites were from
about 3 up to 9 µm, which were little more than those of monolith (3 µm). In order to
investigate the wear and friction, the wear rate was also calculated. Figure 8 shows the
coefficients of friction and wear rates of the investigated materials. It can be seen that
the wear rates of the prepared composites Al2O3-5In-2GNPs (36.21 × 10−6 [mm3/m.N])
and Al2O3-10In-2GNPs (14.34 × 10−6 [mm3/m.N]) were less than that of the monolithic
material (31.71 × 10−6 [mm3/m.N]). The wear rate of the Al2O3-10In-2GNP composite
was only 45% of the monolith material wear rate. This indicates that the Al2O3-10In-2GNP
composite had better wear resistance. The main reason was that the GNP particles could
form the toughened ceramic matrix, and the added Indium metallic particles could form
a friction film. There was still a small amount of free GNP particles between the crystals
(Figure 4). These phases increased the wear resistance due to the self-lubricating indium
coating created. Figure 8 shows the COF of the of Al2O3, Al2O3-5In-2GNP, and Al2O3-10In-
2GNP composites at the rotational speed of 0.1 m/s, length of 300 m, and friction force
of 2 N, obtained from tests under dry conditions. The COF of the Al2O3 substrate was
in the range of 0.2–0.45, and it was usually around 0.43. This friction coefficient became
stable after 150 m. The COF of the Al2O3-5In-2GNP composite was in the range of 0.2–0.38,
and it was usually around 0.35. After 200 m, the friction coefficient became stable. In the
case of the Al2O3-10In-2GNP composite, the COF was in the range of 0.2–0.35, and it was
usually around 0.33 and after 50 m became stable. It can be seen that the Al2O3-10In-2GNP
composite had a smaller coefficient and more stable fluctuations. This indicates that the
indium friction film and small GNP particles made the friction and wear between the SiC
ball and alumina-based matrix smaller.
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Figure 8. COF vs. time and wear rate graphs of Al2O3, Al2O3−5In−2GNP, and Al2O3−10In−2GNP
composites at the rotational speed of 0.1 m/s, a length of 300 m and friction force of 2 N, obtained
from tests under dry conditions.

Figures 6 and 7 show the microscopic morphology on the sliding surface of the
Al2O3, Al2O3-5In-2GNP, and Al2O3-10In-2GNP composites. In Figure 7a, there were some
spalling zones with a small area and shallow furrows on the sliding surface. The main
wear mechanism of the monolithic alumina was mainly adhesive and less abrasive wear.
In Figure 7b,c, it can be seen that there were some spalling zones with a large area and
deep furrows on the sliding surface of the composites. The main wear mechanism of the
substrate was mainly abrasive and less adhesive wear.

The added In and GNP particles provided more soft particles and slightly changed
the wear mechanism. Therefore, the metallic and graphene particles not only decrease the
COF of the composites but also offer good wear resistance due to the creation of a friction
film on the surface.

From Figure 5, we concluded that the density of Al2O3 ceramics decreases with
increasing In content and also with the incorporation of graphene nanoplatelets. Gutierrez-
Gonzalez et al. [38] reported that the densification percentage has a significant effect on
the formed porosity and could lead to the GNP pullout phenomena during the wear tests
and increasing wear rate. In this study, however, the wear rates of the Al2O3-5In-2GNP
sample with lower density were higher than those of Al2O3 with higher density. One
possible reason is due to the relief structure on the worn surface. Figures 9 and 10 give the
confocal optical images and the data of the sliding track surface profiles corresponding to
the line scans of Al2O3, Al2O3-5In-2GNPs, and Al2O3-10In-2GNPs after dry sliding. The
height difference in the relief structure in the wear track profile increased after dry sliding.
This means the relief structure formed on the initial surface of Al2O3, Al2O3-5In-2GNP,
and Al2O3-10In-2GNP ceramic composites after polishing continues to increase the height
difference during the dry sliding process due to the adhesion mechanism between the
friction pairs.
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Figure 9. Axonometric plots of wear tracks on Al2O3 (a), Al2O3-5In-2GNP composite (b), and Al2O3-
10In-2GNP composite (c) at the rotational speed of 0.1 m/s, length of 300 m and friction force of 2 N,
obtained from tests under dry conditions.
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surface diffusion in this system, accelerate the densification process and solve the prob-
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remarkable physical and chemical properties, along with good mechanical resistance and 
good thermal and electrical insulation properties. Despite their excellent properties, their 
applications are limited due to their highly fragile nature. Also, therefore, there is rele-
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Figure 10. Profile images and the data of sliding track surface profiles corresponding to the line scans
of Al2O3 (a), Al2O3-5In-2GNP composite (b), and Al2O3-10In-2GNP composite (c).

Abrasive wear particles appeared due to breaks inside the softer Al2O3 material against
a harder SiC friction partner. By definition, the latter has a lower mechanical strength than
a harder material. But fragments of the harder material were also formed (Figure 7) and
they were located in the friction track. This is because, within the harder material, there are
also local regions of lower strength.

Our study paid attention to the development of Al2O3-In-GNP composite. As shown
in the Ashby material diagram [39,40], our developed composite can be located above the
metals and between technical ceramics. The sintering additives we used are present in
a solid state or may form liquid phases during sintering; they were intentionally added
to control the microstructural development. Numerous types of research demonstrated
that minor additions of the second phase, which increase the grain boundary diffusion
and surface diffusion in this system, accelerate the densification process and solve the
problems with densification and brittleness [41–43]. Aluminum oxide-based ceramics have
remarkable physical and chemical properties, along with good mechanical resistance and
good thermal and electrical insulation properties. Despite their excellent properties, their
applications are limited due to their highly fragile nature. Also, therefore, there is relevant
research being carried out to improve the properties of alumina by the addition of various
tough metal or ceramic binders, compared with our study in Table 1.
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Table 1. Tribological and wear properties comparison of various materials tested with various
parameters.

Material COF Wear Rate
(mm3/m.N) Friction Partner Filler Content Ref.

Al2O3/TiC/GPLs 0.43–0.47 1–1.5 × 10−6 GCr15 steel ball 30 wt.% TiC, 0.2 wt.% GPLs [41]
Al2O3-SiC 0.4–0.5 2–8 × 10−6 Al2O3, SiC, ZrO2 balls 3–20 vol.% SiC [42]
Al2O3/nNi 0.45 2–8 × 10−8 Al2O3 ball 2.5 vol.% Ni [43]

Al2O3-CNF/GO 0.3–0.6 1–2 × 10−7 Al2O3 ball 2 vol.% CNF, 2 vol.% GO [16]
Al2O3-In-GNPs 0.33–0.35 14–32 × 10−6 SiC ball 5–10 wt.% In, 2 wt.% GNPs Present work

4. Conclusions

Self-lubricating Al2O3-In-GNP composites in the form of bulk discs were fabricated
by the SPS technique. Dry friction tests were carried out by sliding with a SiC ceramic ball.
From the experimental results and discussion, the following conclusions can be drawn:

1. The wear rate of the ceramic matrix material rises if the amount of indium metal
changes from 0 wt.% to 5 wt.% and decreases if the amount of indium metal changes
from 5 wt.% to 10 wt.% in Al2O3-In-GNP composite samples. The wear rates can be
reduced by ~45% for the Al2O3 ceramic matrix composite with 10 wt.% of indium
metal and 2 wt.% of graphene nanoplatelets as solid lubricants compared to the
monolithic sample.

2. A sintered alumina composite sample with 5 wt.% indium metal and 2 wt.% graphene
nanoplatelets can reduce the average friction coefficient by about 21% compared to the
monolithic alumina, while the alumina composite sample with 10 wt.% indium metal
and 2 wt.% graphene nanoplatelets as solid lubricants can reduce the average friction
coefficient by about 14%. The pores in sintered material can trap wear debris from
the friction ball and this mechanism may have an obvious influence on the friction
coefficient value under the present conditions.

3. The mechanism for improving the tribological properties of alumina composite ma-
terials is that the indium metal and graphene nanoplatelets incorporated into the
matrix can act as a lubricant store for creating a friction film and also on a smaller
scale can capture wear debris, which could play an important role in promoting the
engineering applications of Al2O3-In-GNP self-lubricating composite materials.
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42. Parchovianský, M.; Balko, J.; Švančárek, P.; Sedláček, J.; Dusza, J.; Lofaj, F.; Galusek, D. Mechanical properties and sliding wear
behaviour of Al2O3-SiC nanocomposites with 3–20 vol% SiC. J. Eur. Ceram. Soc. 2017, 37, 4297–4306. [CrossRef]

43. Rodriguez-Suarez, T.; Bartolomé, J.; Smirnov, A.; Lopez-Esteban, S.; Torrecillas, R.; Moya, J. Sliding wear behaviour of alu-
mina/nickel nanocomposites processed by a conventional sintering route. J. Eur. Ceram. Soc. 2011, 31, 1389–1395. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.ijrmhm.2005.11.005
https://doi.org/10.1016/S0257-8972(03)00802-8
https://doi.org/10.1016/j.surfcoat.2012.03.064
https://doi.org/10.1016/j.matdes.2013.09.051
https://doi.org/10.1016/j.triboint.2010.11.016
https://doi.org/10.3390/ma14195588
https://www.ncbi.nlm.nih.gov/pubmed/34639985
https://doi.org/10.1016/j.jeurceramsoc.2020.04.056
https://doi.org/10.1016/j.ceramint.2015.02.061
https://doi.org/10.1007/s40820-019-0346-1
https://www.ncbi.nlm.nih.gov/pubmed/34138087
https://doi.org/10.1016/j.ceramint.2017.07.231
https://doi.org/10.1016/j.jeurceramsoc.2017.04.051
https://doi.org/10.1016/j.jeurceramsoc.2011.02.011

	Introduction 
	Materials and Methods 
	Results and Discussion 
	Conclusions 
	References

