One-Dimensional Gap Soliton Molecules and Clusters in Optical Lattice-Trapped Coherently Atomic Ensembles via Electromagnetically Induced Transparency
Abstract
:1. Introduction
2. Theoretical Model and Numerical Methods
3. Numerical Results
3.1. Gap Soliton Clusters of Equal-Height Type
3.2. Dipole-Type Gap Soliton Clusters
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chiao, R.Y.; Garmire, E.; Townes, C.H. Self-trapping of optical beams. Phys. Rev. Lett. 1964, 13, 479–482. [Google Scholar] [CrossRef]
- Kivshar, Y.S.; Agrawal, G.P. Optical Solitons: From Fibers to Photonic Crystals; Academic Press: San Diego, CA, USA, 2003. [Google Scholar]
- Malomed, B.A. Multidimensional Solitons, 1st ed.; AIP Publishing (Online): New York, NY, USA, 2022. [Google Scholar]
- Malomed, B.A.; Mihalache, D. Nonlinear waves in optical and matter-wave media: A topical survey of recent theoretical and experimental results. Rom. J. Phys. 2019, 64, 106. [Google Scholar]
- Mihalache, D. Localized structures in optical and matter-wave media: A selection of recent studies. Rom. Rep. Phys. 2021, 73, 403. [Google Scholar]
- Wang, W.; Wang, L.; Zhang, W. Advances in soliton microcomb generation. Adv. Photon. 2020, 2, 034001. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Shemer, L.; Arie, A. Observation of accelerating solitary wavepackets. Phys. Rev. E 2020, 101, 050201. [Google Scholar] [CrossRef] [PubMed]
- Lu, Z.; Chen, H.-J.; Wang, W.; Yao, L.; Wang, Y.; Yu, Y.; Little, B.E.; Chu, S.T.; Gong, Q.; Zhao, W.; et al. Synthesized soliton crystals. Nat. Commun. 2021, 12, 3179. [Google Scholar] [CrossRef] [PubMed]
- Qi, Y.; Yang, S.; Wang, J.; Li, L.; Bai, Z.; Wang, Y.; Lv, Z. Recent advance of emerging low-dimensional materials for vector soliton generation in fiber lasers. Mater. Today Phys. 2022, 23, 100622. [Google Scholar] [CrossRef]
- Rozenman, G.G.; Schleich, W.P.; Shemer, L.; Arie, A. Periodic wave trains in nonlinear media: Talbot revivals, Akhmediev breathers, and asymmetry breaking. Phys. Rev. Lett. 2022, 128, 214101. [Google Scholar] [CrossRef]
- Eiermann, B.; Anker, T.; Albiez, M.; Taglieber, M.; Treutlein, P.; Marzlin, K.P.; Oberthaler, M.K. Bright Bose-Einstein gap solitons of atoms with repulsive interaction. Phys. Rev. Lett. 2004, 92, 230401. [Google Scholar] [CrossRef]
- Morsch, O.; Oberthaler, M. Dynamics of Bose-Einstein condensates in optical lattices. Rev. Mod. Phys. 2006, 78, 179–215. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Malomed, B.A.; Torner, L. Solitons in nonlinear lattices. Rev. Mod. Phys. 2011, 83, 247–305. [Google Scholar] [CrossRef]
- Garanovich, I.L.; Longhi, S.; Sukhorukov, A.A.; Kivshar, Y.S. Light propagation and localization in modulated photonic lattices and waveguides. Phys. Rep. 2012, 518, 1–79. [Google Scholar] [CrossRef]
- Eckardt, A. Colloquium: Atomic quantum gases in periodically driven optical lattices. Rev. Mod. Phys. 2017, 89, 011004. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Astrakharchik, G.E.; Malomed, B.A.; Torner, L. Frontiers in multidimensional self-trapping of nonlinear fields and matter. Nat. Rev. Phys. 2019, 1, 185–197. [Google Scholar] [CrossRef]
- Panajotov, K.; Tlidi, M.; Song, Y.; Zhang, H. Discrete vector light bullets in coupled nonlinear cavities. Chaos Solitons Fractals 2022, 163, 112532. [Google Scholar] [CrossRef]
- Kengne, E.; Liu, W.-M.; Malomed, B.A. Spatiotemporal engineering of matter-wave solitons in Bose-Einstein condensates. Phys. Rep. 2021, 899, 1–62. [Google Scholar] [CrossRef]
- Huang, C.; Dong, L. Gap solitons in the nonlinear fractional Schrödinger equation with an optical lattice. Opt. Lett. 2016, 41, 5636–5639. [Google Scholar] [CrossRef]
- Huang, C.; Li, C.; Deng, H.; Dong, L. Gap Solitons in fractional dimensions with a quasi-periodic lattice. Ann. Phys. 2019, 531, 1900056. [Google Scholar] [CrossRef]
- Xie, J.; Zhu, X.; He, Y. Vector solitons in nonlinear fractional Schrödinger equations with parity-time-symmetric optical lattices. Nonlinear Dyn. 2019, 97, 1287–1294. [Google Scholar] [CrossRef]
- Zeng, L.; Zeng, J. Gap-type dark localized modes in a Bose-Einstein condensate with optical lattices. Adv. Photon. 2019, 1, 046004. [Google Scholar] [CrossRef]
- Zeng, L.; Zeng, J. Preventing critical collapse of higher-order solitons by tailoring unconventional optical diffraction and nonlinearities. Commun. Phys. 2020, 3, 26. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Y.; Zeng, J. Matter-wave gap solitons and vortices in three-dimensional parity-time-symmetric optical lattices. iScience 2022, 25, 104026. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zeng, J. Localized gap modes of coherently trapped atoms in an optical lattice. Opt. Express 2021, 29, 3011–3025. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Zeng, J. Two-dimensional optical gap solitons and vortices in a coherent atomic ensemble loaded on optical lattices. Commun. Nonlinear Sci. Numer. Simulat. 2021, 102, 105911. [Google Scholar] [CrossRef]
- Chen, Z.; Zeng, J. Nonlinear localized modes in onedimensional nanoscale dark-state optical lattices. Nanophotonics 2022, 11, 3465–3474. [Google Scholar] [CrossRef]
- Kartashov, Y.V. Light bullets in moiré lattices. Opt. Lett. 2022, 47, 4528–4531. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Wu, Z.; Zeng, J. Light gap bullets in defocusing media with optical lattices. Chaos Solitons Fractals 2023, 174, 113785. [Google Scholar] [CrossRef]
- Ye, F.; Kartashov, Y.V.; Hu, B.; Torner, L. Light bullets in Bessel optical lattices with spatially modulated nonlinearity. Opt. Express 2009, 17, 11328. [Google Scholar] [CrossRef]
- Hang, C.; Huang, G. Stern-Gerlach effect of weak-light ultraslow vector solitons. Phys. Rev. A 2012, 86, 043809. [Google Scholar] [CrossRef]
- Hang, C.; Konotop, V.V.; Huang, G. Spatial solitons and instabilities of light beams in a three-level atomic medium with a standing-wave control field. Phys. Rev. A 2009, 79, 033826. [Google Scholar] [CrossRef]
- Dong, L.; Kartashov, Y.V.; Torner, L.; Ferrando, A. Vortex Solitons in Twisted Circular Waveguide Arrays. Phys. Rev. Lett. 2022, 129, 123903. [Google Scholar] [CrossRef]
- Huang, C.; Ye, F.; Chen, X.; Kartashov, Y.V.; Konotop, V.V.; Torner, L. Localization-delocalization wavepacket transition in Pythagorean aperiodic potentials. Sci. Rep. 2016, 6, 32546. [Google Scholar] [CrossRef]
- Wang, P.; Zheng, Y.; Chen, X.; Huang, C.; Kartashov, Y.V.; Torner, L.; Konotop, V.V.; Ye, F. Localization and delocalization of light in photonic moiré lattices. Nature 2020, 577, 42–46. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, X.; Zeng, J. Electromagnetically induced moire optical lattices in a coherent atomic gas. Front. Phys. 2022, 17, 42508. [Google Scholar] [CrossRef]
- Mao, X.R.; Shao, Z.K.; Luan, H.Y.; Wang, S.L.; Ma, R.M. Magic-angle lasers in nanostructured moiré superlattice. Nat. Nanotechnol. 2021, 16, 1099. [Google Scholar] [CrossRef]
- González-Tudela, A.; Cirac, J.I. Cold atoms in twistedbilayer optical potentials. Phys. Rev. A 2019, 100, 053604. [Google Scholar] [CrossRef]
- Fu, Q.; Wang, P.; Huang, C.; Kartashov, Y.V.; Torner, L.; Konotop, V.V.; Ye, F. Optical soliton formation controlled by angle twisting in photonic moiré lattices. Nat. Photon. 2020, 14, 663–668. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Ye, F.; Konotop, V.V.; Torner, L. Multifrequency Solitons in Commensurate-Incommensurate Photonic Moiré Lattices. Phys. Rev. Lett. 2021, 127, 163902. [Google Scholar] [CrossRef]
- Arkhipova, A.A.; Kartashov, Y.V.; Ivanov, S.K.; Zhuravitskii, S.A.; Skryabin, N.N.; Dyakonov, I.V.; Kalinkin, A.A.; Kulik, S.P.; Kompanets, V.O.; Chekalin, S.V.; et al. Observation of Linear and Nonlinear Light Localization at the Edges of Moiré Arrays. Phys. Rev. Lett. 2023, 130, 083801. [Google Scholar] [CrossRef]
- Ivanov, S.K.; Konotop, V.V.; Kartashov, Y.V.; Torner, L. Vortex solitons in moire optical lattices. Opt. Lett. 2023, 48, 3797–3800. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zeng, J. Gap solitons in parity-time symmetric moiré optical lattices. Photonics Res. 2023, 11, 196–202. [Google Scholar] [CrossRef]
- Malomed, B.A. Optical Solitons and Vortices in Fractional Media: A Mini-Review of Recent Results. Photonics 2021, 8, 353. [Google Scholar] [CrossRef]
- Liu, X.; Yao, X.; Cui, Y. Real-Time Observation of the Buildup of Soliton Molecules. Phys. Rev. Lett. 2018, 121, 023905. [Google Scholar] [CrossRef]
- Wang, Z.Q.; Nithyanandan, K.; Coillet, A.; Tchofo-Dinda, P.; Grelu, P. Optical soliton molecular complexes in a passively mode-locked fibre laser. Nat. Commun. 2019, 10, 830. [Google Scholar] [CrossRef]
- Zhu, W.; He, Y.; Malomed, B.A.; Mihalache, D. Two-dimensional solitons and clusters in dissipative lattices. J. Opt. Soc. Am. B 2014, 31, A1–A5. [Google Scholar] [CrossRef]
- Zeng, L.; Zeng, J. Modulated solitons, soliton and vortex clusters in purely nonlinear defocusing media. Ann. Phys. 2020, 421, 168284. [Google Scholar] [CrossRef]
- Qin, L.; Hang, C.; Malomed, B.A.; Huang, G. Stable High-Dimensional Weak-Light Soliton Molecules and Their Active Control. Laser Photon. Rev. 2022, 16, 2100297. [Google Scholar] [CrossRef]
- Zhong, M.; Yan, Z. Formation of multi-peak gap solitons and stable excitations for double-Lévy-index and mixed fractional NLS equations with optical lattice potentials. Proc. R. Soc. A 2023, 479, 20230222. [Google Scholar] [CrossRef]
- Lee, T.D.; Huang, K.; Yang, C.N. Eigenvalues and Eigenfunctions of a Bose System of Hard Spheres and Its Low-Temperature Properties. Phys. Rev. 1957, 106, 1135–1145. [Google Scholar] [CrossRef]
- Petrov, D.S. Quantum Mechanical Stabilization of a Collapsing Bose-Bose Mixture. Phys. Rev. Lett. 2015, 115, 155302. [Google Scholar] [CrossRef]
- Dong, L.; Kartashov, Y.V. Rotating Multidimensional Quantum Droplets. Phys. Rev. Lett. 2021, 126, 244101. [Google Scholar] [CrossRef]
- Ma, Y.; Peng, C.; Cui, X. Borromean Droplet in Three-Component Ultracold Bose Gases. Phys. Rev. Lett. 2021, 127, 043002. [Google Scholar] [CrossRef]
- Kartashov, Y.V.; Malomed, B.A.; Torner, L. Metastability of Quantum Droplet Clusters. Phys. Rev. Lett. 2019, 122, 193902. [Google Scholar] [CrossRef]
- Desyatnikov, A.S.; Kivshar, Y.S. Rotating Optical Soliton Clusters. Phys. Rev. Lett. 2002, 88, 053901. [Google Scholar] [CrossRef]
- Herink, G.; Kurtz, F.; Jalali, B.; Solli, D.R.; Ropers, C. Real-time spectral interferometry probes the internal dynamics of femtosecond soliton molecules. Science 2017, 356, 50. [Google Scholar] [CrossRef]
- Song, L.; Yang, Z.; Li, X.; Zhang, S. Controllable Gaussian-shaped soliton clusters in strongly nonlocal media. Opt. Express 2018, 26, 19182–19198. [Google Scholar] [CrossRef]
- Zeng, L.; Belić, M.R.; Mihalache, D.; Shi, J.; Li, J.; Li, S.; Lu, X.; Cai, Y.; Li, J. Families of gap solitons and their complexes in media with saturable nonlinearity and fractional diffraction. Nonlinear Dyn. 2022, 108, 1671–1680. [Google Scholar] [CrossRef]
- Reyna, A.S.; Baltar, H.T.M.C.M.; Bergmann, E.; Amaral, A.M.; Falcão-Filho, E.L.; Brevet, P.-F.; Malomed, B.A.; de Araújo, C.B. Observation and analysis of creation, decay, and regeneration of annular soliton clusters in a lossy cubic-quintic optical medium. Phys. Rev. A 2020, 102, 033523. [Google Scholar] [CrossRef]
- Weng, W.; Bouchand, R.; Lucas, E.; Obrzud, E.; Herr, T.; Kippenberg, T.J. Heteronuclear soliton molecules in optical microresonators. Nat. Commun. 2020, 11, 2402. [Google Scholar] [CrossRef]
- Kurtz, F.; Ropers, C.; Herink, G. Resonant excitation and all-optical switching of femtosecond soliton molecules. Nat. Photonics 2020, 14, 9. [Google Scholar] [CrossRef]
- Wang, Q.; Liang, G. Vortex and cluster solitons in nonlocal nonlinear fractional Schrödinger equation. J. Opt. 2020, 22, 055501. [Google Scholar] [CrossRef]
- Fleischhauer, M.; Imamoǧlu, A.; Marangos, J.P. Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 2005, 77, 633–673. [Google Scholar] [CrossRef]
- Huang, G.; Deng, L.; Payne, M.G. Dynamics of ultraslow optical solitons in a cold three-state atomic system. Phys. Rev. E 2005, 72, 016617. [Google Scholar] [CrossRef]
- Steck, D.A. Rubidium 87 D Line Data. Revision 2.2.2. Available online: http://steck.us/alkalidata (accessed on 9 July 2021).
- Yang, J. Nonlinear Waves in Integrable and Nonintegrable Systems; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 2010. [Google Scholar]
- Anker, T.; Albiez, M.; Gati, R.; Hunsmann, S.; Eiermann, B.; Trombettoni, A.; Oberthaler, M.K. Nonlinear self-trapping of matter waves in periodic potentials. Phys. Rev. Lett. 2005, 94, 020403. [Google Scholar] [CrossRef]
- Alexander, T.J.; Ostrovskaya, E.A.; Kivshar, Y.S. Self-trapped nonlinear matter waves in periodic potentials. Phys. Rev. Lett. 2006, 96, 040401. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Wu, B. Composition relation between gap solitons and bloch waves in nonlinear periodic systems. Phys. Rev. Lett. 2009, 102, 093905. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Xie, H.; Zhou, Q.; Zeng, J. One-Dimensional Gap Soliton Molecules and Clusters in Optical Lattice-Trapped Coherently Atomic Ensembles via Electromagnetically Induced Transparency. Crystals 2024, 14, 36. https://doi.org/10.3390/cryst14010036
Chen Z, Xie H, Zhou Q, Zeng J. One-Dimensional Gap Soliton Molecules and Clusters in Optical Lattice-Trapped Coherently Atomic Ensembles via Electromagnetically Induced Transparency. Crystals. 2024; 14(1):36. https://doi.org/10.3390/cryst14010036
Chicago/Turabian StyleChen, Zhiming, Hongqiang Xie, Qi Zhou, and Jianhua Zeng. 2024. "One-Dimensional Gap Soliton Molecules and Clusters in Optical Lattice-Trapped Coherently Atomic Ensembles via Electromagnetically Induced Transparency" Crystals 14, no. 1: 36. https://doi.org/10.3390/cryst14010036
APA StyleChen, Z., Xie, H., Zhou, Q., & Zeng, J. (2024). One-Dimensional Gap Soliton Molecules and Clusters in Optical Lattice-Trapped Coherently Atomic Ensembles via Electromagnetically Induced Transparency. Crystals, 14(1), 36. https://doi.org/10.3390/cryst14010036