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Abstract: There are high demands for the early and reliable detection of metal components used in
safety-critical structures. Nondestructive testing (NDT) is a pivotal technique used across industries
to assess a material’s integrity without causing damage and has been used in early crack detection
of metals, mainly based on changes in the crystal structure and magnetic properties of metals. This
review provides an overview of internal and external detection technology based on nondestructive
testing methods such as ultrasonic, electromagnetic, ray, magnetic particle, etc. Especially, the
integration of advanced methodologies such as machine learning and artificial intelligence deserves
a place in NDT methods. Furthermore, the multifactorial detection method is promoted to enhance
the sensitivity and detection range due to advantage integration but still has emerging challenges for
safer equipment and applications. The review aims to compare these methods and outline the future
challenges of NDT technologies for metal crack detection.
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1. Introduction

Nondestructive testing (NDT) is a pivotal technique across various industries for
evaluating the integrity of materials and structures without causing any damage [1,2].
Particularly, the detection of cracks in metallic materials is of paramount importance due to
the intensive use of metal components in a wide range of safety-critical structures and the
potential catastrophic failures they could induce. Metal cracks can emanate from various
sources including stress, corrosion, fatigue, and manufacturing defects [3–5]. As such,
early and reliable metal crack inspection is urgently needed before the complete fracture
point is reached. The ramifications of undetected metal cracks can be profound, affecting
not only the equipment’s operational efficiency but also posing significant safety risks to
human life. Failures resulting from such defects can lead to unplanned downtime, costly
repairs, and in the worst cases, catastrophic accidents with severe environmental and
societal consequences [6,7].

The analysis of metal crack damage mostly focuses on the crystal structure, based
on the propagation of crystal cracks in crystals or changes in the magnetic properties of
ferromagnetic metals. The initiation and early propagation process of physical short cracks
are greatly influenced by the metal crystal structure. Short cracks between 100 and 1000 µm
fuse with each other and converge to form the main crack, which has a faster propagation
rate compared to long cracks. The Paris formula used in continuum mechanics is no longer
applicable to short cracks. Tanaka and Mura [8] propose the T-K model, which declares
that shear stress is the main factor for crack initiation based on the theory of dislocations in
metallic crystals. Navarro and Rios [9] developed the N-R model, which suggests that the
movement of dislocations at the end of the plastic zone (i.e., grain boundaries) is obstructed
and blockages occur. By solving the system equilibrium integral equation, the dislocation
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density distribution function f(x) in the plastic zone can be obtained. The crack propagation
rate is directly proportional to the plastic displacement at the crack tip, shown as

da
dN

∝ F(φ),

where d is the average diameter of crystal grains, N is the number of dislocations, and a is a
constant. This model describes that the short crack growth rate decelerates with the increase
in the growth length. When the crack tip approaches the grain boundary, the growth rate
reaches a minimum. When the crack enters the next grain, the growth rate increases
sharply and then decelerates the intermittent development process. However, there are
certain challenges in observing and generating data on microscopic cracks. It is worth
noticing that after being subjected to an external load, metal cracks with ferromagnetism
will experience stress concentration, and a large number of non-uniform and randomly
distributed dislocations will move along the slip surface inside the metal crystal, forming
stable slip bands, and then magnetic domain boundaries at the dislocation site cause a
leakage magnetic field generation. The morphology and location information of cracks can
be obtained by the leakage magnetic field.

In the early days, a series of methods were explored based on fundamental phys-
ical principles, such as eddy current testing (ECT) [10–12], magnetic particle testing
(MPT) [13,14], penetrant testing (PT), ultrasonic testing (UT), and radiographic testing
(RT) [15–17], which have been extensively utilized for the detection of metal cracks, among
other defects. These methods have been refined over time and honed to address specific
challenges posed by different materials and operating environments. For instance, UT
is renowned for its proficiency in detecting subsurface anomalies, while RT offers un-
paralleled insight into internal structures. On the other hand, ECT is adept at detecting
surface and near-surface imperfections, and MPT excels in revealing discontinuities on
or near the surface of ferromagnetic materials. The selection and application of these
NDT techniques lay the groundwork for a robust discussion on internal versus external
testing methods. In recent years, the field of NDT has witnessed a paradigm shift with
the advent of advanced methodologies that seek to overcome the limitations of traditional
techniques and augment the accuracy of defect detection. The integration of machine
learning (ML) and artificial intelligence (AI) into NDT processes marks a significant leap
forward. These technologies harness vast amounts of data, learning from patterns and
anomalies to enhance the predictive capabilities of NDT and offer insights beyond the
reach of conventional analysis [18]. Moreover, the development of multi-parameter NDT
approaches, which combine the strengths of various individual methods, promises a more
comprehensive and accurate depiction of material flaws [19,20].

This review aims to provide a comprehensive overview of the state-of-the-art NDT
methods, with a focus on the evolution of traditional techniques and the integration of
emerging technologies, starting with a principle exploration of NDT from external in-
spection to internal techniques. Afterward, a specific discussion on NDT is presented,
elucidating the methodologies, applications, and challenges associated with each, includ-
ing the integration of innovative technologies such as machine learning and artificial
intelligence. Advanced multi-parameter NDT is discussed, as well as its contributions to
enhancing structural safety and potential future research directions that could transcend
the current limitations.

2. External Inspection Techniques

In the transition to the discussion of external inspection techniques, three crucial non-
destructive testing methods are explored, each renowned for its distinct physical principles
and application domains. Firstly, eddy current testing utilizes alternating electromagnetic
fields to identify defects within metallic materials, particularly well suited for the surface
and subsurface inspection of conductive materials. Following that, magnetic particle test-
ing induces a magnetic field over the material surface and employs magnetic particles to
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reveal defects. This method is straightforward and intuitive, enabling the rapid detection
of surface and near-surface flaws. Lastly, penetrant testing is examined, which employs
dye or fluorescent penetrants to expose surface cracks in materials, especially applicable
to non-magnetic metals and non-metallic materials. In this section, exploration extends
beyond the operating principles and advantages of each technology to scrutinize their
respective limitations and recent technological enhancements. These improvements have
bolstered the accuracy and reliability of detection techniques, providing novel solutions for
the industry.

2.1. Eddy Current Testing

Eddy current testing (ECT) primarily operates on the principle of eddy current effects
to identify external damages in conductive materials [21]. As depicted in Figure 1, when
current traverses through a conductor, eddy currents are generated around it. The flow
of these eddy currents is disrupted by defects, which in turn leads to a change in the
coil’s impedance. By measuring the variations in impedance, it is possible to ascertain the
presence of defects in the inspected object [22]. This method’s foundation intertwines with
principles from crystallography. Characteristics of metal crystal structures, such as grain
boundaries, crystallographic orientation, and defects, directly influence the propagation
paths of magnetic flux and eddy currents [23]. These factors rooted in crystallography can
result in alterations in eddy current signals, manifesting as specific disturbances caused by
irregular grain boundaries or cracks [24]. Furthermore, the crystal structure dictates the
electromagnetic properties of metallic materials, including distinct electrical and magnetic
conductivities exhibited by different crystal structures, directly affecting the generation
and propagation of eddy currents [25,26].

Crystals 2024, 14, x FOR PEER REVIEW 3 of 18 
 

 

particle testing induces a magnetic field over the material surface and employs magnetic 
particles to reveal defects. This method is straightforward and intuitive, enabling the rapid 
detection of surface and near-surface flaws. Lastly, penetrant testing is examined, which 
employs dye or fluorescent penetrants to expose surface cracks in materials, especially 
applicable to non-magnetic metals and non-metallic materials. In this section, exploration 
extends beyond the operating principles and advantages of each technology to scrutinize 
their respective limitations and recent technological enhancements. These improvements 
have bolstered the accuracy and reliability of detection techniques, providing novel solu-
tions for the industry. 

2.1. Eddy Current Testing 
Eddy current testing (ECT) primarily operates on the principle of eddy current effects 

to identify external damages in conductive materials [21]. As depicted in Figure 1, when 
current traverses through a conductor, eddy currents are generated around it. The flow of 
these eddy currents is disrupted by defects, which in turn leads to a change in the coil’s 
impedance. By measuring the variations in impedance, it is possible to ascertain the pres-
ence of defects in the inspected object [22]. This method’s foundation intertwines with 
principles from crystallography. Characteristics of metal crystal structures, such as grain 
boundaries, crystallographic orientation, and defects, directly influence the propagation 
paths of magnetic flux and eddy currents [23]. These factors rooted in crystallography can 
result in alterations in eddy current signals, manifesting as specific disturbances caused 
by irregular grain boundaries or cracks [24]. Furthermore, the crystal structure dictates 
the electromagnetic properties of metallic materials, including distinct electrical and mag-
netic conductivities exhibited by different crystal structures, directly affecting the genera-
tion and propagation of eddy currents [25,26]. 

 
Figure 1. Principle of the eddy current testing operation. 

Consequently, ECT can be employed for the detection of various types of damage 
such as cracks, corrosion, and deformations. By analyzing the impedance variations, it is 
possible to determine the location, shape, and size of the defects. By optimizing the probe 
structure and signal processing algorithms, the detection sensitivity and resolution of ECT 
can be enhanced. For instance, Betta et al. [12] proposed an ECT probe employing a rec-
tangular planar excitation coil and GMR sensors, whereby the optimization of probe de-
sign and rapid scanning time improved the detection capability. Additionally, Du et al. 
[27] utilized GMR array sensors and digital image processing techniques to further en-
hance the resolution of defect detection. However, there are certain drawbacks, such as 
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Consequently, ECT can be employed for the detection of various types of damage such
as cracks, corrosion, and deformations. By analyzing the impedance variations, it is possible
to determine the location, shape, and size of the defects. By optimizing the probe structure
and signal processing algorithms, the detection sensitivity and resolution of ECT can be
enhanced. For instance, Betta et al. [12] proposed an ECT probe employing a rectangular
planar excitation coil and GMR sensors, whereby the optimization of probe design and rapid
scanning time improved the detection capability. Additionally, Du et al. [27] utilized GMR
array sensors and digital image processing techniques to further enhance the resolution
of defect detection. However, there are certain drawbacks, such as sensitivity to near-
surface defects and its applicability solely to conductive materials. Therefore, in practical
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applications, it is imperative to consider these limitations and integrate ECT with other
methods for a comprehensive assessment and inspection [28].

Takanori et al. [29] proposed an eddy current magnetic signature (EC-MS) with the
experimental setup shown in Figure 2, which is based on a two-dimensional vector of
magnetic incremental permeability µ∆c measurement. To comprehensively describe the
feasibility, numerical calculation has been performed. A micro-eddy current field associated
with the moving domain wall has been introduced into the Dodd and Deeds ECT approach,
and a modified Helmholtz equation has been derived as follows:[

∂2

∂r2 +
1
r

∂

∂r
− 1

r2 +
∂2

∂z2

]
A − jωµσA + µi = 0,

where A is a vector potential of component θ in the cylindrical coordinate system, ω is
the angular frequency, µ is permeability, σ is the conductivity of the medium, and i is
the exciting current. Through experiments and numerical calculations, the authors reveal
the phenomena and mechanisms of EC-MS, including the variation of EC-MS at different
residual strain stages, its behavior under elastic stress, and its relationship with residual
stress. Thus, the EC-MS method may be useful in assessing residual strain in materials,
especially in understanding microscopic damage and cracking behavior in materials. This
connection provides a new perspective for understanding the relationship between residual
strain and microscopic cracking in materials and helps to probe deeply into the mechanisms
of material damage and cracking behavior.
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Figure 2. Experimental setup for EC-MS method [29].

As an improvement and extension to ECT, the eddy current array (ECA) avails accurate
detection and characterization of stress corrosion cracking (SCC). By employing a set of
electric eddy current coils and image reconstruction algorithms, a panoramic image of
the inspection area is generated, thereby facilitating accurate, high-resolution, and rapid
inspection over large areas [30]. Hossein et al. [31] fabricated predefined notches and
subjected the specimens to a stress corrosion environment. Through ECA inspection, the
SCC defects generated on the specimens were successfully detected and characterized.

2.2. Magnetic Particle Testing

Magnetic particle testing (MPT) is primarily utilized for detecting cracks and defects
in metallic materials [32]. As illustrated in Figure 3, the core principle entails magnetizing
the object under inspection to create a critical magnetic field area; when cracks or defects
are present, the magnetic field leaks from these areas forming a magnetic field gradient. By
dispersing magnetic particles on the object’s surface, these particles aggregate at the sites of
cracks or defects, forming magnetic particle indications (MPI), thereby visually delineating
the location and shape of the cracks or defects [13].
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Figure 3. Principle of magnetic particle testing operation.

However, traditional MPT requires special treatment of the magnetic particles to
form visible indications, potentially leading to environmental pollution and operational
complexity [14]. Chen et al. [33] proposed a method based on the three-dimensional profile
measurement of MPI, which employs scanning laser triangulation technology to acquire the
three-dimensional profile of the object under inspection, eliminating the need for special
treatment of magnetic particles. As shown in Figure 4, the reflected laser is focused through
a lens and sensed by a photodiode array, where the reflected laser deviates with the height
variety of the target surface. Utilizing the optical system’s information, height variations
can be calculated. This measurement technique renders the operation more straightforward
and environmentally friendly, and by comparing the profile alterations before and after
the addition of magnetic particles, changes induced by cracks are extracted. Furthermore,
through Euclidean clustering and digital model-based fake magnetic particle indication
evaluation methods, automatic crack detection is achieved.

1 
 

 

Figure 4. Schematic diagram of scanning laser triangulation technology.

False magnetic effects may occur in magnetic particle inspection when residual mag-
netism or magnetic material is present on the metal surface. This phenomenon is mainly
manifested as a false-positive signal due to the presence of surface magnetism [34]. Al-
though this phenomenon stems directly from magnetic interference, the crystallographic
perspective also provides another layer of explanation for the mechanism of its occurrence.
Different features of the crystal structure, such as grain orientation, grain boundaries, and
crystal defects, may lead to a heterogeneous distribution of residual magnetism on the
metal surface [35]. This variability may become the aggregation point of magnetic regions,
triggering the appearance of pseudomagnetic effects. In addition, the crystal structure
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also has an influence on the distribution and behavior of magnetic particles on the metal
surface. Different crystal structures may lead to different aggregation and dispersion of
magnetic particles on the surface, which further affects the extent and manifestation of the
pseudomagnetic effect [36,37]. Kang et al. [38], on the other hand, accurately assess the
likelihood of fake magnetic particle indications by computing the magnetic field distribu-
tion and evaluating the density of the normal magnetic induction intensity. Subsequently,
by employing image registration and template matching techniques, the areas of fake
magnetic particle indications are eliminated from the inspection results, thus achieving
automatic recognition of MPI, which enhances the efficiency and accuracy of MPT and lays
a significant foundation for automated MPT. Figure 5 illustrates the elimination of the false
magnetic particle indication scheme. Abolfazl et al. [39] explore the reliability and sensitiv-
ity of magnetic particle nondestructive testing techniques for detecting surface cracks in
welded assemblies. The sensitivity and reliability parameters of the magnetic particle NDT
technique for detecting surface cracks in welded assemblies were derived. Specifically,
the detection rate, maximum missed crack length, minimum detected crack length, and
probabilistic detection curves for the magnetic particle NDT technique are obtained.
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2.3. Penetrant Testing

Penetrant testing (PT), also known as liquid penetrant inspection, is a nondestructive
testing technique designed to detect surface open flaws such as cracks, pores, inclusions,
and fatigue cracks in materials [40]. It is particularly well suited for non-magnetic metals
like aluminum, magnesium, and stainless steel, as well as for various non-metallic mate-
rials [41]. The method primarily involves the application of a liquid penetrant with low
surface tension to identify and reveal surface open defects on materials. The penetrant seeps
into surface breaks and voids, and subsequent steps of cleaning and developer application
allow the penetrant to emerge from the defects for visual or optical detection [42].

The advantages of the PT method include its simplicity of operation, cost-effectiveness,
high sensitivity to minute defects, and applicability to complex geometries. However, its
disadvantages may involve sensitivity to material surfaces and environmental impact. The
core of this method is the use of fluorescent penetrants and ultraviolet radiation sources,
enabling the detection of even the smallest defects with high visibility for easy recording of
results [43]. However, PT requires thorough surface preparation and must be conducted in
specific darkroom conditions, demanding a high level of skill from the operators.

Appropriate selection of ultraviolet radiation sources has a significant effect on PT
optimization. Kudinov et al. [44] proposed a method for comprehensively evaluating the
effectiveness of different UV radiation sources and investigated the effect of different types
of UV radiation sources on the detection results. The effectiveness of various UV radiation
sources has been assessed by analyzing the experimental results and the best choice is
suggested to optimize the fluorescence penetration detection.

In addition, Ospennikova et al. [45] have innovated upon the conventional penetrant
testing (PT) methodologies to enhance applicability in areas that are challenging to access.
They have employed a concoction of powder developers characterized by elevated absorp-
tivity and adhesion, significantly augmenting the visibility of indications on components
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with intricate geometries, thus bolstering the inspection’s efficiency and reliability. Notably,
the three powder developer mixtures, a mixture of polyvinylpyrrolidone and magnesium
oxide for sample No. 5, magnesium oxide for sample No. 6, and polyvinylpyrrolidone and
zinc oxide for sample No. 7, were the most effective. These mixtures produced indicator
patterns that were not only bright and high contrast but also resistant to mechanical action.
As shown in Figure 6, the powder samples are firmly adsorbed onto the surface, forming
developer “beads” above the defects and lying evenly on top, creating a thin, uniform
white background.
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Furthermore, Karatay [46] introduced a more eco-friendly alternative employing bac-
terial suspensions as fluorescent penetrants. This approach mitigates environmental con-
tamination, decreases operational costs, and streamlines the testing procedure. Escherichia
coli labeled with fluorescein isothiocyanate (FITC-E. coli) demonstrated exceptional effi-
cacy in the detection of fissures and other imperfections, paving the way for prospective
advancements in PT.

Collectively, these refinements and innovations not only substantiate the capability
of PT as a nondestructive evaluation method to effectively expose surface open flaws but
also elevate its applicability in complex scenarios, concurrently diminishing its ecological
footprint. These contributions reflect the ongoing evolution of PT technology and affirm its
practicality and scalability in industrial settings.

3. Internal Inspection Techniques

In this section, ultrasonic testing and radiographic testing are introduced as typical
nondestructive techniques for internal metal crack inspection. Ultrasonic testing lever-
ages high-frequency acoustic waves to detect internal imperfections in materials, while
radiographic testing employs penetrating radiations to expose internal structures [47,48].
Each methodology is characterized by its distinctive detection mechanism and application
domain, playing an essential role in evaluating the integrity of materials and structures.

3.1. Ultrasonic Testing

Ultrasonic testing (UT) is a pivotal nondestructive testing technique that encompasses
the acquisition of a multitude of information regarding the material under examination,
including its dimensions, geometric shape, and internal structure. Pulse-echo technol-
ogy, a common methodology within UT, ascertains crack characteristics by measuring
the time differential between the transmission and reception of ultrasonic waves [49].
Yadav et al. [50] compare contact and immersion ultrasonic techniques for dimensional
measurement (thickness) on ASTM reference blocks, with experimental setups illustrated
in Figures 7 and 8, respectively. Using a piezoelectric broadband transducer to generate
longitudinal ultrasonic waves within the reference block and recording the echoes via an
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ultrasonic flaw detector, it is observed that the immersion technique provides more precise
material thickness measurements with lower uncertainty.
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Despite UT’s wide application in structural integrity assessments, particularly in the
detection of welding defects, it is not without limitations, such as susceptibility to ambient
noise interference. The background signal interference generated in UT method detection
is usually related to the properties of the crystal and the material characteristics. The prop-
erties of crystals affect the propagation and reflection of ultrasonic waves, thus generating
background signal interference [51,52]. For example, the geometry, speed of sound, and
attenuation properties of the crystal affect the propagation path and signal characteristics of
the ultrasonic waves, which in turn affects the generation of the background signal and the
degree of interference [53]. Lee et al. [54] have highlighted the inadequacies of conventional
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noise reduction methods, such as thresholding or Hilbert transformations, as shown in Fig-
ure 9, depicting the architecture of a conventional denoising autoencoder. In response, they
proposed a method utilizing denoising autoencoders, a neural network-based technique
for extracting target defect signals from noisy data. This involves compressing the mixed
signal input via an encoder and reconstructing the compressed signal through a decoder.
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Figure 9. Architecture of the conventional denoising autoencoder. X̃ stands for the noisy signal, X′ for
the reconstructed non-noisy version, and c represents the characteristics of the input noise signal [54].

During training, the network learns to extract features of the defect signal by mini-
mizing the difference between the reconstructed and target defect signals, illustrated in
Figure 10. This artificial neural network technique demonstrates superior performance
in isolating defect signals, successfully mitigating background noise and accentuating
the defect signal. Further exploration by Lee et al. [55] has investigated the integration
of phased array ultrasonic testing with neural networks for the acceptability assessment
of welding defect dimensions. Generating and analyzing S-scan images and employing
Mask R-CNN models for image training and classification, their research has not only
corroborated the model’s accuracy but also enhanced detection efficiency.
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Additionally, to augment the defect detection capabilities of ultrasonic guided wave
techniques, Hwang et al. [56] employed a short-time Fourier transform for signal
time–frequency analysis, extracting distinguishing features of samples with and with-
out defects. Coupled with linear discriminant analysis for sample classification, their
methodology demonstrates high accuracy in defect detection in 304 stainless steel plates,
providing an effective nondestructive evaluation method for the safety assessment of
such plates.

3.2. Radiographic Testing

Radiographic testing (RT) is a technique that employs X-rays or gamma rays to detect
internal defects within pipelines. The challenge of this technique resides in the interference
caused by scattered radiation, influenced by crystallographic elements such as grain orien-
tation, grain boundaries, and defects, which contribute to the scattering of X-rays, resulting
in imaging noise and blurring within the captured images [57,58]. These crystallographic
factors induce partial deviation of X-rays from their original propagation paths, with crys-
tal defects serving as potential scattering centers, thereby inducing random dispersion of
radiation. Moreover, the spacing and orientation of the crystal lattice can further prompt
diffraction effects in scattered radiation, exerting additional influence on the scattering
phenomena observed [59–61]. To enhance the reliability of detection, it is necessary to im-
prove the signal-to-noise ratio and contrast of the images [15]. In this regard, digital image
processing algorithms, such as the total variation method, optimized neural networks, and
sparse methods, are widely used for image enhancement. Effat et al. [16] have proposed
the fast regularized kernel estimation (FRKE) and the modified Goldstein–Fattal method
(MGFM) as examples of image enhancement techniques and compared their effectiveness.
FRKE is a blind deblurring method based on prior knowledge, which iteratively reduces
blur and enhances contrast, whereas MGFM estimates the blur kernel by analyzing irregu-
larities in the image power spectrum to reconstruct a clear image. These methods aim to
improve the clarity and contrast of X-ray images, enhancing the detectability of internal
pipeline defects.

Chen et al. [17] combined the YOLOv4 object inspection model with RT image-based
NDT techniques to improve the inspection efficiency of aero structural and engine compo-
nents. A dataset is preprocessed by marking and classifying defects in RT images, including
maintenance record images of civil aircraft fuselages and engines. An automatic defect
detection model is constructed using deep learning and computer vision technologies,
effectively elevating the level of automation in defect detection for aeronautical structures
and components.

For the RT inspection of aviation engine turbine blades, traditional methods are
typically semiautomatic, involving X-ray photography and industrial view boxes. However,
these methods are subject to subjective judgment, which may reduce detection accuracy
and efficiency, and become particularly prone to omissions and false detections when
the workload increases. With the advancement of deep learning technologies, automatic
nondestructive testing has become a research focus. Wang et al. [62] underscore the process
of automatic defect detection in X-ray images based on deep learning. Figure 11 displays
the overall network model including data preparation, model selection, training, evaluation,
and the final defect detection. This process identifies defects within X-ray images through
deep learning models, enhancing the precision and efficiency of detection.

In the field of NDT, each methodology possesses unique advantages, yet may also ex-
hibit certain limitations contingent upon the application. Five distinct inspection techniques
have been discussed, with Table 1 providing a summary of these technologies, thereby
laying the groundwork for a discussion on integrating these methods into a comprehensive,
multifaceted detection strategy.
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Table 1. Advantages and limitations of NDT testing techniques for surface and internal defects.

Method Advantages Limitations

MPT
Sensitive to surface and slightly subsurface flaws; direct
and visible flaw indications; fast inspection process;
applicable to a wide range of ferromagnetic materials

Limited to ferromagnetic materials; surface
preparation required; skill-dependent technique;
magnetization and demagnetization may affect
some materials

PT
Simple and low-cost method; sensitive to surface flaws
in non-magnetic materials; no complex equipment
needed; visible and direct indication of flaws

Suitable only for surface and subsurface defects;
ineffective on rough or porous surfaces; chemicals
may pose environmental and health risks

ECT
High sensitivity for surface and near-surface flaw
detection; measures conductivity and other material
properties; capable of rapid scanning and automation

Limited to conductive materials; restrictions on
material thickness and geometry; high skill level
required for operators

UT
High penetration depth suitable for thick materials;
accurate defect location and sizing; detects both internal
and surface flaws; portable for field applications

Requires highly trained operators; surface must be
smooth for effective coupling; relatively expensive
equipment; less effective on heterogeneous, rough,
or porous materials

RT
Detects internal defects; intuitive image-based results on
film or digital formats; suitable for various materials
and thicknesses; precise defect localization

Radiation safety is a major concern; high
equipment and operational costs; requires
controlled environment for safety

In practical nondestructive testing applications, it is of great significance to select
the appropriate method, which requires careful consideration of material properties, the
nature and orientation of potential defects, part geometry, and the overall safety and cost-
effectiveness of the inspection process. These factors dictate the suitability and effectiveness
of each NDT technique and acknowledging their interplay is crucial for accurate assess-
ments. This understanding sets the stage for multi-factor NDT methods, where combining
techniques can compensate for individual limitations and provide a more robust evaluation
of component integrity.

In the subsequent sections, we delve into the principles and applications of multi-factor
NDT methods, illustrating how they leverage the complementary nature of traditional
NDT techniques to achieve superior inspection outcomes.
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4. Multifactorial Detection Method

In the realm of nondestructive testing, reliance on a solitary technique often encounters
constraints in detection scope and sensitivity. For instance, UT is proficient at identifying
internal material defects yet demonstrates limited capacity in detecting surface or sub-
surface cracks. Conversely, ECT exhibits commendable sensitivity to surface flaws but
is inadequate for probing deeper defects. Furthermore, the precision of these modalities
is substantially compromised under high-temperature conditions or in the presence of
coatings [63]. Consequently, there is a burgeoning interest among researchers to harness
the synergistic potential of multiple inspection technologies, aiming to capitalize on the
distinct advantages of each to augment the thoroughness and accuracy of defect detection.

Shen et al. [64] have devoted their efforts to addressing the shortcomings inherent
to conventional electromagnetic acoustic testing (EMAT) and pulsed eddy current testing
(PECT) methodologies. Historically applied in isolation, these techniques have not only
impeded detection efficiency but also exacerbated the complexity of testing. A novel
amalgamated technique has been proposed that exploits the partial PECT information
intrinsic to the signals produced by EMAT. By employing precise waveform analysis
and signal processing, this approach enables the concurrent evaluation of surface and
subsurface anomalies in conductive materials such as aluminum plates, as illustrated in
Figure 12, which delineates the constituent elements of the experimental EMAT/PECT
system. By advancing numerical modeling and refining signal processing algorithms,
this method achieves efficacious integration of EMAT and PECT signals, surmounting the
inefficiencies and intricacies of operation.
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David et al. [65] have conceived an automated inspection apparatus, the quintessential
components of which are illustrated in Figure 13. This system amalgamates ultrasonic and
eddy current inspection modalities and is designed to facilitate simultaneous ultrasonic
and eddy current examinations through the incorporation of scanners on rail guiders. This
integrative scheme is especially apt for high-temperature operational settings, mitigating
operator exposure to high-temperature components, thus enhancing safety. Moreover, it
broadens the inspection scope and augments the likelihood of flaw detection by melding
disparate inspection technologies.
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Figure 13. Automated inspection system elements: 1—orbital guide around the pipe; 2—quick
tightening joint; 3—air-cooled housing; 4—water-cooled base plate; 5—probe holder [65].

Aleshin et al. [66] have scrutinized the constraints of conventional ultrasonic in-
spections and magnetic particle testing in discerning surface cracks within weld joints,
particularly those obscured by anticorrosive coatings. This methodology integrates phased
array ultrasonic technology with eddy current testing, enabling the detection of fissures
without necessitating the removal of anticorrosive layers. The efficacy hinges on the en-
hanced precision afforded by phased array ultrasonic technology, complemented by eddy
current testing to corroborate the existence of cracks, thus permitting an assessment of
the cracks without stripping the coating. Murav’eva et al. [67] have promoted an ad-
vanced multi-technique nondestructive testing strategy, facilitating a more comprehensive
inspection of defects within the connectors of pumps and compressors, as depicted in
Figure 14. The incorporation of magnetic particle, eddy current, and ultrasonic shadow
testing methodologies enables the detection of surface, subsurface, and certain in-depth
flaws. The magnetic particle approach yields surface defect detection, eddy current testing
elucidates the depth and orientation of cracks, and ultrasonic shadow testing leverages
Rayleigh waves to detect minute apertures and shallow defects. This multi-modal approach
substantially enhances the efficiency and precision of detection, particularly within the
convoluted milieu of industrial settings.

These investigations highlight the significant advantages of integrating multiple non-
destructive testing methodologies, thereby greatly improving the limitations of singular
approaches and significantly contributing to the enhancement of safety evaluations for
industrial apparatuses and structures. Future research endeavors will continue to refine
these integrated methods to better suit various environmental conditions and elevate the
automation and intelligence quotient of the testing processes, aiming for more efficacious
and accurate detection outcomes.
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5. Conclusions

In summary, it is recognized that the field of NDT is undergoing significant technologi-
cal advancements, particularly within internal inspection methodologies such as ultrasonic
and radiographic testing. The integration of advanced image processing technologies
and data analytics tools has led to enhanced precision and resolution in defect detection.
External inspection techniques like eddy current testing, magnetic particle testing, and dye
penetrant inspection are also harnessing the power of the Internet of Things and automa-
tion to improve operational efficiency and real-time monitoring capabilities. Moreover,
the emergence of multifactorial inspection approaches, which combine multiple testing
techniques to assess the integrity of materials or structures, represents a crucial trend in
NDT. This trend significantly elevates the comprehensiveness and reliability of inspections
by integrating diverse signals and data sources.

Nonetheless, challenges persist, including the need to inspect more complex structures
and novel materials, increasing the portability of inspection devices, and reducing inspec-
tion cycle times. Concurrently, as the application of new crystalline materials becomes
more widespread, NDT techniques face the challenge of adapting to the unique properties
of these materials. For instance, the anisotropy of crystalline materials may affect the propa-
gation path in ultrasonic testing and the attenuation characteristics in radiographic testing,
necessitating the development of more advanced algorithms and calibration techniques to
ensure accuracy in detection. Future directions may include optimizing inspection methods
for specific crystal structures and employing artificial intelligence and machine learning
technologies to tackle the challenges posed by the complexity of crystalline materials in
data interpretation. Furthermore, the development of multimodal NDT systems, which can
combine the advantages of different technologies, will be crucial for effectively addressing
the inspection challenges of crystalline materials. Therefore, the future development of
NDT technologies will need to focus not only on enhancing the portability of devices and
optimizing inspection cycles but also on improving the recognition capabilities for the
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characteristics of crystalline materials, ensuring that structural safety is maintained while
adapting to the evolution of emerging material technologies.
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