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Abstract: A new binuclear "paddle-wheel" complex, [Co2(bhbz)4(EtOH)2]·4EtOH (1, Hbhbz-3,5-
di(tert-butyl)-4-hydroxybenzoic acid); an isostructural zinc complex (2); a and magnetically diluted
sample of [Zn1.93Co0.07(bhbz)4(EtOH)2]·4EtOH (3) were obtained. Molecular structures of 1 and 2
were determined by single-crystal X-ray diffraction. DFT calculations for 1 indicate strong Co-Co
antiferromagnetic exchange interactions in the binuclear fragment. It was shown that when one
paramagnetic ion in the binuclear molecule is replaced by a diamagnetic zinc(II) ion, the remaining
cobalt(II) ion can be considered as an isolated center with magnetic anisotropy, the parameters
of which are determined by ab initio calculations. Magnetic properties for samples 1 and 3 were
investigated and analyzed in detail.

Keywords: cobalt carboxylate complexes; magnetic dilution; single-crystal X-ray structure; ab initio
calculations; magnetic properties

1. Introduction

High interest in coordination compounds based on paramagnetic 3d metal ions is
caused by the origination of unique magnetic responses, paving the way to a solution of
fundamental as well as practical tasks of different complexities [1–6]. The anisotropy of
g-tensor parameters, reversible transitions from the low- to the high-spin state of metal
centers, as well as exchange interactions between metal centers, stimulating magnetic
ordering in the crystal, etc., may be useful for creating memory elements [7–9], optical
sensors [10], and soft mechanical actuators [11]. High-spin cobalt(II) ions have maximum
magnetic anisotropy in a number of 3d metals [12–15], which makes them a promising
platform for the effective tuning of axial magnetic anisotropy through a crystal field and
obtaining compounds exhibiting slow magnetic relaxation.

The relevance of obtaining multicenter structures promoted the development of single-
molecule magnets (SMMs), obtaining structures of different nuclearity from binuclear to
84-nuclear [16], in which exchange interactions between paramagnetic centers can be tuned
and slow magnetic relaxation and/or magnetic ordering can be realized [17]. The necessity
of adjusting the axial magnetic anisotropy of metal ions determined the direction for the
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synthesis of single-ion magnets (SIMs), in which the electronic structure of an ion under
the control of a crystal field determines the properties of a molecule in the crystal [17].
Determination of the genuine magnetic properties of isolated molecules in most known
SIM examples is unattainable without magnetic dilution which prevents dipole interactions
and quantum tunneling of magnetization (QTM), as well as without ab initio calculations
for estimating the maximum operating parameters of the molecule.

In most cases, magnetic dilution is performed for single-center cobalt(II) complexes
in order to analyze relaxation processes. For example, a complex based on a tetrahedral
dianion, [Co(SPh)4]2−, was studied in [18]; it has large negative axial ZFS (D = −70 cm−1)
according to the results of calculations and demonstrates slow relaxation in the absence
of an applied field. As the field strength increases, the intensity of one relaxation process
(at a higher frequency) decreases while the intensity of the other (at a lower frequency)
increases. This reflects the change in relaxation mechanisms from thermal activation
(at higher frequencies) to quantum tunneling (at lower frequencies) depending on the
magnitude of the applied direct current (DC) magnetic field. The study of relaxation
mechanisms for an isomorphic magnetically diluted ZnCo sample showed that the second
relaxation process—that is, the evidence of the intermolecular nature of the second process
observed in the original sample—was not observed. In the investigation performed by
Zadrozny and co-authors [19], it was shown that the magnetic dilution of the mononu-
clear complex K(Ph4P)[Co(OPh)4] “switched off” the intermolecular exchange interactions
which prevented the observation of thermally activated magnetic relaxation. The magnetic
dilution of the complex [Co(L)(OAc)Y(NO3)2] (where L is N,N′,N′′-trimethyl-N,N′′-bis(2-
hydroxy-3-methoxy-5-methylbenzyl)-diethylenetriamine) [20] showed that the observed
slow magnetic relaxation is realized with the participation of optical/acoustic Raman pro-
cesses since the dependence of the relaxation time is determined by the law T−n at n = 4.5,
whereas Raman relaxation for the Kramers ion is expected only at n = 9. Magnetic dilution
can also lead to a change in the coordination geometry of cobalt ions, which was studied in
detail in the example of a mononuclear complex. The sample changed the environment
of cobalt ions from CoN2O4 (a distorted octahedron) to CoN2O2 (a distorted tetrahedron),
which was caused by increasing Co-O distances during the transition to a diamagnetic
sample; this was accompanied by a change in the sign of magnetic anisotropy and a switch-
ing of relaxation mechanisms [21]. Recently, the 3D polymer (CH6N3)[Co(HCOO)3] has
been studied, and for it, spin-canted antiferromagnetism, together with hysteresis below
TN = 14 K, has been revealed [22]. In this work, it was shown that a similar diamagnetic
matrix, (CH6N3)[Zn(HCOO)3], can be used for Co(II) ion doping, manifesting itself as an
SIM with a positive D term of zero-field splitting.

Carboxylates of 3d metals are being actively investigated for various applications. It
is worth noting that the ability to adjust coordination modes in carboxylate complexes
allows for varying the parameters of exchange interactions. The tetracarboxylate dimer of
copper(II) acetate in which strong antiferromagnetic interactions are realized is a classic
example of spin-coupled systems. Similar dimers of chromium(III), manganese(II), iron(II),
and nickel(II) ions have also been studied. The geometry of the coordination environment
of the metal atom in such compounds corresponds to a square pyramid or a vacant oc-
tahedron. Mononuclear complexes in which planar or axial magnetic anisotropy can be
realized depending on the distortion of the polyhedron are known for Co(II) coordination
compounds. The latter fact formally makes these objects promising for SMM design. Since
we expect the occurrence of strong antiferromagnetic spin–spin exchange interactions
between ions inside the binuclear molecule LCo(µ-O2CR)4CoL, replacing one of the cobalt
atoms with a diamagnetic M(II) ion (for example, zinc) can allow us to observe the magnetic
properties of individual cobalt ions.

Substituents at carboxylate groups in such molecules can be used as a tool for control-
ling the composition and structure of the complex. At the same time, bulk substituents R
can help to shield the paramagnetic centers of molecules from each other.
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Previously, we prepared the nickel(II) binuclear complex [Ni2(bbz)4(2,3-lut)2] [23] with
sterically demanding anions of 3,5-di-tert-butyl benzoic acid (Hbbz), and the trinuclear
cobalt complex [Co3(bbz)6(EtOH)2] [24]. In order to obtain a binuclear cobalt complex
with a bulk anion of a similar structure, we used 3,5-di(tert-butyl)-4-hydroxybenzoic acid
(hbhbz). As a result, the binuclear complex [Co2(bhbz)4(EtOH)2]·4EtOH (1), which is
the object of consideration in this work, was synthesized. To study the magnetic char-
acteristics of cobalt(II) ions in 1 (taking into account magnetic dilution), we synthesized
an isostructural diamagnetic complex based on Zn(II) ions, [Zn2(bhbz)4(EtOH)2]·4EtOH
(2), and a congener in which Zn(II) ions are partially replaced by “magnetic” Co(II) ions,
[Zn1.93Co0.07(bhbz)4(EtOH)2]·4EtOH (3).

It is worth noting that compounds based on 3,5-di(tert-butyl)-4-hydroxybenzoic acid
exhibit redox-active behavior. Firstly, a catalytically promoted oxidation of Hbhbz to 2,6-
di-tert-butylhydroquinone with cobalt(II) and nickel(II) salts followed by decarboxylation
and recombination into diquinone was previously shown [23,25] (Scheme 1). Secondly,
the presence of an oxidant can generate a stable radical from bhbz, which was previously
shown on a nickel(II) complex with a coordinated bhbz anion [26]. These factors needed to
be taken into account during the synthesis of 1–3, and the reactions were carried out in an
inert atmosphere at room temperature.
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Scheme 1. The formation of 3,3′,5,5′-tetra-tert-butyl-1,1′-biphenylidene-4,4′-quinone from two
molecules of 4-hydroxy-3,5-di-tert-butylbenzoic acid.

2. Results
2.1. Synthesis and Characterization

The binuclear complexes [Co2(bhbz)4(EtOH)2]·4EtOH (1) and [Zn2(bhbz)4(EtOH)2]·
4EtOH (2) were synthesized by the interaction of corresponding metal chloride (Co2+ or
Zn2+) and potassium 3,5-di(tert-butyl)-4-hydroxybenzoate (Kbhbz) in a 1:2 molar ratio
in ethanol (Scheme 2). X-ray-quality single crystals of 1 (blue) and 2 (colorless) were
isolated directly from the mother liquor. According to XRD, compounds 1 and 2 are
isostructural. After isolation as crystalline solids, both compounds 1 and 2 were found
to be poorly soluble in ethanol. Recrystallization of 1 and 2 from acetonitrile led to a
precipitation of polycrystalline products. Recrystallization of 2 from benzene resulted in
the isolation of a new oxo-carboxylate tetranuclear complex, [Zn4O(bhbz)6]. Based on the
above reasons, the synthesis of the diamagnetically diluted sample was carried out using
the procedure described for the synthesis of 1 and 2 but with the metal ratio Co:Zn as
1:19. A polycrystalline product (blue) was isolated in two steps: the first portion (3a) in
24 h and the second one (3b) in 72 h. According to inductively coupled plasma optical
emission spectroscopy (ICP-OES), the cobalt content in 3a corresponds to 3.6%, and that in
3b corresponds to 3.9%.

After isolation of 3b, the solution was kept in air, and two types of crystals (colorless
and dark red) were isolated additionally. According to XRD, colorless crystals were complex
2, and dark red crystals were the product of oxidation/decarboxylation of bhbz acid and
the formation of diquinone (Scheme 1).
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Scheme 2. The formation of complexes 1 and 2.

The obtained IR spectra of 1–3 (Figure S1) contained stretching vibrations (in cm−1):
C-H (νas(C(CH3)3) at 2959; vas(C-Hring) at 2912 and 2876; δas(CH3) at 1452; δs(C(CH3)3) at
1323; γ(C(CH3)3) at 1202; δ(C-Hring) at 920, 890, and 695), C-C (ν(C-Cring) at 1634 and 1593),
C-O (νas(COO) at 1550; νs(COO) at 1392; ν(PhC-O) at 1241; δ(COO) at 787, 660, and 614;
ρ(COO) at 552), O-H (ν(O-H) at 3630) [27].

Intense bands of carboxylic groups are observed in Raman spectra of 1–3: 705, 931,
934 cm−1 (δ(C-Hring)); 552 (ρ(COO)); and 755 cm−1 (δ(COO)) (Figure S2). Low-intensity
bands were found in the spectrum, suggesting the presence of cobalt (Co3(HCOO)6. [28])
and/or zinc formates (Zn3(HCOO)6 [29] as an impurity in the samples. Low-intensity
bands at 780 cm−1 for 2 and 3 and 790 cm−1 for 1 and 3 can be attributed to δs(COO−) for
Zn3(HCOO)6 and Co3(HCOO)6, respectively, and the band at ~1060 cm−1 corresponds to
δas(CH) [30].

According to the XPRD data for 1–3 in the 2θ range from 5 to 45 deg (Figures S3–S5),
the samples are single-phased, and the slight background in the diffractograms may be due
to some amorphous impurity.

2.2. Crystal Structures

Compound 1 crystallizes as a binuclear complex, [Co2(bhbz)4(EtOH)2], with four
solvated ethanol molecules. The molecule of [Co2(bhbz)4(EtOH)2] is centrosymmetric; the
metal atoms are linked by four bridging carboxylate groups of bhbz (Co. . .Co 2.7266(9)
Å) (Figure 1). The cobalt atom is surrounded by five oxygen atoms, and the geometry of
the CoO5 environment corresponds to a square pyramid (τ = 0). The oxygen atoms of
carboxylate groups are located at the base of the pyramid (Co-O 2.018(2)-2.032(2) Å), the
cobalt atom deviates from the O4 plane by 0.2487(11) Å, and the axial position is occupied
by the O atom of the coordinated EtOH molecule (Co-O 2.038(2) Å). The molecular structure
of the dimeric complex is stabilized by the intramolecular C-H. . .O contacts (Table S1).

In the crystal, dimeric molecules form a supramolecular chain (Co. . .Comin 12.469 Å)
along the 0b axis through the C-H. . .π interaction between the methyl proton of the tert-
butyl group and the benzene ring of the carboxylate anion (Figure 2, Table S2). Along
the axes, the crystal packing is augmented by the intermolecular O-H. . .O interactions of
solvated ethanol molecules as well as by C-H. . .π contacts (Figure 2, Tables S1 and S2). The
Co1Co1 vector of the dimer fragment is co-directional to the 0a axis, and a chain of dimers
(Co. . .Comin 8.945 Å) contacting through the H-bonds of coordinated and solvated ethanol
molecules is lined up along it (Figure 2, Table S1). The nearest distance between the metal
atoms of adjacent molecules located along the 0c axis and interacting only due to van der
Waals contacts is 12.988 Å (Figure 2).
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Compound 2 is isostructural to 1. Close values of interatomic distances and angles in
1 and 2 are observed. The intramolecular distance of Zn. . .Zn is 2.8784(6) Å), Zn-O(O2CR)
bond lengths are in the range of 2.0300(11)-2.0436(11) Å, Zn-O(EtOH) is 1.9905(11) Å, and
the zinc atom deviates from the plane of the pyramid base by 0.3240(6) Å. The transition
from a Co- to Zn-containing complex is accompanied by minor changes in the structure
of the molecule [M2(bhbz)4(EtOH)2]: increasing the distance M. . .M by 0.151 Å causes
displacement of the zinc atom closer to the geometrical center of the square pyramid (by
0.076 Å) and is partially compensated by the proximity of the oxygen atom of the ethanol
molecule (by 0.049 Å). This change in the geometry of the coordination environment can
be expressed by the square pyramid distortion criterion defined by the Continuous Shape
Measures approach: SQ(1) = 0.465 and SQ(2) = 0.326.

The observed M-O and C-O bond lengths agree well with the known data for dimeric
Co and Zn complexes of similar structures [31–34].

2.3. Calculations
2.3.1. BS/DFT

To assess the strength of exchange interactions of Co2+ ions in binuclear complex 1,
density functional theory (DFT) was applied to calculate the exchange coupling constant J.
Broken-symmetry calculations were performed on molecular geometries extracted from the
X-ray data at the B3LYP/def2-TZVP level of theory (ESI, Table S3) [35–37]. Assuming that
the dominant magnetic exchange between adjacent Co ions in the structure occurs through
oxygen atoms belonging to carboxylate bridges, the following Heisenberg–Dirac–Van Vleck
Hamiltonian was applied [38,39],

Ĥ = −2JCo1−Co2
[
ŜCo1ŜCo2

]
(1)

where Ŝ is the total spin momentum operator and JCo1−Co2 is a parameter corresponding to
Co-Co exchange coupling.

Since the intermetallic distance is quite small, a significant overlap of local magnetic
orbitals is possible in the complex, for which the Yamaguchi [40] interaction theory was
used (ESI). The resulting parameter J = −62.73 cm−1 is negative, which indicates the
presence of strong antiferromagnetic interactions in 1.

2.3.2. Ab Initio

For theoretical interpretation and for proof that the absence of relaxation in the case
of 1 is caused precisely by antiferromagnetic exchange, ab initio multiconfigurational
calculations were carried out using the CASSCF/NEVPT2/def2-TZVP level. Calculations
were also carried out for the Co2+ ion in the diamagnetically diluted complex 3, i.e., a
“Zn-matrix”. The geometry of the cobalt(II) environment in 1 and 3 was taken from X-ray
data for 1 and 2, respectively. The symmetry of the point group for polyhedrons in both
complexes corresponds to C4v with the distortion parameters 0.022 for 1 and 0.032 for 3.

For the d7 configuration, the terms in spherical symmetry are 4F. With the application of
a C4v crystal field, the term splits into 4T2, 4T1, and 4A2 [41]. Next, the 4T2 triplet splits into
a 4E doublet and a 4A2 singlet. In the case of the lowest energy, the ground state is a singlet,
and the spin Hamiltonian formalism is applicable. However, for tetragonal-pyramidal
complexes, there may be a contribution from the unquenched orbital momentum [42–44],
since at the electronic level it is possible to consider both for an elongated bipyramid [45].
In this case, the ground state is an orbital doublet, and it is necessary to operate with the
Griffith–Figgis Hamiltonian formalism [46],

H = −3
2

κλLS + ∆ax

[
L − 1

3
L(L + 1)

]
+ ∆rh(L̂2

X − L̂2
Y) + µBB

(
geŜ − 3

2
κL

)
(2)
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where κ is an orbital reduction factor (often 0.7–1), λ is a spin-orbit splitting parameter, L = 1
(due to T-P isomorphism), L̂ is a vector operator of angular momentum and its components
(x, y, z), and ∆ax and ∆rh are axial and rhombic parameters of a crystal field.

The calculated energies of the main terms for complexes 1 and 3 are given in Table 1.
In the case of 1, the calculated parameter ∆ax > 0, which makes it possible to use the
spin Hamiltonian to interpret the dc-magnetic behavior. The axial parameter of ZFS is
90.288 cm−1, and “easy-plane” anisotropy with close values is quite typical for cobalt
complexes with SPY or vOC geometry of the coordination environment [47–55]. In contrast,
for the Co2+ ion in Zn-diluted complex, the ground crystal-field term is double degenerate
and ∆ax < 0. However, the effective Hamiltonian-calculated parameters show that D for
this complex must be positive. The E/D ratio for this complex is quite high (0.289), which
raises questions about the genuine nature of the D sign and indicates the implementation
of triaxial anisotropy [43,56–59].

Table 1. CASSF/NEVPT2-calculated values of parameters of the spin Hamiltonian and the Griffith–
Figgis Hamiltonian for the ground term.

1 3

Initial States (cm−1)

4A2 0 4E
0

395.6

4E
679 4A2 1117.81296.9

SH parameters from effective Hamiltonian for the ground term

D (cm−1) 90.288 100.565
E/D 0.203 0.269
gx 1.831 1.746
gy 2.625 2.589
gz 2.983 3.102

giso 2.48 2.479
GF Hamiltonian

∆ax (cm−1) 987.95 −920.0
∆rh (cm−1) 308.95 |197.8|
λ (cm−1) −173.41 λ = −173.331

At the same time, it is possible to estimate the energies of the Kramers doublets
(KDs) quite accurately, since they depend notably on the splitting of terms as the spherical
symmetry decreases. Comparative analysis of KD energies (Table 2) indicates a significant
change in the electronic structure of Co2+ ions upon Zn dilution of complex 1.

Table 2. CASSCF/NEVPT2-calculated values of the six lowest Kramers doublets (cm−1).

1 3

0 0
191.4 221.9
953.5 736.5

1150.6 986.1
1636.6 1523.9
1697.4 1594.2

For 1 and 3, the first excited KDI is located at a distance exceeding the phonon energy,
which excludes the possibility of implementing the classical Orbach process. In the first
complex, the energy difference between KDI and KDII is 762.1 cm−1, which implies that
the magnetic behavior for one Co2+ ion is determined exclusively by the orbital singlet. For
the second complex, a negative value of ∆ax means that the excited orbital singlet 4A2 does
not affect the magnetic data, which are determined exclusively by the doublet 4E [60]. In a
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first approximation, the probabilities for the implementation of relaxation mechanisms are
close for each of the Co2+ ions. It is also possible for 3 to compete with direct/Raman and
TA-QTM (Figure S6). In other words, the absence of slow magnetic relaxation for the first
complex is determined by the presence of AF exchange.

Also, for a complete view of the electronic structure of the ions in both cases, the ener-
gies of the d-orbitals were calculated using ab initio ligand field theory (AILFT) (Figure 3).
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The last doubly occupied orbital is dxz, and the first half-occupied orbital for both
complexes is dz

2. Since these orbitals have different |ml| values, the contribution to the
value of the axial ZFS parameter D must be positive [53,61,62]. The energy gap for complex
1 is 1408.1 cm−1, while in the case of 3, the transition energy is only 1030.8 cm−1, which
explains the higher D values for the first complex.

2.4. Magnetic Properties

The results of the study of magnetic properties of 1 are presented in Figure 4. The
value of χT at 300 K is 4.57 cm3·K·mol−1, which is significantly lower than the theoretical
value of 6.85 cm3·K·mol−1 for two noninteracting Co(II) ions with spin S = 3/2. Upon
temperature lowering, χT decreases, reaching a small plateau at ~0.16–0.18 cm3·K·mol−1

below 25 K, which indicates the presence of strong antiferromagnetic exchange interactions
leading to the compensation of spins in the binuclear molecule and, as a consequence, to
the diamagnetic ground state. Non-zero values of χT below 25 K are associated with the
presence of a small amount of paramagnetic impurity (p < 3%). The repeated studies of
the magnetic susceptibility of the newly obtained sample 1 confirmed the reproducibility
of the observed magnetic data. The presence of a significant orbital contribution to the
magnetic susceptibility (that is common for Co(II) ions) complicates the analysis of experi-
mental data. Simultaneous consideration of spin-orbital and exchange interactions leads to
overparameterization, which prevents correct values of the energy of exchange interactions
in the dimer from being obtained.

EPR spectroscopy at 10 K shows that sample 1 does not possess the X-band signal.
This fact confirms the diamagnetic ground state of the dimer (S = 0), i.e., the performance of
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strong exchange interactions between paramagnetic centers (see section BS/DFT), leading
to a complete pairing of the spins.
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The magnetic behavior of the diamagnetically diluted sample 3 is strongly different from
that of binuclear complex 1. The χT value of 3 at room temperature is 0.35 cm3·K·mol−1,
which corresponds to the cobalt(II) ion content of ~3% in the sample. As the temperature de-
creases, the value of χT decreases gradually to 0.17 cm3·K·mol−1 at 2 K (Figure 5). Analysis
of the χT(T) dependence in the temperature range 2–130 K allows us to estimate the mag-
netic anisotropy parameter D. The optimal value of D obtained by analysis in the framework
of the spin Hamiltonian (3) taking into account the correction for temperature-independent
paramagnetism (TIP) is 75.0 cm−1 at giso = 2.5 and TIP = 1.15 × 10−4 (R2 = 6.7 × 10−5).

Ĥ = DŜ2 + gisoβŜH (3)

Crystals 2024, 14, x FOR PEER REVIEW 10 of 18 
 

 

 
Figure 5. Temperature dependence of χT for 3 (H = 5 kOe). Blue line is simulation of experimental 
data in the temperature range 2–130 K (see main text). 

The field dependence of the magnetization for complex 3 (Figure S7) attained 
saturation with ~0.22 µB magnetization values. This fact is consistent with the 
presumable level of Co(II) content in sample 3, about 3.7%. 

The X-band EPR spectroscopic studies for 3 at 10 K recorded a signal (Figure S8) that 
was simulated using EasySpin software. The EPR spectrum of complex 3 is typical for 
high-spin Co(II) ions; the width of the line is 6 mT. The simulated spectrum at the 
effective spin of the system S = 1/2 allowed us to determine the Hamiltonian parameters: 
gx = gy = 4.6; gz = 2.11. The Hamiltonian parameters for the model of effective spin S = 3/2 
are as follows: gx = gy = 2.29; gz = 2.12. The estimated value of the zero-field splitting 
parameter D of the cobalt(II) ion used in the simulations was about 23 cm−1. The 
parameter D has a positive sign; i.e., the state with spin ±1/2 is the ground state. It is not 
possible to refine the rhombicity parameter E.  

AC measurements in a zero external magnetic field for 3 showed the growth of the 
frequency dependence of the imaginary part of dynamic magnetic susceptibility at 2 K, 
but no maxima were observed. This indicates the presence of slow magnetic relaxation 
but does not allow us to quantify the relaxation processes in the complex. In order to 
suppress the possible influence of the quantum tunneling of magnetization (QTM), we 
varied the strength of the external magnetic field. The optimal value of the magnetic field 
strength at which the relaxation time for a given sample is maximal is 1000 Oe (Figures S9 
and S10) for 3 (the maximum of the frequency dependence of the imaginary part of 
dynamic magnetic susceptibility is located at the minimum possible frequency). 
Measurements of isotherms of frequency dependences of dynamic magnetic 
susceptibility in an optimal external DC magnetic field and approximation of χ″ (ν) using 
the generalized Debye model (Figure 6) allow us to deduce dependences of the relaxation 
time from the inverse temperature τ(1/T) (Figure 7). The dependence τ(1/T) over the 
investigated temperature range for 3 is approximated by the Raman (τRaman−1 = CRaman·Tn) 
mechanism: CRaman = 0.038 ± 0.020 K-ns−1; n = 7.6 ± 0.3. The value of the Raman exponent is 
close to the common value for a Kramers ion such as Co(II), n = 7, and the CRaman value is 
in the expected range of 10−5 to 10−1 [63]. The Cole–Cole plots imply a single relaxation 
magnetic center (Figure S11). 

Figure 5. Temperature dependence of χT for 3 (H = 5 kOe). Blue line is simulation of experimental
data in the temperature range 2–130 K (see main text).

The field dependence of the magnetization for complex 3 (Figure S7) attained satura-
tion with ~0.22 µB magnetization values. This fact is consistent with the presumable level
of Co(II) content in sample 3, about 3.7%.

The X-band EPR spectroscopic studies for 3 at 10 K recorded a signal (Figure S8)
that was simulated using EasySpin software. The EPR spectrum of complex 3 is typical
for high-spin Co(II) ions; the width of the line is 6 mT. The simulated spectrum at the
effective spin of the system S = 1/2 allowed us to determine the Hamiltonian parameters:
gx = gy = 4.6; gz = 2.11. The Hamiltonian parameters for the model of effective spin S = 3/2
are as follows: gx = gy = 2.29; gz = 2.12. The estimated value of the zero-field splitting
parameter D of the cobalt(II) ion used in the simulations was about 23 cm−1. The parameter
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D has a positive sign; i.e., the state with spin ±1/2 is the ground state. It is not possible to
refine the rhombicity parameter E.

AC measurements in a zero external magnetic field for 3 showed the growth of the
frequency dependence of the imaginary part of dynamic magnetic susceptibility at 2 K,
but no maxima were observed. This indicates the presence of slow magnetic relaxation
but does not allow us to quantify the relaxation processes in the complex. In order to
suppress the possible influence of the quantum tunneling of magnetization (QTM), we
varied the strength of the external magnetic field. The optimal value of the magnetic
field strength at which the relaxation time for a given sample is maximal is 1000 Oe
(Figures S9 and S10) for 3 (the maximum of the frequency dependence of the imaginary
part of dynamic magnetic susceptibility is located at the minimum possible frequency).
Measurements of isotherms of frequency dependences of dynamic magnetic susceptibility
in an optimal external DC magnetic field and approximation of χ′′ (ν) using the generalized
Debye model (Figure 6) allow us to deduce dependences of the relaxation time from
the inverse temperature τ(1/T) (Figure 7). The dependence τ(1/T) over the investigated
temperature range for 3 is approximated by the Raman (τRaman

−1 = CRaman·Tn) mechanism:
CRaman = 0.038 ± 0.020 K−ns−1; n = 7.6 ± 0.3. The value of the Raman exponent is close to
the common value for a Kramers ion such as Co(II), n = 7, and the CRaman value is in the
expected range of 10−5 to 10−1 [63]. The Cole–Cole plots imply a single relaxation magnetic
center (Figure S11).

Crystals 2024, 14, x FOR PEER REVIEW 11 of 18 
 

 

  
(a) (b) 

Figure 6. Frequency dependences of the real (χ′) (a) and imaginary (χ″) (b) parts of the dynamic 
magnetic susceptibility of 3 at 2.25–5.25 K in 1000 Oe external DC magnetic field. Solid 
lines—approximation of experimental data using the generalized Debye model. 

 
Figure 7. Temperature dependence of relaxation frequency for 3 in 1000 Oe dc-field. Red solid 
line—approximation using the Raman mechanism. 

3. Discussion 
Initially, we designed this investigation aiming to reveal the effect of the 

diamagnetic dilution of the binuclear paddle-wheel type complex 1 on its magnetic 
properties. During the investigation, we were surprised by the following features of the 
object under study: (i) A low solubility of the complex 1 in ethanol complicated its 
possible purification by recrystallization. (ii) The oxidation of the bhbz anion to 
3,3′,5,5′-tetra-tert-butyl-1,1′-biphenylidene-4,4′-quinone in the presence of metal ions 
opened one more way for sample contamination. The quinone has a good solubility in 
ethanol and in all cases crystallized after isolation of crystals 1–3 by prolonged storage of 
the mother liquor. The most serious problem for the isolation of desirable complexes as a 
pure phase is the oxidation co-product (presumably formate), which according to the 
spectral and magnetochemical data (for 1) can co-crystallize with 1–3 as an impurity. 
Cobalt(II) formates are three-dimensional coordination polymers (Dcalc: ~1.8–1.9 g·cm−3 vs. 
1.2 g·cm−3 for 1 and 2) exhibiting spin-canted antiferromagnetism or weak ferromagnetic 
properties [64]. An impurity of such a magnetic substance with a high concentration of 
paramagnetic centers (CCo is close to ~26% for cobalt formate vs. 9% for 1) can make an 
accurate interpretation of magnetic data impossible for the initial complex 1 and the 
magnetically diluted sample. The specific intensity of the cobalt formate magnetization is 

Figure 6. Frequency dependences of the real (χ′) (a) and imaginary (χ′′) (b) parts of the dynamic
magnetic susceptibility of 3 at 2.25–5.25 K in 1000 Oe external DC magnetic field. Solid lines—
approximation of experimental data using the generalized Debye model.

Crystals 2024, 14, x FOR PEER REVIEW 11 of 18 
 

 

  
(a) (b) 

Figure 6. Frequency dependences of the real (χ′) (a) and imaginary (χ″) (b) parts of the dynamic 
magnetic susceptibility of 3 at 2.25–5.25 K in 1000 Oe external DC magnetic field. Solid 
lines—approximation of experimental data using the generalized Debye model. 

 
Figure 7. Temperature dependence of relaxation frequency for 3 in 1000 Oe dc-field. Red solid 
line—approximation using the Raman mechanism. 

3. Discussion 
Initially, we designed this investigation aiming to reveal the effect of the 

diamagnetic dilution of the binuclear paddle-wheel type complex 1 on its magnetic 
properties. During the investigation, we were surprised by the following features of the 
object under study: (i) A low solubility of the complex 1 in ethanol complicated its 
possible purification by recrystallization. (ii) The oxidation of the bhbz anion to 
3,3′,5,5′-tetra-tert-butyl-1,1′-biphenylidene-4,4′-quinone in the presence of metal ions 
opened one more way for sample contamination. The quinone has a good solubility in 
ethanol and in all cases crystallized after isolation of crystals 1–3 by prolonged storage of 
the mother liquor. The most serious problem for the isolation of desirable complexes as a 
pure phase is the oxidation co-product (presumably formate), which according to the 
spectral and magnetochemical data (for 1) can co-crystallize with 1–3 as an impurity. 
Cobalt(II) formates are three-dimensional coordination polymers (Dcalc: ~1.8–1.9 g·cm−3 vs. 
1.2 g·cm−3 for 1 and 2) exhibiting spin-canted antiferromagnetism or weak ferromagnetic 
properties [64]. An impurity of such a magnetic substance with a high concentration of 
paramagnetic centers (CCo is close to ~26% for cobalt formate vs. 9% for 1) can make an 
accurate interpretation of magnetic data impossible for the initial complex 1 and the 
magnetically diluted sample. The specific intensity of the cobalt formate magnetization is 

Figure 7. Temperature dependence of relaxation frequency for 3 in 1000 Oe dc-field. Red solid
line—approximation using the Raman mechanism.



Crystals 2024, 14, 76 11 of 17

3. Discussion

Initially, we designed this investigation aiming to reveal the effect of the diamagnetic
dilution of the binuclear paddle-wheel type complex 1 on its magnetic properties. Dur-
ing the investigation, we were surprised by the following features of the object under
study: (i) A low solubility of the complex 1 in ethanol complicated its possible purification
by recrystallization. (ii) The oxidation of the bhbz anion to 3,3′,5,5′-tetra-tert-butyl-1,1′-
biphenylidene-4,4′-quinone in the presence of metal ions opened one more way for sample
contamination. The quinone has a good solubility in ethanol and in all cases crystallized
after isolation of crystals 1–3 by prolonged storage of the mother liquor. The most serious
problem for the isolation of desirable complexes as a pure phase is the oxidation co-product
(presumably formate), which according to the spectral and magnetochemical data (for
1) can co-crystallize with 1–3 as an impurity. Cobalt(II) formates are three-dimensional
coordination polymers (Dcalc: ~1.8–1.9 g·cm−3 vs. 1.2 g·cm−3 for 1 and 2) exhibiting spin-
canted antiferromagnetism or weak ferromagnetic properties [64]. An impurity of such
a magnetic substance with a high concentration of paramagnetic centers (CCo is close to
~26% for cobalt formate vs. 9% for 1) can make an accurate interpretation of magnetic
data impossible for the initial complex 1 and the magnetically diluted sample. The specific
intensity of the cobalt formate magnetization is higher than that of 1, which is consistent
with problems that we faced in performing the approximation of the χT(T) dependences.

4. Materials and Methods
4.1. Instruments

Synthetic manipulations were performed using the standard Schlenk technique. All
reagents were commercially available and were used without further purification (ZnCl2,
CoCl2·6H2O, Hbhbz, KOH, EtOH). The IR spectra of the compounds were recorded on
a Perkin Elmer Spectrum 65 spectrophotometer equipped with a Quest ATR Accessory
(Specac) with attenuated total reflectance (ATR) in the range of 400-4000 cm−1. The Raman
spectra were acquired using a SOL Instruments Confotec NR500 (excitation wavelength,
785 nm; radiation power, 7.5 mW; the accumulation time and the number of counts were
5 s and 5, respectively) with an Olympus PLN 20X Objective (Numerical Aperture 0.4).
Elemental analysis was performed on an automatic EuroEA-3000 C, H, N, S analyzer
(EuroVektor). The cobalt and zinc concentrations in the samples were determined by
optical emission spectroscopy with inductive-coupled plasma (ICP-OES), using a Thermo
Scientific iCAP XP spectrometer. X-ray powder diffraction (XRPD) patterns were recorded
with a Bruker D8 Advance diffractometer using CuKα radiation (λ = 1.5406 Å) within a
2θ range of 5–45◦ and with a signal collection time of 0.1 s per step. Magnetic behavior
was studied using a Quantum Design PPMS-9 system. The temperature dependences
of the magnetization (M) were measured in a 0.5 T magnetic field in the temperature
range of 2–300 K during cooling. During AC susceptibility measurements in the frequency
range of 10–105 Hz, the alternating magnetic field amplitude was Hac = 1–5 Oe. The
measurements were carried out on samples that were moistened with mineral oil to prevent
any texturizing of the particles in the DC magnetic field. The prepared samples were sealed
in polyethylene bags. The magnetic susceptibility χ = M/H was determined taking into
account the contribution of the bag and that of the mineral oil. The obtained data for 3
were recalculated per cobalt atom according to ICP-OES results. EPR spectra were recorded
using Bruker Elexsys E580 spectrometer at the X-band (9 GHz) in continuous wave mode.
The spectrometer was equipped with an Oxford Instruments temperature control system,
and powder polycrystalline spectra were measured at T = 10 K.

4.2. Synthesis

General procedure. Potassium 3,5-di-tert-butyl-4-hydroxybenzoate Kbhbz was gen-
erated in situ by the reaction of KOH (112 mg, 2 mmol) and Hbhbz (500 mg, 2 mmol) in
EtOH (15 mL). The solution of Kbhbz was added to a solution of CoCl2·6H2O or anhydrous
ZnCl2 (1 mmol) in EtOH (25 mL) in an inert atmosphere. The reaction mixture was kept at
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room temperature for 30 min upon stirring, and then it was filtered from KCI. The residual
solution was kept at room temperature in an inert atmosphere.

[Co2(bhbz)4(EtOH)2]·4EtOH (1). CoCl2·6H2O (238 mg, 1 mmol), potassium hydroxide
KOH (112 mg, 2 mmol), Hbhbz (500 mg, 2 mmol), and EtOH (40 mL) were used. The violet
solution was kept at room temperature under vacuum. Blue single crystals obtained in 24 h
were decanted, washed with cold (5 ◦C) EtOH, and dried under ambient conditions. The
yield was 1.02 g (73%). Anal. Calc. for C72H120O18Co2: C, 62.43; H, 8.71. Found: C, 62.16;
H, 8.63.

[Zn2(bhbz)4(EtOH)2]·4EtOH (2). Anhydrous ZnCl2 (136 mg, 1 mmol), potassium
hydroxide KOH (112 mg, 2 mmol), Hbhbz (500 mg, 2 mmol), and EtOH (40 mL) were used.
The yellow solution was kept at room temperature under vacuum. Single crystals obtained
in 24 h were decanted, washed with cold (5 ◦C) EtOH, and dried under ambient conditions.
The yield was 1.08 g (77%). Anal. Calc. for C72H120O18Zn2: 61.62; H, 8.56. Found: C, 61.89;
H, 8.51.

[Co1.93Zn0.07(bhbz)4(EtOH)2]·4EtOH (3). Two solutions were prepared under vacuum.
The first one was prepared from anhydrous ZnCl2 (258 mg, 1.9 mmol), KOH (202 mg,
3.8 mmol), Hbhbz (950 mg, 3.8 mmol), and EtOH (40 mL). The second one was prepared
from CoCl2·6H2O (24 mg, 0.1 mmol), KOH (11 mg, 0.2 mmol), Hbhbz (50 mg, 0.2 mmol),
and EtOH (20 mL). The solutions were mixed and then kept at room temperature under
vacuum. Violet single crystals obtained in 24 h were decanted, washed with cold (5 ◦C)
EtOH, and dried under ambient conditions. The cobalt–zinc ratio in 3 was detected by
ICP-OES.

4.3. Single-Crystal X-ray Diffraction

Single-crystal X-ray studies of crystals 1 and 2 were carried out on a Bruker APEX II
diffractometer with a CCD detector (MoKα, λ = 0.71073 Å, graphite monochromator) [65].
A semiempirical adjustment for absorption was introduced for 1 and 2 [66]. The structures
were solved with direct methods and refined by the least-squares method in the full-
matrix anisotropic approximation on F2. All hydrogen atoms were located in calculated
positions and refined within the riding model. All calculations were performed using the
SHELXTL [67,68] and Olex2 [69] software packages. The structures were solved using
restraints (DFIX, ISOR) and taking into account the disorder of solvent molecules. The
crystallographic parameters and the structure refinement statistics are shown in Table 3.
Supplementary crystallographic data for the compounds synthesized are given in CCDC
numbers 2320605 (for 1) and 2320606 (for 2). These data can be obtained free of charge from
The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif
(accessed on 22 December 2023).

Table 3. Selected crystal data and parameters for structure refinement of 1 and 2.

Complex/Parameters 1 2

Empirical formula C72H120Co2O18 C72H120O18Zn2

Formula weight 1391.53 1404.41

T (K) 150(2) 296

Crystal system Triclinic Triclinic

Space group P-1 P-1

Crystal size (mm) 0.18 × 0.14 × 0.04 0.20 × 0.10 × 0.10

a (Å) 11.570(2) 11.347(2)

b (Å) 12.724(2) 12.553(3)

c (Å) 13.332(2) 13.485(3)

α (◦) 95.177(3) 95.980(3)

www.ccdc.cam.ac.uk/data_request/cif
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Table 3. Cont.

Complex/Parameters 1 2

β (◦) 95.600(3) 94.960(3)

γ (◦) 90.517(3) 90.029(3)

V(Å3) 1945.0(6) 1903.2(7)

Z 1 1

Dcalc (g·cm−3) 1.188 1.225

µ (mm−1) 0.489 0.694

θ range (º) 1.54–28.70 2.26–28.42

Tmin/Tmax 0.6407/0.7460 0.6300/0.7461

F(000) 750 756

Number of parameters 448 472

Reflections collected 18,697 20,250

Unique reflections 9737 9492

Reflections with I > 2σ(I) 5982 8310

Rint 0.0385 0.0215

GooF 1.018 1.067

R1 (I > 2σ(I)) 0.0630 0.0332

wR2 (I > 2σ(I)) 0.1513 0.0870

R1(all data) 0.1140 0.0398

wR2 (all data) 0.1749 0.0904

∆ρmin/∆ρmax, e/Å3 −0.327/0.685 −0.616/0.428

5. Summary

Thus, we have synthesized binuclear paddle-wheel complex 1 in which very strong
antiferromagnetic coupling takes place, which was shown by experimental methods as
well as high-level quantum chemical calculations. The ground spin state of the molecule
1 is S = 0, which is indirectly confirmed by the results of magnetic measurements (even
with paramagnetic impurity taken into consideration) and EPR spectroscopy. A similar
isostructural zinc complex, 2, and a magnetically diluted sample, 3, with a cobalt content
of about 3.6% were obtained. According to ab initio calculations, easy-plane magnetic
anisotropy can be observed in the case of a square-pyramid CoO5 coordination environment
with C4v symmetry in the matrix of complexes 1 and 2. This outcome is consistent with
the results of EPR spectroscopy and magnetic susceptibility measurements. The latter
are approximated with the assumption of a magnetically isolated ion with giso and D
parameters with values close to the ones obtained by quantum-chemical calculations. The
slow relaxation of the magnetization for sample 3 that is observed under a 1000 Oe external
DC-magnetic field proves the perfect isolation of Co(II) ions in the matrix of isostructural
Zn(II) complex 2. The results of magnetic measurement approximation for sample 3 are
in good agreement with theoretical calculations, revealing insights into the relaxation
mechanism, which is the combination of Raman and QTM processes.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/cryst14010076/s1, Figure S1—IR spectra, Figure S2—Raman spectra, Figures S3–S5—XPRD
data; Figure S6—Calculated splitting of two lowest Kramers doublets; Figure S7—M(H) data;
Figure S8—EPR spectra; Figures S9 and S10—AC magnetic data, Figure S11—Cole–Cole plots; Table
S1—Parameters of D-H···O interactions; Table S2—Parameters of C—H···π interactions;
Table S3—BS-DFT-calculated energies; details of DFT and CASSCF/NEVPT2/SINGLE_ANISO

https://www.mdpi.com/article/10.3390/cryst14010076/s1
https://www.mdpi.com/article/10.3390/cryst14010076/s1
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calculations. Additional references used in Supplementary Materials: ORCA program package (ver-
sion 5.0.1) [70]; active space self-consistent field (SA-CASSCF) wave function [71]; N-electron valence
second-order perturbation theory (NEVPT2) [72]; the relativistic approximation Douglas–Kroll–Hess
(DKH) [73]; polarized triple-Z-quality basis set DKH-def2-TZVP [74]; an auxiliary def2/JK Coulomb
fitting basis set [75]; quasi-degenerate perturbation theory (QDPT) [76]; the Breit-Pauli form of the
spin-orbit coupling operator (SOMF) [75] and an effective Hamiltonian approach [77]; the ab initio
Ligand Field Theory (AILFT) [78]; Orbach and Raman relaxation process [79,80]; QTM suppressing
relaxation in zero field [81].
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E.N.E.; formal analysis, S.A.N., D.S.Y., E.N.Z.-T. and M.A.K.; investigation, S.N.M. and M.E.N.,
M.A.S., A.V.K., N.N.E., S.L.V. and A.S.B.; computational study, A.K.M.; writing—original draft
preparation, S.A.N.; writing—review and editing, M.A.K. and I.L.E.; supervision, I.L.E. All authors
have read and agreed to the published version of the manuscript.
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(accessed on 22 December 2023).
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