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Abstract: We investigate a one-dimensional discrete binary elastic superlattice bridging continuous
models of superlattices that showcase a one-way propagation character, as well as the discrete
elastic Su–Schrieffer–Heeger model, which does not exhibit this character. By considering Bloch
wave solutions of the superlattice wave equation, we demonstrate conditions supporting elastic
eigenmodes that do not satisfy the translational invariance of Bloch waves over the entire Brillouin
zone, unless their amplitude vanishes for a certain wave number. These modes are characterized by a
pseudo-spin and occur only on one side of the Brillouin zone for a given spin, leading to spin-selective
one-way wave propagation. We demonstrate how these features result from the interplay of the
translational invariance of Bloch waves, pseudo-spins, and a Fabry–Pérot resonance condition in the
superlattice unit cell.

Keywords: phononic superlattice; pseudo spin; one-way propagation; topological acoustics

1. Introduction

Breaking reciprocity is one principle for forming acoustic or elastic waves traveling
only in one direction (that is, one-way wave propagation). A variety of mechanisms can be
used to break reciprocity, which range from symmetry breaking to exploiting non-linearity
and spatiotemporal modulations [1,2]. For example, breaking time-reversal symmetry by
using gyroscopic inertial effects in lattice structures can lead to the topologically protected
one-way propagation of elastic waves localized at the edges of the lattice [3]. The depen-
dence on the amplitude of the dynamic behavior of the non-linear waves may also lead to
non-reciprocity [4]. Moreover, the modulation in space and time of the physical properties
of elastic media introduces a bias that breaks time-reversal symmetry and subsequently
reciprocity, leading to the one-way propagation of bulk elastic waves [5–7].

While breaking reciprocity is one route to one-way propagation [8,9], other topologi-
cally protected systems that preserve reciprocity have been demonstrated. For example,
static one-dimensional superlattices that do not break time-reversal symmetry and obey
linear elasticity have been shown to support robust, topologically protected elastic eigen-
waves with non-zero amplitude in the forward propagation direction but with zero ampli-
tude in the opposite direction [10]. These one-way-propagating, topologically protected
eigenwaves occur along elastic bands with a non-zero Berry phase. Due to time-reversal
symmetry, these eigenwaves possess a pseudo-spin that breaks mirror symmetry, and an
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eigenwave with opposite handedness is expected to be supported by the system in the
reverse propagation direction. Hence, differing from non-reciprocal one-way systems,
these responses do not generally isolate but can be used to efficiently direct signals towards
desired directions and are robust against back-reflections, as long as disorder or defects do
not couple the two pseudo-spin hands.

Here, we develop a model for one-dimensional discrete phononic superlattices, which
enables us to bridge continuum superlattices that support reciprocal one-way eigen-
waves and the elastic analogue of the well-known one-dimensional Su–Schrieffer–Heeger
(SSH) model [11,12], which does not generally support topologically protected, one-way-
propagating bulk waves. The discrete superlattice model is investigated using the transfer
matrix method to calculate its band structure and corresponding eigenmodes. We show
that the transfer matrix exhibits, under specific conditions, eigenvalues that do not span the
complete unit circle in the complex plane. Subsequently, such eigenmodes do not satisfy
the translational invariance of the elastic modes in the form of Bloch waves over the entire
Brillouin zone, unless their amplitude vanishes for a certain wave number. This condition
occurs on one side of the Brillouin zone and not the other, leading to one-way wave propa-
gation. In the case of the continuous limit of a finite superlattice, we show that reciprocity is
obeyed, as expected, and the one-way nature is associated with an inherent handedness of
the eigenmodes (pseudo-spin), which breaks the mirror symmetry. One-way propagation is
identified as the combined effect of translational invariance, pseudo-spin, and Fabry–Pérot
resonances [13] in one of the constitutive media of the superlattice. These results offer an
original view of unidirectional propagation, which can be probed via exciting one-way
modes by spin-selective sources in 1D periodic systems.

2. Model and Method
2.1. Model System and Dynamic Equations of Motion

The binary superlattice system under study is formed by periodically repeating unit
cells composed of two segments of different one-dimensional mass–spring harmonic chains
(see Figure 1). Each mass is identical and equals 1; the stiffness levels of the springs in
segments 1 and 2 equal K1 and K2, respectively; and the spacing between adjacent masses
equals a. The lengths of the segments are d1 = na and d2 = pa, where n and p are integers.
Segments 1 and 2 are separated by interfaces labelled I and II. In this model, we assume
that the stiffness of the springs (bond strength) in a segment remains the same up to the
interfaces. When n = 1 and p = 1, the system becomes the Su–Schrieffer–Heeger (SSH)
model [12]. For large values of n and p, in the long wavelength limit, the system approaches
a continuous superlattice.

Crystals 2024, 14, x FOR PEER REVIEW 2 of 13 
 

 

phase. Due to time-reversal symmetry, these eigenwaves possess a pseudo-spin that 
breaks mirror symmetry, and an eigenwave with opposite handedness is expected to be 
supported by the system in the reverse propagation direction. Hence, differing from non-
reciprocal one-way systems, these responses do not generally isolate but can be used to 
efficiently direct signals towards desired directions and are robust against back-
reflections, as long as disorder or defects do not couple the two pseudo-spin hands.  

Here, we develop a model for one-dimensional discrete phononic superlattices, 
which enables us to bridge continuum superlattices that support reciprocal one-way 
eigenwaves and the elastic analogue of the well-known one-dimensional Su–Schrieffer–
Heeger (SSH) model [11,12], which does not generally support topologically protected, 
one-way-propagating bulk waves. The discrete superlattice model is investigated using 
the transfer matrix method to calculate its band structure and corresponding eigenmodes. 
We show that the transfer matrix exhibits, under specific conditions, eigenvalues that do 
not span the complete unit circle in the complex plane. Subsequently, such eigenmodes 
do not satisfy the translational invariance of the elastic modes in the form of Bloch waves 
over the entire Brillouin zone, unless their amplitude vanishes for a certain wave number. 
This condition occurs on one side of the Brillouin zone and not the other, leading to one-
way wave propagation. In the case of the continuous limit of a finite superlattice, we show 
that reciprocity is obeyed, as expected, and the one-way nature is associated with an 
inherent handedness of the eigenmodes (pseudo-spin), which breaks the mirror symmetry. 
One-way propagation is identified as the combined effect of translational invariance, 
pseudo-spin, and Fabry–Pérot resonances [13] in one of the constitutive media of the 
superlattice. These results offer an original view of unidirectional propagation, which can 
be probed via exciting one-way modes by spin-selective sources in 1D periodic systems. 

2. Model and Method 
2.1. Model System and Dynamic Equations of Motion 

The binary superlattice system under study is formed by periodically repeating unit 
cells composed of two segments of different one-dimensional mass–spring harmonic 
chains (see Figure 1). Each mass is identical and equals 1; the stiffness levels of the springs 
in segments 1 and 2 equal 𝐾ଵ and 𝐾ଶ, respectively; and the spacing between adjacent 
masses equals 𝑎. The lengths of the segments are 𝑑ଵ = 𝑛𝑎 and 𝑑ଶ = 𝑝𝑎, where 𝑛 and 𝑝 
are integers. Segments 1 and 2 are separated by interfaces labelled I and II. In this model, 
we assume that the stiffness of the springs (bond strength) in a segment remains the same 
up to the interfaces. When 𝑛 = 1  and 𝑝 = 1 , the system becomes the Su–Schrieffer–
Heeger (SSH) model [12]. For large values of 𝑛 and 𝑝, in the long wavelength limit, the 
system approaches a continuous superlattice.  

 
Figure 1. Schematic representation of a one-dimensional discrete superlattice. A periodically 
repeating unit cell N is composed of equally spaced identical unit masses coupled through linear 
springs with stiffnesses of 𝐾ଵ and 𝐾ଶ. See text for more details. 

The displacement of a mass, 𝑚 ∈ [0, 𝑛 − 1], in segment 1 of unit cell N is defined as 𝑢஺,௠ே . Similarly, the displacement of masses in segment 2 of unit cell N is labelled 𝑢஻,௟ே , with 

Figure 1. Schematic representation of a one-dimensional discrete superlattice. A periodically repeat-
ing unit cell N is composed of equally spaced identical unit masses coupled through linear springs
with stiffnesses of K1 and K2. See text for more details.

The displacement of a mass, m ∈ [0, n − 1], in segment 1 of unit cell N is defined as
uN

A,m. Similarly, the displacement of masses in segment 2 of unit cell N is labelled uN
B,l ,
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with l ∈ [0, p − 1]. The masses obey bulk equations of motion in segments 1 and 2 for
m ∈ [1, n − 2] and l ∈ [1, p − 2], namely:

d2uN
A,m

dt2 = K1

(
uN

A,m+1 − uN
A,m

)
− K1

(
uN

A,m − uN
A,m−1

)
(1a)

d2uN
B,l

dt2 = K2

(
uN

B,l+1 − uN
B,l

)
− K2

(
uN

B,l − uN
B,l−1

)
(1b)

Equation (1a,b) supports plane wave solutions of the form:

uN
A,m =

(
AN
+eik1ma + AN

−e−ik1ma
)

eiωt (2a)

uN
B,l =

(
BN
+ eik2la + BN

− e−ik2la
)

eiωt (2b)

The wave number k j with j = 1, 2 is related to the angular frequency via the well-known
dispersion relation of infinite harmonic chains:

ω2 = 4Ki

(
sin k j

a
2

)2
(3)

The behavior of the superlattice will, therefore, be dependent on the overlap of the
bulk bands (density of states) of the materials forming segments 1 and 2.

Since the system is periodic with period L = d1 + d2, we consider Bloch wave solutions,
i.e., we choose AN

± = eiqNL A± and BN
± = eiqNLB±, where q is the wave number. We remove

the upper script N on A± and B± when the periodicity is explicitly accounted for in the
plane wave term eiqNL.

The equations of the motion of masses at interfaces I and II are as follows:

d2uN
A,0

dt2 = K1

(
uN

A,1 − uN
A,0

)
− K2

(
uN

A,0 − uN−1
B,p−1

)
(4a)

d2uN
B,0

dt2 = K2

(
uN

B,1 − uN
B,0

)
− K1

(
uN

B,0 − uN
A,n−1

)
(4b)

Inserting the null terms −K1

(
uN

A,0 − uN−1
A,p−1

)
∓ K1

(
uN

A,0 − uN−1
A,p−1

)
into Equation (4a)

and −K2

(
uN

B,0 − uN
B,−1

)
∓ K2

(
uN

B,0 − uN
B,−1

)
into Equation (4b), we obtain, by virtue of the

bulk equations of motion, the conditions of the continuity of forces at interfaces I and II:

K1

(
uN

A,0 − uN−1
A,p−1

)
= K2

(
uN

A,0 − uN−1
B,p−1

)
(5a)

K2

(
uN

B,0 − uN
B,−1

)
= K1

(
uN

B,0 − uN
A,n−1

)
(5b)

We also introduce the following conditions of the continuity of displacement at I and II:

uN
A,0 = uN−1

B,p (6a)

uN
B,0 = uN

A,n (6b)

With these conditions, Equation (5a,b) becomes:

K1

(
uN

A,0 − uN
A,−1

)
= K2

(
uN−1

B,p − uN−1
B,p−1

)
(7a)

K2

(
uN

B,0 − uN
B,−1

)
= K1

(
uN

A,n − uN
A,n−1

)
(7b)
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In Equation (7a), we use uN−1
A,p−1 = uN

A,−1. Inserting the general solutions given by
Equation (2a,b) and the Bloch wave form into Equations (6a,b) and (7a,b) yields the follow-
ing set of dynamic equations:

α1 β1 −1 −1
f α1δ

(1)
− f β1δ

(1)
+ −δ

(2)
− −δ

(2)
+

1 1 −e−iqLα2 −e−iqLβ2

f δ
(1)
− f δ

(1)
+ −e−iqLα2δ

(2)
− −e−iqLβ2δ

(2)
+




A+

A−
B+

B−

 = 0 (8)

where f = K1
K2

, α1 = 1
β1

= eik1na, α2 = 1
β2

= eik2 pa, and δ
(j)
± = 1 − e±ikja, with j = 1, 2. We

also enforce the periodicity of the system, requiring that the solutions in Equation (2a,b)
take the form of Bloch waves; that is, BN−1

± = BN
± e−iqL.

Equation (8) possesses non-trivial solutions when the determinant of the dynamic
matrix is equal to zero. This condition leads to the dispersion relation:

f
(

δ
(2)
+ − δ

(2)
−

)(
δ
(1)
+ − δ

(1)
−

)
2cos qL − (α1β2 + β1α2)

(
δ
(2)
+ − f δ

(1)
+

)(
δ
(2)
− − f δ

(1)
−

)
+ (α1α2 + β1β2)(

δ
(2)
+ − f δ

(1)
−

)(
δ
(2)
− − f δ

(1)
+

)
= 0.

(9)

This dispersion relation can be reformulated as:

cos qL = cos k1d1cos k2d2 +

−1
2

 1
f

4
(

sin k2
a
2

)2

sin k1asin k2a
+ f

4
(
sin k1

a
2
)2

sin k1asin k2a

+
4
(

sin k1
a
2

)2(
sin k2

a
2

)2

sin k1asin k2a

sin k1d1sin k2d2 (10)

2.2. SSH Limit

In the SSH scenario (n = p = 1), sin k1d1sin k2d2 = sin k1asin k2a and cos k1d1cos k2d2 =
cos k1acos k2a. Using the dispersion relations given by Equation (3) and basic trigonometric
relations, Equation (10) reduces to:

ω4 − 2(K1 + K2)ω
2 + 2K1K2(1 − cos qL) = 0 (11)

This leads to the usual SSH dispersion relation:

ω2 = K1 + K2 ±
√

K2
1 + K2

2 + 2K1K2cos qL (12)

Equation (8) can be manipulated algebraically to obtain a relationship between A =
A+ + A− and B = B+ + B−, namely:

A
(
−ω2 + K1 + K2

)
=
(

K1 + K2e−iqL
)

B (13)

The amplitudes A = A+ + A− and B = B+ + B− do not differentiate between positive
or negative k j, since m = 0 and l = 0 in Equation (2a,b).

Employing Equation (12) in the form of
(
−ω2 + K1 + K2

)2
=

(
K1 + K2e−iqL)(

K1 + K2e+iqL), we recover the complex SSH amplitudes [14]:(
A
B

)
∝

(√
K1 + K2e−iqL√
K1 + K2e+iqL

)
(14)

The dispersion relation (Equation (12)) exhibits band inversion when varying the
spring stiffness. The complex amplitudes (Equation (14)) support a non-conventional
topology over the Brillouin zone, q ∈

[
−π

L , π
L ], when K1 < K2. It is worth noting that these

amplitudes cannot be zero for any value of the wave number q.
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2.3. Continuum Limit

In the long wavelength limit, δ
(j)
± → ∓ik ja . For large values of n and p, the dispersion

relation Equations (9) or (10) reduces to the known expression [15]:

cos qL = cos k1d1cos k2d2 −
1
2

(
1
F
+ F

)
sin k1d1sin k2d2 (15)

In Equation (15), we define F = k1K1
k2K2

. The solutions for the amplitudes are addressed
separately in the next subsection.

2.4. Amplitudes of the Displacement Field

To find the amplitudes, we use the transfer matrix method. Equation (8) can be
rewritten as: (

1 1
f δ

(1)
− f δ

(1)
+

)(
AN
+

AN
−

)
=

(
α2 β2

α2δ
(2)
− β2δ

(2)
+

)(
BN−1
+

BN−1
−

)
(16a)

(
α1 β1

f α1δ
(1)
− f β1δ

(1)
+

)(
AN
+

AN
−

)
=

(
1 1

δ
(2)
− δ

(2)
+

)(
BN
+

BN
−

)
(16b)

Since the second relation, Equation (16b), applies to the unit cell N-1, as well as cell

N, it can be inverted to obtain a relation between
(

BN−1
+

BN−1
−

)
and

(
AN−1
+

AN−1
−

)
. By inserting that

relation into Equation (16a), we obtain the transfer matrix relating amplitudes in one unit
cell to amplitudes in the neighboring cell:(

AN
+

AN
−

)
=

(
t11 t12
t21 t22

)(
AN−1
+

AN−1
−

)
(17)

The components of the transfer matrix are given by:

t11 =
1

f
(

δ
(2)
+ − δ

(2)
−

)(
δ
(1)
+ − δ

(1)
−

)α1

[(
f δ

(1)
+ − δ

(2)
−

)(
δ
(2)
+ − f δ

(1)
−

)
α2 +

(
f δ

(1)
+ − δ

(2)
+

)(
−δ

(2)
− + f δ

(1)
−

)
β2

]

t12 =
1

f
(

δ
(2)
+ − δ

(2)
−

)(
δ
(1)
+ − δ

(1)
−

) β1

[(
f δ

(1)
+ − δ

(2)
−

)(
δ
(2)
+ − f δ

(1)
+

)
α2 +

(
f δ

(1)
+ − δ

(2)
+

)(
−δ

(2)
− + f δ

(1)
+

)
β2

]
Here, t21 = t∗12 and t22 = t∗11. The star stands for a complex conjugation.
Due to the periodicity of the system, solutions will take the form of Bloch waves:(

AN
+

AN
−

)
= eiqL

(
AN−1
+

AN−1
−

)
(18)

Combining Equations (17) and (18) leads to the eigenvalue problem [16]:((
t11 t12
t21 t22

)
− eiqL

(
1 0
0 1

))(
A+

A−

)
= 0 (19)

If eiqL is an eigenvalue of the transfer matrix, then the amplitudes A+ and A− are
given by:

A+ = −t12 (20a)

A− = t11 − eiqL (20b)
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The dispersion relation of Equation (9) can be rewritten as 2cos qL = t11 + t22, so
Equation (20b) becomes:

A− =
1
2
(t11 − t22)− isin qL (21)

After a number of trigonometric and algebraic manipulations, we obtain:
[4:04 PM] Shelly Zou

A− = i
{

sin k1d1cos k2d2

+
1(

δ
(2)
+ − δ

(2)
−

)(
δ
(1)
+ − δ

(1)
−

)[−2
(

f δ
(1)
+ δ

(1)
− + 1

f δ
(2)
+ δ

(2)
−

)

+
(

δ
(1)
+ + δ

(1)
−

)(
δ
(2)
+ + δ

(2)
−

)]
cos k1d1sin k2d2 − sin qL

}
(22)

Furthermore, the amplitude AN
+ is given by:

A+ =
2i

f
(

δ
(2)
+ − δ

(2)
−

)(
δ
(1)
+ − δ

(1)
−

) e−ik1d1
(

f δ
(1)
+ − δ

(2)
+

)(
f δ

(1)
+ − δ

(2)
−

)
sin k2d2 (23)

In the continuum limit, these amplitudes simplify to the known expressions [10]:

A+ =
1
2

(
F − 1

F

)
sin k1d1sin k2d2 +

i
2

(
F − 1

F

)
cos k1d1sin k2d2 (24a)

A− = i
[

sin k1d1cos k2d2 +
1
2

(
F +

1
F

)
cos k1d1sin k2d2 − sin qL

]
(24b)

2.5. Conditions for One-Way Propagation in Infinite Superlattices

For the continuous system, we have shown [17] that if a band contains the fre-
quency point ω0, such that sin k2d2 = 0, then at ω0(q0) the dispersion relation becomes
cos q0L = cos(k1d1 + k2d2), A+ = 0, and A− = i[sin( k1d1 + k2d2)− sin q0L]. This condi-
tion corresponds to a Fabry–Pérot resonance of the second medium in the superlattice unit
cell [13].

Since k1d1 + k2d2 > 0, the sign of q0 determines whether A− vanishes or not. From
Equation (16b), A+ = 0 and A− = 0, meaning that B+ = 0 and B− = 0. At ω0(+q0), the
amplitudes of the Bloch modes may be finite, while at ω0(−q0) the Bloch modes equal zero.
This behavior was shown to be associated with the non-conventional topology of the Bloch
modes of the continuous superlattice [18]. The Berry connection undergoes a π jump at q0,
where the amplitudes vanish. The dispersion branches supporting zero-amplitude modes
in the band structure of the superlattice exhibit a π Berry phase [18].

This argument also extends to a discrete superlattice with p > 1 in the following
manner. Let us first find expressions for the eigenvalues of the transfer matrix. These
eigenvalues are solutions of the equation λ2 − λ

(
t11 + t∗11

)
+ t11t∗11 − t12t∗12 = 0. The Eigen

values are given by:

λ =
1
2
(t11 + t∗11)±

1
2

√(
t11 − t∗11

)2
+ 4t12t∗12 (25)

For vibrational modes to be Bloch waves, we require λ ∝ e±iqL. According to Equation (23),
A+ = −t12 = 0 when sin k2d2 = 0. In that case, the eigenvalues reduce to:

λ =
1
2
(t11 + t∗11)±

1
2
|t11 − t∗11| (26)
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or:
λ = Real(t11) ± i|Imag(t11)| (27)

where Real and Imag stand for the real and imaginary parts.
The condition for the discrete superlattice to support Bloch waves takes the form of

Real(t11)± |Imag(t11)| = cos qL ± isin qL. This condition is met only for a wave number
q located on one side of the Brillouin zone, where |Imag(t11)| can be identified as a sine
function. For q on the other side of the Brillouin zone, |Imag(t11)| is identifiable to minus
one times a sine function, which has the opposite sign of sin qL. In other words, λ does not
span the same region of the unit circle in the complex plane as e±iqL. Under this condition,
Equation (20b) leads to A− = 0 on one side of the Brillouin zone but A− ̸= 0 on the other
side. B+ = 0 and B− = 0 on the side of the Brillouin zone, where A+ = 0 and A− = 0.
This result indicates that the two counterpropagating eigenmodes have different modal
structures with defined handedness levels, which can be interpreted as a pseudo-spin
associated with the propagation direction. In the present scenario, only one pseudo-spin
state is allowed to propagate in the lattice in a specific direction, associated with spin
momentum locking.

It is interesting to note that for the SSH model (n = p = 1), sin k2d2 = sin k2a, and
since in the denominator of Equation (23) the quantity

(
δ
(2)
+ − δ

(2)
−

)
∝ sin k2a, both terms

cancel each other; A+ cannot vanish anymore at sin k2(d 2 = a) = 0. The component of the
transfer matrix t12 ̸= 0 for the SSH system. Therefore, the SSH model does not lead to
zero-amplitude Bloch modes, as was noted at the end of Section 2.2. This is also true for
a superlattice with a segment of harmonic lattice 1 extending beyond one lattice spacing
but with a segment of harmonic lattice 2 limited to one lattice spacing (n > 1 and p = 1).
The reverse (n = 1 and p > 1) is not true, thereby illustrating the importance of the choice of
origin in the topology (Berry or Zak phase) of vibrational modes in superlattices [14,18].

From a physical point of view, if λ ̸= e±iqL in one region of q, the only way the
displacement can take the form of a Bloch wave with plane wave factor eiqNL over the
entire Brillouin zone (for all, q):

uN
A,m = eiqNL

(
A+eik1ma + A−e−ik1ma

)
eiωt (28a)

uN
B,l = eiqNL

(
B+eik2la + B−e−ik2la

)
eiωt (28b)

is by setting the terms in parentheses to zero. For any value of m or l, this implies A± = 0
and B± = 0.

2.6. Reciprocity Condition

Reciprocity implies that the signal received by a detector emitted by a vibration source
remains the same upon the interchange of the source and the receiver. Since the considered
system is linear, time-invariant, and bias-free, we expect reciprocity to be satisfied. In order
to investigate reciprocity in the one-way propagation scenario, we focus on the continuum
limit of the superlattice. We consider a finite continuous superlattice sandwiched between
a source layer “S” and a detection layer “D” with impedances that may differ from those of
materials 1 and 2. We calculate the transmission coefficient of the finite superlattice using
transfer matrices, as is achieved in [19]. The transmission coefficient is given by:

T =
4 ZD

ZS(
ZD
Z1

b − Z1
ZS

c
)2

+
(

d + ZD
ZS

a
)2 (29)

where:
a =

λ − µ

2
sin Nθ

sin θ
+ cos Nθ
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b = σ
sin Nθ

sin θ

c = ζ
sin Nθ

sin θ

d = −λ − µ

2
sin Nθ

sin θ
+ cos Nθ

In these equations, we have:

λ = cos k1d1cos k2d2 − Fsin k1d1sin k2d2

µ = cos k1d1cos k2d2 −
1
F

sin k1d1sin k2d2

σ = sink1d1cos k2d2 + Fcos k1d1sin k2d2

ζ = − sink1d1cos k2d2 −
1
F

cos k1d1sin k2d2

and cos θ = λ+µ
2 . N is the number of unit cells in the superlattice. In Equation (29), Z1, ZD,

and ZS are the impedances of the type 1, detection, and source layers, which are chosen
to be equal for illustrative purposes; however, varying ZD and ZS will change the results
quantitively but not qualitatively. Here, instead of interchanging the source and detector,
we swap media 1 and 2 by interchanging the indices 1 and 2 in Equation (29). In the long
wavelength limit, we have k1 = ω

c1
and k2 = ω

c2
, as well as c1 = a

√
K1 and c2 = a

√
K2.

In Figure 2, we present the transmission coefficient as a function of the frequency for
two superlattices.
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Figure 2. Transmission coefficient T, corresponding to the first 6 bands of two finite superlattices,
with N = 20 as a function of the frequency for (a) ZD = ZS = Z1. The two superlattices are related
by an interchange of layer indices 1 and 2, which is equivalent to interchanging the source S and
detector D. We have also chosen k2d2 = 1.2k1d1. Each band supports 20 resonances, corresponding to
the number of periods of the finite superlattice, N.
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The two transmission coefficients are identical for all frequencies, confirming that
reciprocity is achieved. In Figure 2, the gaps correspond to the usual Bragg scattering.
These gaps arise when

∣∣∣ λ+µ
2

∣∣∣ > 1, which corresponds to non-propagative modes.
Each band is composed of N resonances. We also note that the lower envelopes of the

transmission coefficient of the 2nd and 4th transmission bands are asymmetric, while the
1st, 3rd, and 5th bands, which have conventional topologies, exhibit a more symmetrical
behavior. We note in Figure 3a that the lower envelope of the transmission coefficient of
the second band approaches one near ω

c1
d1 = 2.618 (that is, k2d2 = 1.2 × 2.618 = π, which

corresponds to the condition sin k2d2 = 0). The amplitude of the backward-propagating
wave equals zero under this condition. The same condition is satisfied for the fourth band
ω
c1

d1 = 5.236, where k2d2 = 2π. This behavior arises for the even-numbered bands in the
transmission spectrum. These bands are known to correspond to dispersion bands of the
infinite superlattice with a non-conventional topology, for which the Berry or Zak phase
is equal to π. The odd-numbered bands are associated with conventional topologies and
zero Berry or Zak phases. This type of asymmetry in the transmission of topologically
non-conventional bands has been observed theoretically for electronic waves in finite
semiconductor superlattices [20] and electromagnetic superlattices [18].
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Figure 3. The same scheme as in Figure 1. The black solid line is for a single unit cell N = 1,
sandwiched between the source and the detector. The arrows mark the location where sin k2d2 = 0.

In Figure 3, we can clearly see that the asymmetry in the dispersion of the transmission
of the even-numbered bands is associated with the Fabry–Pérot resonance condition of
medium 2 in a single unit cell, sin k2d2 = 0, where the transmission coefficient is equal
to one. This is exactly the condition for which, in an infinite superlattice, spin-selective
one-way propagation occurs, as imposed by the requirement that the waves take the form
of Bloch waves, i.e., the waves satisfy translational invariance. Note that for a single unit
cell, gaps exist that again correspond to the condition

∣∣∣ λ+µ
2

∣∣∣ > 1.
To shed more light on the relationship between the behaviors of the finite system and

the infinite system, below we give the transfer matrix across one unit cell derived in [19].
The displacement field in the two media 1 and 2 of a unit cell is expressed as a general
ansatz formed as a linear combination of transmitted and reflected waves:

U1(x) =
(

A+eik1x + A−e−ik1x
)

eiωt (30a)

U2(x) =
(

B+eik2x + B−e−ik2x
)

eiωt (30b)

Here, x is the coordinate along the direction perpendicular to the layers forming the
superlattice. There is no specific constraint on the form of the amplitudes A+, A−, B+, and B−.



Crystals 2024, 14, 92 10 of 13

The stress is expressed as:

S1(x) = iωZ1

(
A+eik1x − A−e−ik1x

)
eiωt (31a)

S2(x) = iωZ2

(
B+eik2x − B−e−ik2x

)
eiωt (31b)

These definitions allow us to introduce the two-component vector for j = 1, 2:

Wj(x) =
(

Uj(x)
Sj(x)

)
=

(
eikjx e−ikjx

iωZje
ikjx −iωZje

−ikjx

)(
A+ or B+

A−or B−

)
(32)

Here, we define Hj(x) =

(
eikjx e−ikjx

iωZje
ikjx −iωZje

−ikjx

)
. In a stack of unit cells, using the

conditions of the continuity of displacement and stress, one can relate W1(x = d1 + d2)
right after a unit cell to W1(x = 0) right before a unit cell using the following relation:

W1(x = L = d1 + d2) = MW1(x = 0) (33)

where:

M =

(
λ 1

Z1ω σ

Z1ωζ µ

)
(34)

The symbol in Equation (34) was defined earlier. We remark that there is no constraint
imposed on the ansatz of Equation (30a,b). For the periodic infinite superlattice and a
unit cell labelled, N, we must use a continuous version of the Bloch wave ansatz given by
Equation (28a,b):

UN
1 (x) = eiqNL

(
Ap
+eik1(x−NL) + Ap

−e−ik1(x−NL)
)

eiωt for NL < x < NL + d1 (35a)

UN
2 (x) = eiqNL

(
Bp
+eik1(x−NL−d1) + Bp

−e−ik1(x−NL−d1)
)

eiωt for NL + d1 < x < (N + 1)L (35b)

This ansatz achieves translational periodicity, as it represents Bloch waves. In Equation
(35a,b), the upper script “p” stands for periodic. This is necessary as the periodicity
redefines the amplitude parameters. Comparing Equation (30a,b) and Equation (35a,b),
we can establish constraints that would be imposed by translational invariance on the
parameters A+, A−, B+, and B−, namely:(

A+

A−

)
N
=

(
e−ik1 NL 0

0 eik1 NL

)
eiqNL

(
Ap
+

Ap
−

)
(36a)

(
B+

B−

)
N
=

(
e−ik1(NL+d1) 0

0 eik1(NL+d1)

)
eiqNL

(
Bp
+

Bp
−

)
(36b)

These are actually unitary transformations, which rotate the representation amplitudes
of the periodic system into the representation of the amplitudes in Equation (30a,b).

By using Equation (32) and inserting Equation (36a,b) into Equation (33), i.e., N = 1
for the left hand side of the equal sign and N = 0 for the right hand side, one obtains the
following relation: ((

t11 t12
t21 t22

)
− eiqL

(
1 0
0 1

))(
Ap
+

Ap
−

)
= 0. (37)

with:

T =

(
t11 t12
t21 t22

)
= H−1

1 (0)MH1(0) (38)
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After some algebraic manipulation, we find:

t11 =
λ + µ

2
+ i

σ − ζ

2
, t12 =

λ − µ

2
+ i

σ + ζ

2
, and t21 = t∗12 and t22 = t∗11.

One can verify algebraically that Equation (37) is identical to Equation (19). We can
also observe that the determinants of the unimodular matrices M and T are identical
and given by λµ − σζ = 1. When solving the eigenvalues, ε of the matrix M gives a
characteristic equation of ε2 − (λ + µ) + 1 = 0. The finite superlattice takes a propagative
eigenmode when

∣∣∣ λ+µ
2

∣∣∣ ≤ 1. By setting cos θ = λ+µ
2 , the characteristic equation takes the

form of the dispersion relation of the infinite superlattice (Equation (10)) in the limits of
the long wavelength, provided one identifies θ with qL. Equations (37) and (19) achieve
translational invariance and lead to one-way propagation (zero amplitudes for q < 0 and
non-zero amplitudes for q > 0) when sin k2d2 = 0. When dealing with the finite superlattice,
the unconstrained matrix M is diagonalized with the eigenvalues ε+ = eiθ and ε− = e−iθ ,
which account for forward and backward propagation and are associated with the different
pseudo-spins of the eigenvectors. The diagonalized matrix is then brought to the power N
to calculate the transmission coefficient of Equation (29) for the finite lattice with N unit cells.
The wave function of the finite superlattice will try to approach the Bloch wave solutions.
Under the condition sin k2d2 = 0, the approximate Bloch wave will make the contribution
of the backward-propagating wave (i.e., e−iθ) small compared to the forward wave, thereby
leading to high values of the transmission coefficient. One-way propagation in the infinite
superlattice arises from the combined effects of the constraint of the translational invariance
of the wave function and of a Fabry–Pérot resonance condition in the superlattice unit cell.

3. Conclusions

One-dimensional discrete phononic superlattices composed of alternating segments of
two different harmonic crystals exhibit Bloch modes with specified handedness, with a finite
amplitude for one direction and zero amplitude for the opposite direction. By using the
transfer matrix method, i.e., solving the scattering of acoustic waves by the superlattice, we
showed that the one-way transport nature of these eigenwaves arises from the periodicity of
the system, even when the eigenvalues of the transfer matrix do not span the complete unit
circle in the complex plane. The one-way propagation behavior of the discrete superlattice
approaches that of a continuous superlattice in the long wavelength limits. A necessary
condition for one-way propagation in our superlattice model is that the second harmonic
crystal segment possesses a spatial extent that exceeds the lattice parameter. This condition
enables Fabry–Pérot-type resonances. In the limits of a superlattice composed of single
lattice parameter segments, the model reduces to the SSH system, which does not exhibit
one-way propagation. In this case, the eigenvalues of the transfer matrix span the complete
unit circle in the complex plane and allow Bloch modes with non-zero amplitude to exist
over the entire Brillouin zone. By comparing an infinite superlattice and a finite superlattice
in the long wavelength limits, we also showed that reciprocity is always achieved. One-way
propagation in the infinite superlattice results from the combined effects of translational
periodicity, the non-trivial handedness of the associated eigenvector associated with a
pseudo-spin, and the Fabry–Pérot resonances of the second medium in the unit cell of the
binary superlattice. Phononic superlattices supporting topologically protected acoustic or
elastic waves that avoid back-reflections may provide attractive solutions for designing
low-loss devices such as bulk or surface acoustic wave devices for telecommunication
systems [21]. Another application of current interest is the use of one-way propagation
for the management of thermal phonons. Specifically, recent advances in this context have
been reported for phonon focusing [22], thermal switching [23], and thermal barriers [24].
Furthermore, binary superlattices that can be manufactured using thin-film deposition
methods [25] or colloid-assembled nanocrystal superlattices [26] can serve as platforms for
phonon engineering. These offer viable platforms for the experimental investigation of the
effects discussed herein.
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