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Abstract: The results of dielectric relaxation spectroscopy of the chiral liquid crystal 4′-butyl-4-(2-
methylbutoxy)azoxybenzene in the crystal phase are presented. The scaling procedure showed
complex molecular dynamics and allows one to decompose the observed relaxation process into
two closely located relaxation processes around the short molecular axis. Temperature dependences
of relaxation times characterizing flip-flop motions (rotation around the short molecular axis) and
rotation around the long molecular axis are of the Arrhenius type.

Keywords: liquid crystal; dielectric spectroscopy; molecular relaxation; scaling of dielectric response

1. Introduction

Studies of the relaxation of any system, a phenomenon of the gradual return of a
system to its equilibrium state after the removal of external disturbance, provide infor-
mation about the dynamics of its elements and interactions between them. Broadband
Dielectric Spectroscopy (BDS) allows one to obtain crucial information on the dielectric
relaxation of systems with some disorders. In such systems, polar molecules show some
degrees of reorientational freedom, as in the plastic–crystal phase or mesophases (smectic,
nematic, and cholesteric phases), or of reorientational and translational degrees of freedom,
as in the isotropic liquid phase. Then, one can measure complex dielectric permittivity
ε* as a function of the electric field frequency f (ω = 2πf ) and other (external) parameters
such as temperature T, pressure p, external electric E, or magnetic H fields. For analyzing
a large amount of experimental data, the Debye model (for example, see [1–3]) or phe-
nomenological Debye-like stochastic models, such as Cole–Cole (CC) [1–4], Cole–Davidson
(CD) [1–3,5,6], and Havriliak–Negami (HN) [1–3,7], are used, as given by the following
complex equation:

ε∗(ω) = ε∞ +
∆ε

(1 + (iτω)1−α)β
, (1)

where ∆ε is the dielectric increment, ε∞ is the dielectric permittivity for the frequency
tending to infinity, τ is the relaxation time, and α or β are exponents describing the sym-
metrical or asymmetrical distribution of relaxation time. The Debye model (α = 0 and β = 1
in Equation (1)) describes the relaxation of the identical non-interacting electric dipoles
in diluted systems. In contrast, the Debye-like models (0 < α < 1 and β = 1 for the CC
model; α = 0 and 0 < β < 1 for the CD model; and 0 < α < 1 and 0 < β(1 − α) < 1 for
the HN model) describe the independently reorienting (non-interacting) electric dipoles
in a viscous medium, which influence the distribution of relaxation times. In turn, the
Dissado–Hill (DH) cluster model [8,9] describes the interacting electric dipoles, taking into
account the exchange of energy between them as in real condensed phases, and it is given
by Equation (2) as follows:

ε∗(ω) = ε∞ + ∆ε(1 + iτω)−n
2F1(n, 1 − m; 1 + n; (1 + iτω)−1)/2F1(n, 1 − m; 1 + n; 1), (2)
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where 2F1 represents the Gaussian hypergeometric function [10]. The model proposed by
Dissado and Hill is mathematically equivalent to the model proposed by Schönhals and
Schlosser [11,12]. One can find that in all mentioned models and realms of dielectric (or
electric) materials, the asymptotic frequency dependences of real and imaginary parts of
complex dielectric permittivity are described by the power laws. In general, one can write
that for low frequencies, i.e., f→0 (ω→0), the power law is characterized by the exponent
M ε′′ (ω)|ω→0 ∝ ωM and (ε′(ω)− ε∞)|ω→0 ≈ ∆ε ∝ ωM=0, and for high frequencies, i.e.,
f→∞ (ω→∞), the power law is characterized by the exponent N ε′′ (ω)|ω→∞ ∝ ω−N

and (ε′(ω)− ε∞)|ω→∞ ∝ ω−N (for more details, see for example [13]), which agrees well
with Jonscher’s universal behavior [14]. The exponents M and N can be easily found
for the mentioned models, i.e., M = m = (1 − α) and N = n = β(1 − α). Moreover, these
exponents can be treated as measures of long-range and short-range (local) correlations of
the molecular motions, respectively. The DH cluster model gives the exact values of the long-
range and short-range correlation coefficients equaling (1 − m) and (1 − n), respectively.
For the Debye-like models, one can obtain the approximated values of these coefficients—it
is α for the long-range correlation and (1 − β(1 − α)) for the short-range correlations.

To understand the dielectric response of any system and/or the impact of the long-
range and short-range interactions on relaxation processes observed, some scaling proce-
dures were proposed, such as by Nagel and co-workers [15–18] and references cited therein,
by Dendzik and Paluch and co-workers [19], and by Gałązka and co-workers [13,20,21].
Proposed scaling procedures collapse numerous loss spectra (Nagel and Dendzik and
Paluch scaling relations are restricted only to the imaginary part of ε∗, and Gałązka’s
scaling relation can be applied to both real and imaginary parts of ε∗; for more details,
see [13,20,21]) onto a single primary curve; for example, see [13,15–21] and references
cited therein. The scaling proposed by Nagel and co-workers is highly restricted for some
systems, i.e., M = 1 and the exponent N equaling to the reciprocal value of the full width at
half maximum divided by the full width at half maximum of the Debye peak, in decades of
frequency [13]. The scaling procedures proposed by Dendzik and Paluch and co-workers
and by Gałązka and co-workers show that the long-range and short-range correlations
strictly dominate the shapes of various relaxation processes. In other words, one can say
that the low- and high-frequency power laws, arising from the long-range and short-range
interactions, describe the behavior of real and imaginary parts of ε∗ on the asymptotic limits
of frequencies, but their combination is valid in the vicinity of the maximum of ε′′ or of
the inflection point of ε′. Moreover, the scaling procedures can be used to characterize the
relaxation processes observed. Two parameters of the scaling procedures are the exponents
M and N, and some others are proportional to the relaxation time τ and the dielectric
strength ∆ε.

In describing molecular dynamics, it is important to accurately describe the relaxation
response of the system. In the case of overlapping relaxation processes (for example,
see [22–24]), i.e., for relaxation processes closely located and showing one peak of ε′′ as
the function of frequency f, it is almost impossible to separate such processes. Then, the
method allows one to check (determine) whether at least two (or more) relaxation process
overlaps are needed. Suppose the scaling of the dielectric response is not fulfilled. In
that case, it indicates that one is dealing with at least two combined relaxation processes
visible in the frequency dependence of ε′′ as the single peak. This additional advantage of
using dielectric response scaling will be demonstrated in the example of a cholesteric liquid
crystal 4′-butyl-4-(2-methylbutoxy)azoxybenzene, abbreviated as 4ABO5* [25–27]. The
use of a method that allows for a simple examination of the complexity of the relaxation
process (i.e., the overlap of relaxation processes) is very important in the description of
molecular dynamics. Although the dielectric response scaling method does not explicitly
describe molecular dynamics (i.e., both the relaxation time and the dielectric increment
are proportional to the parameters used in scaling), obtaining discrepancies in the scaled
relaxation spectra allows one to draw conclusions about the complexity of these spectra
from several (e.g., two) relaxation processes. Moreover, the greater the divergence from



Crystals 2024, 14, 95 3 of 11

the common scaled curve, the more distant “the components” of the (observed) relaxation
process should be expected. This advantage of the dielectric response scaling will be
described in detail.

The incomplete overlap of relaxation processes, e.g., around the short and the long
axes of the molecule, resulting in a peak with two maxima or one distinct maximum and a
“saddle” on one of the wings, most often occurs in liquid-like phases [22]. However, in the
case of the coexistence of isomers in the sample, the overlap of relaxation processes may be
complete (i.e., a single peak is observed for the imaginary part of the dielectric permittivity).
This effect, if it occurs, can best be observed in the crystal phase, where the molecules have
fewer degrees of freedom than in liquid-like phases or mesophases. Therefore, we used the
crystal phase of 4ABO5* to show the power of the dielectric response scaling.

The liquid crystal 4ABO5* belongs to the homolog series of azoxybenzenes and
azobenzene derivatives. In the literature, dialkyloazoxybenzenes are mostly abbrevi-
ated as nOAOB [28–30] and references cited therein for n = 1–14, where n stands for
the number of carbon atoms in the symmetrical alkyloxy chains, or the dialkylazoxy-
benzenes, mostly abbreviated as nAOB [28,29,31,32], for n = 1–14, are described. The
liquid crystal 7AOB is also abbreviated as HAB [32]. The physicochemical properties,
as well as the phase sequences, are much more poorly described for the asymmetric
azoxybenzene compounds, i.e., for derivatives for which the phenyl rings, connected via
azoxy (-N(=O)=N-) or azo (-N=N-) groups, possess alkyl (or alkyloxy) chains with vari-
ous numbers of carbon atoms, i.e., 10AB7 [33] (due to a nominal nomenclature, one can
use the abbreviation 10AOB7 interchangeably), 4EOB (due to a nominal terminology, it
can be abbreviated as 8AB2 or 8AOB2) [34], and 4ABO5* (it could also be abbreviated as
4AOBO5*) [25–27]. They can be abbreviated as nAOBOm or nAOBm, where n and m repre-
sent the number of carbon atoms in the alkyl chains. The phase transition temperatures
and the number of thermodynamic phases observed depend on the lengths of the alkyl
or alkyloxy chains; compare [25–33] for further information. The dielectric response of
azoxybenzenes or azobenzenes is primarily described in the isotropic liquid phase (IL)
or mesophases (i.e., liquid crystal phases)–nematic (N), cholesteric Ch (or chiral nematic
N*) or smectics [25,28–32]. However, the relaxation processes in the crystal phase (Cr)
are described for 4EOB [34], 10AB7 [33], and 4ABO5* (down to 250 K) [26,27] only. Thus,
it is essential to describe the dielectric relaxation in the low temperatures of the crystal
phase. The properties of 4ABO5* are described in [25] only for temperatures higher than
300 K (in the Ch and IL phases) and in [25–27] down to 250 K. Textures in the crystal phase
from 250 K down to 200 K are almost the same. They are similar to the texture shown for
T = 277 K in [26]. Only the brightness of the textures changes, which can be observed using
the thermo-optical analyses, e.g., [35]. The negligible change in the intensity of light passing
through the sample is connected with ordering the carbon atoms in the alkyl or alkyloxy
chains. No additional transitions between crystal phases were noticed in BDS, differential
scanning calorimetry, and polarized (light) optical microscopy techniques. 4ABO5* is a
(weak) polar material [25–27].

We show that the scaling procedure is an excellent tool for checking the complexity
(overlapping) of the relaxation processes. In addition, we describe the molecular dynamic
of the chiral liquid crystal 4ABO5* in the crystal phase down to about 200 K.

2. Materials and Methods

The 4ABO5* substance was synthesized at the Military University of Technology,
Warsaw (Poland), by the group of Prof. R. Dąbrowski.

The BDS measurements were carried out in two relaxation frequency ranges: 10−2 Hz
to 40 MHz, called “the low-frequency range”, and 1 MHz to 3 GHz, called “the high-
frequency range”. The samples were prepared in parallel plate geometry between two gold-
plated electrodes with 20 mm or 7 mm diameters in the low- and high-frequency regions,
respectively. The spaces between the electrodes were 100 µm and 220 µm, respectively.
The dielectric permittivity was recorded in the low-frequency range using a high-precision
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Novocontrol ALPHA analyzer, Montabaur, Germany. ZGS active sample cell test interface
was used for the Alpha-A modular measurement system (Novocontrol), including the Pt100
temperature sensor. High-frequency RF measurements were carried out using a coaxial
reflectometer based on the Agilent E4991 analyzer, Diegem, Belgium. The temperature was
controlled by a Quatro Novocontrol cryo system with temperature stability of 0.1K in both
experiments. More experimental details (i.e., the description of the sample preparation and
experimental setup) are given in [26,36]. The high-precision Novocontrol ALPHA analyzer
and the high-frequency Agilent E4991 analyzer are suitable for measuring the dielectric
response of polar liquid crystals; for example, see [22,33,36–43].

3. Theoretical Background

To obtain a single scaled primary curve on which experimental data of ε ≡ ε′′ ( f )
and/or ε ≡ (ε′( f )− ε∞) are collapsed, the scaling relations in [13,20,21] have been pro-
posed for abscissa (horizontal axis)

X ≡ log
(

f
fs

)
(3)

and for the ordinate (vertical axis)

Y ≡ 1
M + N

log

(
ε

εs

(
fs

f

)2M+N
)

, (4)

where M and N are the exponents of power laws for the asymptotic frequencies, and fs and
εs are frequency and permittivity (real or imaginary parts) corresponding to the intersection
of the power laws, respectively. Then, experimental data for various dielectric materials
collapse onto the primary curve using Equations (3) and (4); for example, see [13,20,21]. In
case one deals with complex spectra (i.e., overlapping relaxation processes), for example,
two combined relaxation processes visible in frequency dependence of ε′′ as the single
peak, the scaling procedure will fail. This is because the scaling parameters obtained for
the visible single relaxation process (composed of two closely located processes) do not
accurately describe either long-range and short-range interactions or their combination.

Figure 1 shows examples of visible single relaxation processes (dashed curves) com-
posed of two closely located relaxation processes (solid curves). The parameters of the indi-
vidual processes are similar (i.e., 0.80 ≤ m ≤ 0.92, 0.70 ≤ n ≤ 0.86, 4·10−6s ≤ τ ≤ 2·10−5s)
and the decimal logarithms, i.e., log( fmax/[Hz]), of the distances between the position of
the maximum of curve 1 and the positions of the maxima of curves 2, 3, 4, or 5 are 0.17,
0.29, 0.39, or 0.64, respectively. Tabulated data and the parameters of the individual pro-
cesses (Equation (2)) can be found in the Supplementary Materials (file: ‘Data_for_Fig1.txt’).
Figure 2 presents the scaled complex curves of ε′′ (combined of the two closely located
curves shown in Figure 1). Tabulated data can be found in the Supplementary Materials
(file: ‘Data_for_Fig2.txt’). Scaled individual curves 1, 2, 3, 4, and 5 give one common
primary curve (the solid red curve in Figure 2) with the maximal discrepancies on the kink
not higher than 0.005. Such discrepancies are expected to appear on the scaled theoretical
curves, and they are much higher than the adequate one obtained for scaled experimental
processes; for more details, see [13,20,21]. However, the complex processes scaled using
Equations (3) and (4) show higher discrepancies on the kink. The discrepancies between
the scaled complex curves composed of two relaxation processes (i) 1 and 2; (ii) 1 and 3;
(iii) 1 and 4; and (iv) 1 and 5 are about 0.005, 0.014, 0.036, and 0.092, respectively.
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4. Discussion

The phase sequence in the cholesteric liquid crystal 4ABO5* is as follows: IL
(298.82 K)–Ch (277.66 K)–Cr phases on cooling and Cr (285.26 K)–Ch (299.65 K)–IL phases
on heating [26,27]. The Cr phase can be of the CONDIS type (conformationally disordered
crystal phase) as the entropy changes in all phase transitions are insufficient to order func-
tional groups in liquid crystal molecules [26,44–47]. Thus, some parts of the molecule may
still have some degrees of freedom and can reorient in the Cr phase. In the CONDIS phase,
molecules are transitionally (i.e., the centers of gravity of the molecules show translational
order) and orientationally ordered, and the end chains show conformational changes (for
example, see [44]).

BDS measurements show three relaxation processes [26]: (i) the low-frequency (or
slow) relaxation process ε

′′
con f . that can be ascribed to conformational motions of molecules

privileged by interactions via the NO group; (ii) the medium-frequency relaxation process
ε
′′
s.m.a. ascribed to flip-flop rotation around the short molecular axis of molecules; and (iii) the

high-frequency (or the fastest) relaxation process ε
′′
l.m.a. ascribed to tumbling or rotation

around the long molecular axis of molecules. The slowest relaxation process can be found
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in the Ch and IL phases. It is hidden in either the conductivity region ( ε′′ ) or in the region
of a contribution from the electrode polarization effect ( ε′); for example, see [26]. The
flip-flop relaxation was found in the IL, Ch, and Cr phases. The loss peak maximum is
around 1 MHz in the IL phase, about 0.1 MHz in the Ch phase, and down to about 10 kHz
in the Cr phase [26]. The fastest relaxation process, located around the long molecular
axis or tumbling, was found in the IL, Ch, and Cr phases for frequencies higher than
1 MHz [26]. The frequencies for which the relaxation processes appeared are similar for
other azoxybenzene or azobenzene derivatives [29–35] and references cited therein. The
dominant relaxation process (i.e., with the highest dielectric increment) is the relaxation
around the long molecular axis in the Ch and IL phases [26]. The relaxation around the
short molecular axis becomes the dominant process in the low temperatures of the Cr
phase, as compared with [26] and Figure 3c, whereas in the high temperatures of the Cr
phase, the relaxation connected with the interactions via the NO group, ε

′′
con f . or ε′con f ., is

the dominant process; for more, compare [26] and Figure 3a.
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Figure 3. Experimental data (points) and theoretical fits, denoted as electric conductivity (dashed
black curve), relaxation process ascribed to conformational changes (dash-dotted red curve), relax-
ation around the short molecular axis (dash-double dotted green and olive curves), relaxation around
the long molecular axis (short dotted blue curve), and sum of all processes (thick purple curve) at
selected temperatures of crystal phase: (a,b) at 275 K and (c,d) at 204 K. Figure (b,d) show fits for two
relaxation processes around the short molecular axis.

Figure 3a,c show experimental data of ε′′ ( f ) in the Cr phase and fits obtained for
the two selected temperatures 275 K and 204 K, respectively. Fitting the HN functions,
Equation (1), to the experimental data in the Cr phase, one finds that together with lowering
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temperatures, the discrepancies between the experimental data and the fitted theoretical
curves become more visible, especially for the relaxation around the short molecular axis.
There is no possibility to obtain “perfect” agreement between experimental points and
theoretical curves for the relaxation around the short molecular axis. Thus, we applied
the scaling procedure, Equations (3) and (4), to the experimental data in the Cr phase to
check the complexity (i.e., overlapping case) of the process observed. Figure 4 shows the
scaled data for the selected temperatures for 4ABO5* and 4-ethyl-4’-octylazoxybenzene
(4EOB). The 4EOB liquid crystal was chosen as a representative compound for scaling
of the dielectric response. As has been shown, liquid crystals [13,20] and glass-forming
compounds exhibiting hydrogen bonding or van der Waals bonding [13,20,21] are subject
to dielectric response scaling. Tabulated experimental data presented in Figure 3a–d and
the parameters of the HN equation, and scaled experimental data presented in Figure 4
can be found in the Supplementary Materials (file: ‘Data_for_Fig3_experimental.txt’,
‘Data_for_Fig4_4ABO5st.txt’ and ‘Data_for_Fig4_4EOB.txt’).
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symbols) for 4ABO5* and 4EOB liquid crystals at selected temperatures for various relaxations;
conf.–ascribed to conformational changes, l.m.a.—around the long molecular axis, s.m.a.—around the
short molecular axis, in different thermodynamic phases; IL—isotropic liquid, Ch—cholesteric (chiral
nematic), N—nematic and Cr—crystal phases.

One sees that data scaled for IL, Ch, N, and Cr (for 4EOB and for ε
′′
con f . and ε′con f .

in 4ABO5*) lie on one common curve (filled symbols), whereas data scaled for ε
′′
s.m.a.,

green open triangles, and ε′s.m.a., violet open triangles, at 204 K (up-triangles) and 275 K
(down-triangles) in 4ABO5*, lie far away from the primary curve in the kink. The lower
the temperature, the higher the discrepancy. It must be emphasized that to obtain the
scaling parameters, one does not need to use any models. Thus, the discrepancies shown in
Figure 4 are not a consequence of the “inexact” fits presented in Figure 3a,c. It just proves
that one deals with two combined relaxation processes that are visible in the frequency
dependence of ε′′ as the single peak. The 4ABO5* is a mixture of isomers differing by
location of the oxygen atom, which can be positioned to either of N atoms in the azo
group [25]. The dipole moments of these isomers differ only slightly in [25] and references
cited therein. Thus, one can expect to observe two relaxation processes located close to
each other around the short molecular axes of the isomers. Separating such a complex
peak into two component peaks is not unequivocal and simple. Moreover, several pairs of
component peaks can be obtained. Because the origins of the relaxations for these isomers
are the same, we assumed that the ratio of the dielectric strengths should be constant (or
almost constant) in the whole temperature region. Figure 3b,d present the effect of such fits.
One sees that the agreement between the experimental and theoretical curves is very good.

Figure 5 shows the relaxation times as a function of the inverse temperature in
the Cr phase. Tabulated experimental data presented in Figure 5 can be found in the
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Supplementary Materials (file: ‘Data_for_Fig5.txt’). The half-filled green diamonds rep-
resent the values of τs.m.a. obtained for “inexact” fits of one HN function to the peak
describing the relaxation around the short molecular axis, whereas the filled green and
olive diamonds represent the values of τs.m.a.1 and τs.m.a.2, respectively, obtained for fits
of two HN functions to the peak. The relaxation times are described by Arrhenius de-
pendence [1–3], i.e., τ(i) = τ

(i)
0 exp(E(i)

a /RT), where E(i)
a is the activation energy of the

relaxation process (for i = s.m.a.1, s.m.a.2), and R is a gas constant. The activation energies
are about 63.8 [kJ/mol] and 55.8 [kJ/mol] for τs.m.a.1 and τs.m.a.2, respectively. The activation
energies for the rest relaxation processes, i.e., τcon f . and τl.m.a., are about 87 [kJ/mol] and
10.7 [kJ/mol], respectively, and they coincide with the values reported in [26]. Obtained
values of the activation energies are in agreement with the adequate ones reported for liquid
crystals; for example, see [22,25,34,36,48–51]. The deconvolution of the relaxation process
around the short axis of the molecule into two component processes, shown in Figure 3b,d,
is only an example distribution. Such a process can be decomposed in several ways so
that, while maintaining the assumed ratio of dielectric increment values at a similar level
(i.e., about 1:1), several pairs of closely located relaxation processes can be obtained. They
may differ in the location of the maxima, which affects the relaxation time τ. Moreover,
they may show different dependences of the position of the maximum as a function of
temperature, which affects the value of the calculated activation energy E(i)

a , for i = 1 or
2. Therefore, the relaxation time values shown in Figure 5 are orientational values with a
possible shift of up to approximately 10%. This means that the obtained activation energy
values should be treated as the upper and the lower limits of the activation energy of the
relaxation process around the short axis of the molecule.
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5. Conclusions

New insight into the behavior of chiral liquid crystal 4ABO5* in the broad temperature
region in the Cr phase allows us to draw some main conclusions. There is no change in the
behavior of τs.m.a.1, τs.m.a.2, and τl.m.a. for temperatures lower than 225 K. This temperature
was expected to be the glass transition temperature, as reported in [26]. For the high
temperatures of the Cr phase, the Vogel–Fulcher–Tammann (VFT) relation (for example,
see [1,3,26]) can be fitted to the relaxation time τcon f . as in [26]. However, the Arrhenius
relation suits the experimental data for the low temperatures of the Cr phase. Similarly,
as for the VFT relation, the Arrhenius relation states that the temperature for which the
relaxation time is of the order of 100 s (the assumed value of the relaxation time for the
vitrification process [1,3]) is about 226.5 K, which is consistent with the Tg published in [26].
But, no signatures of vitrification and softening of glass were detected in calorimetric and
dielectric measurements around 225 K. Similar behavior was shown by other compounds
from this homolog series, i.e., 4EOB [34] and 10AB7 [33]. The results suggest that the
relaxation associated with the conformational motions of molecules or interactions via
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the NO group becomes very weak. The dielectric increment is the decreasing function of
decreasing temperature, and ∆εcon f . takes values of about 0.43 at 277.8 K and 0.01 at 243.8 K.

The liquid crystal 4ABO5* is a mixture of isomers differing by location of the oxygen atom
positioned to either of the azo group in proportion, almost, 1:1 (∆εs.m.a.1/∆εs.m.a.2 = 0.93÷ 0.97).
The relaxation process around the short axis of the molecule is composed of two processes
located close to each other. The failure to satisfy the dielectric response scaling supports this
hypothesis. Both processes are described by the HN equation with similar sets of exponents
α and β, i.e., αs.m.a.1

∼= 0.3, 0.75 ≤ βs.m.a.1 ≤ 0.80 and αs.m.a.2 ∼= 0.2., βs.m.a.2 ∼= 0.9. Due to the
fact that in the IL and Ch phases, the molecules have more degrees of freedom than in the
Cr phase, these processes can be described by even more similar values of exponents and,
what is important, is that the maxima of the loss peaks would coincide in IL and Ch phase.
For compounds composed of two isomers, an overlapping relaxation process can occur
around one of the molecule’s axes in the crystal phase only. Relaxation around the short
axis takes place at lower frequencies than relaxation around the long axis of the molecule
(which is close to the upper limit of the measurement window, i.e., for frequencies higher
than 1 MHz). Therefore, relaxation processes can be expected to overlap around the short
axis of the molecule.

The scaling procedure proposed in [13,20,21] is an excellent tool for studying the
complexity of molecular dynamics observed in dielectric materials. As shown, it allows one
to check whether an observed relaxation process is a composition of several relaxational
processes, as in the Cr phase of 4ABO5*. The more significant the difference in the scaled
curves of the dielectric response (on the kink), the larger the separation of the maxima of
possible component processes that should be expected.
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Phys. 2015, 118, 064101. [CrossRef]

14. Jonscher, A.K. The ‘universal’ dielectric response. Nature 1977, 267, 673–679. [CrossRef]
15. Dixon, P.K.; Wu, L.; Nagel, S.R.; Williams, B.D.; Carini, J.P. Scaling in the relaxation of supercooled liquids. Phys. Rev. Lett. 1990,

65, 1108–1111. [CrossRef] [PubMed]
16. Menon, N.; Nagel, S.R. Comment on “Scaling of the α relaxation in low-molecular-weight glass-forming liquids and polymers”.

Phys. Rev. Lett. 1993, 71, 4095. [CrossRef] [PubMed]
17. Menon, N.; Nagel, S.R. Evidence for a divergent susceptibility at the glass transition. Phys. Rev. Lett. 1995, 74, 1230–1233.

[CrossRef] [PubMed]
18. Dixon, P.K. Specific-heat spectroscopy and dielectric susceptibility measurements of salol at the glass transition. Phys. Rev. B 1990,

42, 8179–8186. [CrossRef] [PubMed]
19. Dendzik, Z.; Paluch, M.; Gburski, Z.; Zioło, J. On the universal scaling of the dielectric relaxation in dense media. J. Phys. Condens.

Matter 1997, 9, L339–L346. [CrossRef]
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