Toledoite, TiFeSi, a New Mineral from Inclusions in Corundum Xenocrysts from Mount Carmel, Israel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kaminsky, F. Mineralogy of the lower mantle: A review of “super-deep” mineral inclusions in diamond. Earth Sci. Rev. 2012, 110, 127–147. [Google Scholar] [CrossRef]
- Trumbull, R.; Yang, J.-S.; Robinson, P.; Di Pierro, S.; Vennemann, T.; Wiedenbeck, M. The carbon isotope composition of natural SiC (moissanite) from the Earth’s mantle: New discoveries from ophiolites. Lithos 2009, 113, 612–620. [Google Scholar] [CrossRef]
- Dobrzhinetskaya, L.; Mukhin, P.; Wang, Q.; Wirth, R.; O’Bannon, E.; Zhao, W.; Eppelbaum, L.; Sokhonchuk, T. Moissanite (SiC) with metal-silicide and silicon inclusions from tuff of Israel: Raman spectroscopy and electron microscope studies. Lithos 2018, 310–311, 355–368. [Google Scholar] [CrossRef]
- Griffin, W.L.; Bindi, L.; Cámara, F.; Ma, C.; Gain, S.E.M.; Saunders, M.; Alard, O.; Huang, J.-X.; Shaw, J.; Meredith, C.; et al. Interactions of magmas and highly reduced fluids during intraplate volcanism, Mt Carmel, Israel: Implications for mantle redox states and global carbon cycles. Gondwana Res. 2024, 128, 14–54. [Google Scholar] [CrossRef]
- Ma, C.; Cámara, F.; Bindi, L.; Toledo, V.; Griffin, W.L. New minerals from inclusions in corundum xenocrysts from Mt Carmel, Israel: Magnéliite, ziroite, sassite, mizraite-(Ce) and yeite. Materials 2023, 16, 7578. [Google Scholar] [CrossRef]
- Ma, C.; Beckett, J.R. Kaitianite, Ti3+2Ti4+O5, a new titanium oxide mineral from Allende. Meteorit. Planet. Sci. 2021, 56, 96–107. [Google Scholar] [CrossRef]
- Litasov, K.D.; Bekker, T.B.; Kagi, H. Reply to the discussion of “Enigmatic superreduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. (Lithos, v.340–341, p.181–190) by W.L. Griffin, V. Toledo and S.Y. O’Reilly. Lithos 2019, 348–349, 105170. [Google Scholar]
- Litasov, K.D.; Kagi, H.; Bekker, T.B. Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags. Lithos 2019, 340–341, 181–190. [Google Scholar] [CrossRef]
- Ballhaus, C.; Helmy, H.M.; Fonseca, R.O.C.; Wirth, R.; Schreiber, A.; Jöns, N. Ultra-reduced phases in ophiolites cannot come from the Earth’s mantle. Am. Mineral. 2021, 106, 1053–1063. [Google Scholar] [CrossRef]
- Galuskin, E.; Galuskina, I. Evidence of the antoropogenic origin of the “Carmel Sapphire” with enigmatic super-reduced minerals. Min. Mag. 2023, 87, 619–630. [Google Scholar] [CrossRef]
- Galuskin, E.; Galuskina, I. Reply to the discussion of “Evidence of the anthropogenic origin of the ‘Carmel sapphire’ with enigmatic super-reduced minerals” by E. Galuskin and I. Galuskina (Mineralogical Magazine, 87, 631–634) by W.L. Griffin, V. Toledo and S.Y. O’reilly. Min. Mag. 2023, 87, 635–638. [Google Scholar] [CrossRef]
- Griffin, W.L.; Toledo, V.; O’Reilly, S.Y. Discussion of “Enigmatic super-reduced phases in corundum from natural rocks: Possible contamination from artificial abrasive materials or metallurgical slags” by Litasov et al. Lithos 2019, 348–349, 105122. [Google Scholar] [CrossRef]
- Griffin, W.L.; Toledo, V.; O’Reilly, S.Y. Discussion of paper by Galuskin and Galuskina, “Evidence of the anthropogenic origin of the “Carmel Sapphire” with enigmatic super-reduced minerals”. Min. Mag. 2023, 87, 631–634. [Google Scholar] [CrossRef]
- Griffin, W.L.; Gain, S.E.M.; Huang, J.-X.; Belousova, E.A.; Toledo, V.; O’Reilly, S.Y. Permian to Quaternary magmatism beneath the Mt Carmel area, Israel: Zircons from volcanic rocks and associated alluvial deposits. Lithos 2018, 314–315, 307–322. [Google Scholar] [CrossRef]
- Yu, Z. Two new minerals gupeiite and xifengite in cosmic dusts from Yanshan. Acta Petrol. Mineral. Et Anal. 1984, 3, 231–238. [Google Scholar]
- Xiong, F.; Xu, X.; Mugnaioli, E.; Gemmi, M.; Wirth, R.; Grew, E.S.; Robinson, P.T. Jingsuiite, TiB2, a new mineral from the Cr-11 podiform chromitite orebody, Luobusa ophiolite, Tibet, China: Implications for recycling of boron. Am. Mineral. 2022, 107, 43–53. [Google Scholar] [CrossRef]
- Story-Maskelyne, M.H.N.X. On the mineral constituents of meteorites. Phil. Trans. R. Soc. 1870, 160, 189–214. [Google Scholar]
- Shi, N.; Bai, W.; Li, G.; Xiong, M.; Yang, J.; Ma, Z.; Rong, H. Naquite, FeSi, a new mineral species from Luobusha, Tibet, Western China. Acta Geol. Sin. 2012, 86, 533–538. [Google Scholar]
- Jeitschko, W. The crystal structure of TiFeSi and related compounds. Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 1970, 26, 815–822. [Google Scholar] [CrossRef]
- Baur, W.H. The Geometry of Polyhedral Distortions. Predictive Relationships for the Phosphate Group. Acta Crystallogr. B Struct. Crystallogr. Cryst. Eng. Mater. 1974, 30, 1195–1215. [Google Scholar] [CrossRef]
- Li, G.; Fang, Q.; Shi, N.; Bai, W.; Yang, J.; Xiong, M.; Ma, Z.; Rong, H. Zangboite, TiFeSi2, a new mineral species from Luobusha, Tibet, China, and its crystal structure. Can. Mineral. 2009, 47, 1265–1274. [Google Scholar]
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Wolfgang, J. Ternary phases with TiFeSi and ordered Fe2P type structures. Metall. Trans. 1970, 1, 2963–2965. [Google Scholar]
- Weitzer, F.; Schuster, J.C.; Naka, M.; Stein, F.; Palm, M. On the reaction scheme and liquidus surface in the ternary system Fe-Si-Ti. Intermetallics 2008, 16, 273–282. [Google Scholar] [CrossRef]
- Marshall, M.; Sanford, J.; Shelton, W.; Xie, W. The crystal structures and magnetic properties of TiFeSi coexisting in hexagonal and orthorhombic symmetries. J. Alloys Compd. 2021, 864, 158617. [Google Scholar] [CrossRef]
- Griffin, W.L.; Gain, S.E.M.; Saunders, M.; Huang, J.-X.; Alard, O.; Toledo, V.; O’Reilly, S.Y. Immiscible metallic melts in the upper mantle beneath Mount Carmel, Israel: Silicides, phosphides and carbides. Am. Mineral. 2022, 107, 532–549. [Google Scholar] [CrossRef]
- Xiong, F.; Xu, X.; Mugnaioli, E.; Gemmi, M.; Wirth, R.; Grew, E.S.; Robinson, P.T.; Yang, J. Two new minerals, badengzhuite, TiP, and zhiqinite, TiSi2, from the Cr-11 chromitite orebody, Luobusa ophiolite, Tibet, China: Is this evidence for super-reduced mantle-derived fluids? Eur. J. Mineral. 2020, 32, 557–574. [Google Scholar] [CrossRef]
- Xiong, F.; Xu, X.; Mugnaioli, E.; Gemmi, M.; Wirth, R.; Yang, J.; Grew, E.S. Wenjiite, Ti10(Si,P,□)7, and kangjinlaite, Ti11(Si,P)10, new minerals in the ternary Ti-P-Si system from the Luobusa ophiolite, Tibet, China. Am. Mineral. 2023, 108, 197–210. [Google Scholar] [CrossRef]
- Mandal, P. Structural disorder in Ti–Fe–Si icosahedral quasicrystal. J. Alloys Compd. 2003, 361, 96–101. [Google Scholar] [CrossRef]
Constituent | Mean | Range | SD | Probe Standard |
---|---|---|---|---|
Fe | 40.47 | 39.92–41.17 | 0.37 | Fe metal |
Ti | 29.94 | 29.39–30.84 | 0.47 | Ti metal |
Si | 20.83 | 20.29–21.29 | 0.25 | Si metal |
Mn | 3.96 | 3.69–4.14 | 0.11 | Mn2SiO4 |
Cr | 2.73 | 2.54–2.91 | 0.10 | Cr metal |
V | 0.77 | 0.71–0.85 | 0.04 | V metal |
P | 0.82 | 0.71–1.24 | 0.17 | GaP |
Total | 99.52 |
h | k | l | d [Å] | Irel |
---|---|---|---|---|
1 | 1 | 0 | 5.8789 | 1 |
0 | 1 | 1 | 5.4392 | 6 |
0 | 2 | 0 | 5.4150 | 3 |
1 | 2 | 1 | 3.5402 | 1 |
2 | 0 | 0 | 3.5000 | 5 |
0 | 0 | 2 | 3.1450 | 3 |
0 | 3 | 1 | 3.1310 | 5 |
2 | 1 | 1 | 2.9433 | 7 |
2 | 2 | 0 | 2.9394 | 4 |
0 | 2 | 2 | 2.7196 | 3 |
0 | 4 | 0 | 2.7075 | 1 |
1 | 4 | 1 | 2.3434 | 1 |
2 | 0 | 2 | 2.3393 | 44 |
2 | 3 | 1 | 2.3335 | 100 |
3 | 1 | 0 | 2.2810 | 4 |
1 | 3 | 2 | 2.2460 | 3 |
2 | 2 | 2 | 2.1475 | 89 |
2 | 4 | 0 | 2.1415 | 38 |
1 | 5 | 0 | 2.0692 | 4 |
0 | 1 | 3 | 2.0585 | 36 |
0 | 4 | 2 | 2.0519 | 33 |
0 | 5 | 1 | 2.0480 | 34 |
3 | 2 | 1 | 2.0284 | 8 |
3 | 3 | 0 | 1.9596 | 2 |
1 | 2 | 3 | 1.8831 | 2 |
3 | 1 | 2 | 1.8465 | 4 |
0 | 3 | 3 | 1.8131 | 17 |
0 | 6 | 0 | 1.8050 | 8 |
2 | 1 | 3 | 1.7743 | 12 |
2 | 4 | 2 | 1.7701 | 12 |
2 | 5 | 1 | 1.7676 | 11 |
4 | 0 | 0 | 1.7500 | 36 |
3 | 4 | 1 | 1.7016 | 1 |
1 | 6 | 1 | 1.6840 | 1 |
3 | 3 | 2 | 1.6632 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, C.; Cámara, F.; Bindi, L.; Griffin, W.L. Toledoite, TiFeSi, a New Mineral from Inclusions in Corundum Xenocrysts from Mount Carmel, Israel. Crystals 2024, 14, 96. https://doi.org/10.3390/cryst14010096
Ma C, Cámara F, Bindi L, Griffin WL. Toledoite, TiFeSi, a New Mineral from Inclusions in Corundum Xenocrysts from Mount Carmel, Israel. Crystals. 2024; 14(1):96. https://doi.org/10.3390/cryst14010096
Chicago/Turabian StyleMa, Chi, Fernando Cámara, Luca Bindi, and William L. Griffin. 2024. "Toledoite, TiFeSi, a New Mineral from Inclusions in Corundum Xenocrysts from Mount Carmel, Israel" Crystals 14, no. 1: 96. https://doi.org/10.3390/cryst14010096
APA StyleMa, C., Cámara, F., Bindi, L., & Griffin, W. L. (2024). Toledoite, TiFeSi, a New Mineral from Inclusions in Corundum Xenocrysts from Mount Carmel, Israel. Crystals, 14(1), 96. https://doi.org/10.3390/cryst14010096