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Abstract: The crystalline sponge method has proven invaluable in the preparation and analysis
of supramolecular host/guest complexes if the host can be obtained in a suitable crystalline form,
allowing the analysis of guest binding modes inside host cavities which can inform other studies
into processes such as catalysis. Here, we report the structures of a set of ten host/guest complexes
using an octanuclear coordination cage host with a range of small-molecule neutral organic guests
including four aromatic aldehydes and ketones, three cyclic lactams, and three epoxides. In all cases,
the cavity-bound guests are anchored by a collection of CH•••O hydrogen-bonding interactions
between an O atom on the guest and a convergent set of CH protons at a pocket on the cage interior
surface. Depending on guest size and the presence of solvent molecules as additional guests, there
may be one or two cavity-bound guests, with small aromatic guests forming π-stacked pairs. Some
guests (the lactams) participate in additional NH•••F H-bonding interactions with surface-bound
fluoroborate anions, which indicate the type of anion/guest interactions thought to be responsible
for solution-phase catalytic reactions of bound guests.

Keywords: supramolecular chemistry; host/guest complexes; coordination cages

1. Introduction

In 2013 and 2016, Fujita and co-workers reported, in two seminal papers, the use of
porous coordination complexes as hosts for organic guests that could be absorbed into the
voids in pre-formed single crystals of the hosts, orienting in the voids in a regular way,
allowing single-crystal X-ray crystallography to provide structural characterisation of the
bound guests [1,2]. Particular benefits of this ‘crystalline sponge’ methodology as a tool
for structural characterisation of bound guests are that (i) it allows structural analysis by
crystallography of molecules that are not themselves crystalline and (ii) it can be performed
with microscopic amounts of material (microgram to nanogram scale). Since those original
reports from the Fujita group, the technique has been exploited by many other groups
and is now an established part of the landscape for structural analysis in supramolecular
chemistry [3–12].

As part of our ongoing work on the host/guest chemistry and supramolecular catalysis
properties of coordination cages [13,14], particularly using the octanuclear cubic M8L12 cage
shown in Figure 1, which is based on an array of 12 ditopic bis(pyrazolyl-pyridine) bridging
ligands lying along the edges of an approximate cube of Co(II) ions, we have found the
crystalline sponge method to be exceptionally helpful. Coordination cages have attracted
immense attention in recent years due to the possibility of functional behaviour associated
with their ability to bind guests in the central cavity, with many impressive examples of
catalysis in particular being reported [15–30]. We have found that recrystallisation of a
coordination cage from a solvent in the presence of any of a wide range of guests afforded
crystals of the cage/guest complex only very rarely; nearly always, crystals with an empty
cage structure are formed. However, pre-preparation of single crystals of our octanuclear
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M8L12 cubic coordination cage (Figure 1) using a solvothermal method [31], followed by
immersing a crystal in the guest as either a pure oil or a concentrated methanolic solution
for a few hours, resulted in the guest being taken up to the cage cavity—and crystallinity
being retained—with a high chance of success. We estimate from many successful and
unsuccessful experiments over many years that this method affords around a one in
three chance of being able to obtain a crystal structure of a cage/guest complex. Access
to synchrotron facilities that provide complete X-ray diffraction datasets in ca. 20 min,
coupled with an automatic sample-changing robot that can be operated remotely, has
allowed large numbers of successful cage/guest structure determinations to be obtained
from each synchrotron session [32].
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ally structurally simple) but on how the guests interact with the host M8L12 cage. Our in-
terest in this stems from the observation of catalysis in solution afforded by these cages 
[13,14], which relies on the binding of two different types of guest by quite distinct inter-
actions. Firstly, the cage cavity is hydrophobic and, in aqueous solution, is capable of 
binding small neutral organic molecules with binding constants of up to ≈106 M−1 via the 
hydrophobic effect. The strongest guest binding in solution occurs with guests whose vol-
ume is around half of the cavity volume (409 Å3) [33], in agreement with the Rebek ‘55% 
rule’ which states, on the basis of empirical studies of thermodynamic stability of a series 
of host/guest complexes, that the most stable adducts form when the guest volume is in 
the range 55 ± 9% of the cavity volume [34,35]. Whilst the main thermodynamic binding 
force underpinning guest binding in water is the hydrophobic effect [33,36], the orienta-
tion of cavity-bound guests inside the cavity depends on specific hydrogen-bonding in-
teractions between electron-rich regions of the guest and the cage interior surface [37]; the 
geometry of this interaction can significantly affect catalytic activity [14]. 

Secondly, the windows in the centres of the cage faces contain a convergent array of 
CH protons around their rim, which collectively form an H-bond donor site. Crystal struc-
tures of many different salts of the M8L12 cage cation, which carries a 16+ charge, show 
that the anions X– invariably bind in the windows around the cage surface, forming mul-
tiple charge-assisted CH•••X interactions with the proton array [13]. In aqueous solution, 
it is clear that these interactions are retained, with hydrophobic and easily-desolvated an-
ions accumulating at these sites around the cage surface [38]. 

The catalysis that we have observed relies on the interaction of cavity-bound guests 
with the surface-bound anions, which surround the cavity and thereby afford a high local 

Figure 1. (a) Cartoon illustrating the cubic host cage [M8L12]16+, abbreviated as H (R = H), empha-
sising the cubic array of Co(II) ions and the disposition of one bridging ligand. (b) A view of the
complete cage structure, highlighting the guest-binding cavity space (V = 409 Å3).

Our motivation is somewhat different from that of Fujita’s initial work in that we
use relatively small guests, with a focus not on the characterisation of the guest (which
is usually structurally simple) but on how the guests interact with the host M8L12 cage.
Our interest in this stems from the observation of catalysis in solution afforded by these
cages [13,14], which relies on the binding of two different types of guest by quite distinct
interactions. Firstly, the cage cavity is hydrophobic and, in aqueous solution, is capable
of binding small neutral organic molecules with binding constants of up to ≈106 M−1 via
the hydrophobic effect. The strongest guest binding in solution occurs with guests whose
volume is around half of the cavity volume (409 Å3) [33], in agreement with the Rebek ‘55%
rule’ which states, on the basis of empirical studies of thermodynamic stability of a series of
host/guest complexes, that the most stable adducts form when the guest volume is in the
range 55 ± 9% of the cavity volume [34,35]. Whilst the main thermodynamic binding force
underpinning guest binding in water is the hydrophobic effect [33,36], the orientation of
cavity-bound guests inside the cavity depends on specific hydrogen-bonding interactions
between electron-rich regions of the guest and the cage interior surface [37]; the geometry
of this interaction can significantly affect catalytic activity [14].

Secondly, the windows in the centres of the cage faces contain a convergent array of
CH protons around their rim, which collectively form an H-bond donor site. Crystal
structures of many different salts of the M8L12 cage cation, which carries a 16+ charge, show
that the anions X– invariably bind in the windows around the cage surface, forming multiple
charge-assisted CH•••X interactions with the proton array [13]. In aqueous solution, it is
clear that these interactions are retained, with hydrophobic and easily-desolvated anions
accumulating at these sites around the cage surface [38].

The catalysis that we have observed relies on the interaction of cavity-bound guests
with the surface-bound anions, which surround the cavity and thereby afford a high local
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concentration of anions around the central guest. The best example is a >105-fold rate enhance-
ment of the reaction of cavity-bound benzisoxazole with the surface-bound hydroxides. At a
bulk pH of ≈8 in the reaction solution, the accumulation of hydroxide ions around the cage
surface is such that the central guest experiences a local pH of >13—hence, the observed rate
enhancement [39]. Several other catalysed reactions of cage-bound substrates with the local
accumulation of anions around the cage surface have been reported [13,14]. It is of particular
interest, therefore, to understand the localisation and binding geometries of both neutral
guests (usually in the cavity, but sometimes in contact with the exterior surface) and anionic
guests (usually at the surface portals). Interactions between both guest types and the cage
interior or exterior surface, which help to orient the components with respect to each other
during any catalysis, are of particular interest, as is the ability of the cage to bind multiple
guests in some cases [32].

As part of this work, we report here the results of an extensive crystallographic
investigation into cage/guest complexes based on our M8L12 cage with a wide variety of
neutral, cavity-binding guest species. Importantly, whilst solid-state structures are not
necessarily wholly representative of solution structures, they still have value in illustrating
solution host/guest behaviour given that the cage complex molecules (and their central
cavities) remain intact in solution. Thus, crystallographic studies of this nature are useful
for informing solution studies on cage/guest catalysis.

2. Materials and Methods

The guests used are shown in Scheme 1. Crystals of the host cage H were prepared
via a solvothermal method as described previously [31]. In most cases (with guests 1–9),
the Co(II) cage was used as the host; for guest 10, the isostructural Zn(II) cage was used.
Cage/guest complexes were prepared by prolonged (overnight) immersion of single crystals of
H in concentrated solutions of the relevant guests in MeOH, as described previously [32]. The
crystallographic data were acquired using synchrotron radiation at Beamline I-19, Diamond
Light Source, UK [40], using the automatic sample-changing robot [41]; software and methods
used for data processing and structure solution and refinement were as reported previously [32].
Detailed information on the crystal properties, data collection, and refinement parameters
associated with the structure determinations is compiled in Table 1. Molecular volumes used
to determine cavity occupancies were calculated using the ‘Molinspiration’ software [42]; key
parameters associated with guest binding are summarised in Table 2.
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Table 1. Summary of crystallographic, data collection, and refinement parameters for the ten crystal
structures in this paper. Items in common to all structures: crystal system and space group are
monoclinic, C2/c, with Z = 4 formula units per unit cell; temperature for data collection = 100(1) K;
X-ray wavelength for data collection using the synchrotron source is 0.6889 Å.

Guest 1 2

Empirical formula C393H404B16Co8F64N72O33 C382.3H402.4B15ClCo8F60N72O33.3

Formula weight 8524.26 8347.58

Crystal size/mm3 0.05 × 0.04 × 0.03 0.05 × 0.04 × 0.04

a/Å 33.0615(7) 33.01890(18)

b/Å 29.8386(6) 30.20670(17)

c/Å 40.6176(10) 40.0588(3)

β/degrees 96.149(2) 95.8900(5)

V/Å3 39,839.0(16) 39,743.4(4)

ρcalc/g cm−3 1.421 1.395

µ/mm−1 0.397 0.402

Reflections collected 256,642 337,342

Data/restraints/parameters 37,813/6507/2507 63,185/6310/2460

Final R indexes [I ≥ 2σ(I)] R1 = 0.0767, wR2 = 0.2222 R1 = 0.0834, wR2 = 0.2665

Final R indexes (all data) R1 = 0.1008, wR2 = 0.2401 R1 = 0.1251, wR2 = 0.2908

CCDC number 2384590 2384591

3 4 5

C384.5H402B15ClCo8F60N72O32.5 C392.96H413.96B16Co8F64N72O40.73 C346.7H289.8B13.8Cl0.6Co8F55.2N73O3.7

8360.80 8657.50 7228.59

0.11 × 0.10 × 0.06 0.12 × 0.10 × 0.09 0.13 × 0.12 × 0.09

32.90637(11) 33.2126(7) 32.92440(7)

29.93692(10) 29.5454(5) 30.18020(6)

40.10059(15) 41.0423(8) 39.98850(8)

96.1742(3) 96.8689(19) 96.4020(2)

39,274.56(17) 39,984.9(13) 39,487.39(14)

1.414 1.438 1.216

0.406 0.398 0.386

24,6676 259,568 343,098

37,249/6271/2442 39,381/6104/2511 62,799/6098/2486

R1 = 0.0568, wR2 = 0.1783 R1 = 0.0919, wR2 = 0.3118 R1 = 0.0719, wR2 = 0.2402

R1 = 0.0671, wR2 = 0.1848 R1 = 0.1025, wR2 = 0.3222 R1 = 0.0890, wR2 = 0.2545

2384592 2384593 2384594

6 7 8

C345H277B12.4Co8F49.6N73O3 C377.60H396.80B12.07Co8F74.9N74.6O2.29 C372.32H385.2B16ClCo8F64N72O27.72

7041.26 7963.59 8172.46

0.10 × 0.10 × 0.09 0.04 × 0.04 × 0.06 0.08 × 0.04 × 0.04

32.8556(5) 33.3743(5) 32.8604(3)

29.7412(4) 29.4366(4) 30.0660(2)

39.6625(6) 40.3379(5) 39.7043(6)

96.3677(15) 97.5930(10) 95.4891(11)

38,517.7(10) 39,281.5(9) 39,047.3(6)

1.214 1.347 1.390

0.388 0.393 0.405

28,9312 242,725 285,955



Crystals 2024, 14, 873 5 of 15

Table 1. Cont.

Guest 1 2

47,729/5955/2418 35,993/962/2424 48,386/5809/2293

R1 = 0.0645, wR2 = 0.1961 R1 = 0.1229, wR2 = 0.3731 R1 = 0.0796, wR2 = 0.2630

R1 = 0.0777, wR2 = 0.2063 R1 = 0.1347, wR2 = 0.3823 R1 = 0.1230, wR2 = 0.2868

2384595 2384596 2384627

9 10

C392H368B16Co8F64N72O21 C384.2H412.6B11.6F45.8N72O39.1 Zn8

8283.96 8182.01

0.15 × 0.10 × 0.10 0.10 × 0.09 × 0.08

33.03732(15) 32.8304(3)

30.04674(14) 29.9021(2)

40.5695(2) 40.3091(3)

95.6880(5) 95.8320(10)

40,073.6(3) 39,366.5(5)

1.373 1.381

0.391 0.533

322,531 537,984

56,126/8982/2650 50,826/968/2393

R1 = 0.0825, wR2 = 0.2664 R1 = 0.0743, wR2 = 0.2413

R1 = 0.1189, wR2 = 0.2966 R1 = 0.1017, wR2 = 0.2579

2384628 2384629

Table 2. Summary of key features relating to guest binding in the crystal structures.

Guest Guest
Volume/Å3 Cavity Occupancy Shortest Co•••O/Å CH•••O/Å

(Naphthyl)
CH•••O/Å

(Methylene)

1 103 2 (stacked pair related by inversion, π-π = 3.36 Å) 5.44 2.52–2.70 2.76–2.85

2 147
1.3 (stacked pair related by inversion but with s.o.f.

0.65 each, π-π = 3.44 Å)
5.40 2.42–2.78 2.72–2.83

3 126 2 (stacked pair related by inversion, π-π = 3.49 Å) 5.65 2.53–2.83 2.90–3.05

4 137 2 (stacked pair related by inversion, π-π = 3.30 Å) 5.36 2.54–2.89 2.67–3.00

5 151 1 guest 5 plus two MeOH (0.7/1.0 s.o.f. = 1.7 MeOH),
all disordered across cavity inversion centre 5.26 2.50–2.68 2.60–2.64

6 134 1 guest 6 plus two MeOH (both s.o.f. = 0.5), all
disordered across cavity inversion centre 5.40 2.47–2.63 2.75–2.79

7 117 1.6 guests 7 (pair related by inversion disordered
over two orientations with s.o.f. = 0.4 in each) 5.41/5.56 a 2.55–2.83 a 2.75–2.94 a

8 101 1.72 (pair related by inversion but with site
occupancy of 0.86 each) 5.71 2.50–2.56 2.83

9 116 2 (pair related by inversion) 5.35 b 2.43–2.88 b 2.64–3.00 b

10 143 1.3 (pair related by inversion but with site occupancy
of 0.65) 5.61 2.53–2.94 2.83–2.98

a Two guest orientations disordered both with s.o.f. = 0.4. b Based on O(19G) (major disorder component only).

All crystal structure determinations suffered from the usual weak scattering character-
istic of crystals of this type, associated with large unit cells and disorder of solvents/anions.
This necessitated extensive use of geometric and displacement parameter restraints during
the refinements to achieve stable and chemically reasonable models. Some anions/solvents
were refined with fractional occupancies over multiple sites when the disorder could be
modelled. Large solvent-accessible voids with a diffuse electron density that could not
be satisfactorily modelled were accounted for using a solvent mask function during the
final refinement. Full details of the treatments of these structures, including the software
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used, are given in the individual CIFs. Despite these normal issues associated with an-
ion/solvent disorder, the host cages and their bound guests are generally well behaved,
and over-interpretation of minutiae of metric parameters has been avoided.

3. Results and Discussion

The host M8L12 cage that we have studied extensively [13,14] is shown in Figure 1 and
contains an approximate cubic array of Co(II) ions with a ditopic bis(pyrazolyl-pyridine)
ligand spanning each of the twelve edges; significant intertwining of ligands results in
an extensive array of inter-ligand pi-stacking interactions around the exterior surface [31].
The formal molecular symmetry is S6 as the cage contains two fac tris-chelate vertices
(at either end of a long diagonal) and six mer tris-chelate vertices; as such, it is achiral
with an inversion centre. The portals in the six faces of the cage allow ingress and egress
of guests—sometimes in fast exchange on the NMR timescale and sometimes in slow
exchange, according to guest size and rigidity [13]. Importantly, the two fac tris-chelate
vertices result in convergent arrays of inwardly directed CH protons from both naphthyl
and CH2 groups which define H-bonding pockets on the interior surface of the cage in
regions of high positive electrostatic potential, spatially close to the Co(II) ions; these are
the sites where guests containing atoms with lone pairs invariably dock [37].

All crystalline sponge experiments were performed using single crystals of [M8L12](BF4)16
(M = Co or Zn), which we denote ‘H’, for ‘host’, which were prepared using a solvothermal
method reported earlier [31]; in every case, a single crystal was immersed in guest either as a
pure oil or as a concentrated MeOH solution overnight before storing under liquid N2 for X-ray
analysis at the Diamond synchrotron facility.

3.1. Aromatic Carbonyl Compounds: Ketones and Aldehydes

The complex of H with benzaldehyde (1) reveals a stacked pair of guest molecules in
the cavity either side of the inversion centre (Figure 2a). The inversion centre necessarily
means that the two guests are parallel to one another, with the separation between over-
lapping aromatic rings being 3.36 Å, a typical graphitic stacking distance. Each guest is
disordered over two similar orientations with site occupancies of 0.65/0.35, giving full
100% site occupancy in total for each of the two guests: only the major component is shown
in Figure 1 and discussed in detail. The oxygen atom of the guest is directed into the
H-bond donor pocket defined by the convergent network of CH groups from the naphthyl
C4 and methylene carbon atoms; it lies 5.44 Å from the nearby Co(II) centre.
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Figure 2. Structure of the complex of H with guest 1. (a) A view of the whole cage with the stacked
pair of guests shown space-filling; (b) a view of one guest and its CH•••O hydrogen-bonding
interactions with a fac tris-chelate vertex, with H•••O contacts of <3 Å shown by dashed lines.

This projection of the C=O bond into the H-bond donor pocket results in a set of
six CH•••O hydrogen-bonding interactions (Figure 2b) with C•••O separations in the
range 3.37–3.64 Å and the associated H•••O contacts in the range 2.52–2.70 Å (to naphthyl
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CH protons) and 2.76–2.85 Å (to methylene protons). Another benzaldehyde molecule is
located outside the cavity in the space between cages, again disordered over two closely
spaced positions; this is not discussed further.

This arrangement of a stacked pair of basically planar guests across an inversion centre
in the cavity [20], anchored by CH•••O hydrogen-bonding interactions to the pockets on the
cage interior surface, is also observed with the guests 2-napthaldehyde (2), 1-indanone (3), and
4-hydroxy-3-methoxybenzaldehyde (vanillin, 4) (Figures 3–5, respectively); the relevant
metric data (H-bonding and π-stacking distances, etc.) are collected in Table 2.
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Figure 4. Structure of the complex of H with guest 3. (a) A view of the whole cage with the stacked
pair of guests shown space-filling; (b) a view of one guest and its CH•••O hydrogen-bonding
interactions with a fac tris-chelate vertex, with H•••O contacts of <3 Å shown by dashed lines.
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Figure 5. Structure of the complex of H with guest 4. (a) A wireframe view of the whole cage with
the stacked pair of guests, also showing a stacked pair of guests lying outside the cavity; (b) a view of
one guest and its CH•••O hydrogen-bonding interactions with a fac tris-chelate vertex, with H•••O
contacts of <3 Å shown by dashed lines; (c) a partial wireframe view of the cage (with all naphthyl
groups removed for clarity) showing how the stacked pair of cavity-bound guests forms OH•••F
H-bonding interactions with surface-bound fluoroborate anions.
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Guest 2 (2-naphthaldehyde, Figure 3) has a site occupancy of 0.65 in each asymmetric
unit, leading to an average cavity occupancy of 1.3 guests. Site occupancies of <1 are a
common consequence of crystalline sponge experiments because of the time taken for the
guest to diffuse to the centre of a crystal, which means that peripheral sites are more likely
to be occupied.

Guest 4 (vanillin) contains three oxygen atoms of which it is the aldehyde C=O that
‘docks’ into the H-bond donor site around the fac tris-chelate metal complex vertex (Figure 5);
the methoxy group O atom is involved in additional CH•••O interactions with a naphthyl
(C62D) and pyrazolyl (C23B) H atoms with O•••H distances and 2.85 and 2.69 Å, respectively.
This complex contains, in addition to the cavity-bound stacked pair of guests, an additional
stacked pair of molecules of 4 across an inversion centre outside the cavity (mean plane
separation 3.50 Å; site occupancy 0.62 for each molecule of 4).

A particularly notable feature of the complex with 4 is that the phenolic proton is not
involved in H-bonding to the cage interior surface, but interacts with a fluoroborate ion
lying in an adjacent face window, forming an OH•••F hydrogen bond [the H(17G)•••F(16)
separation—see Figure 5c—is 2.07 Å; the associated O•••F separation is 2.85 Å]. This
ability of surface-bound anions to ‘reach into’ the cage and interact with cavity-bound
guests is precisely the basis of the catalysis in aqueous solution that we have seen in some
cases [13,14], with a cage-catalysed Kemp elimination reaction occurring because a surface-
bound hydroxide ion can remove a reactive proton from the cavity-bound substrate [39].
This OH•••F hydrogen bond that we see here is accordingly a nice illustration of what is
occurring during solution-phase catalysis.

The presence of a guest pair in the cavity in each of the above cases gives packing
coefficients ranging from 50% (benzaldehyde, 1) to 72% (2-naphthaldehyde, 2). Whilst
the upper limit here is higher than might be expected in solution based on the Rebek 55%
principle [34,35], it is not exceptional in the solid state, particularly when an attractive
π-π interaction between the guests makes the pair particularly compact; guest packing
coefficients approaching 90% have been seen in some cases in the solid state [3,32].

3.2. Aliphatic Lactams

A group of guests that we studied previously as part of a quantitative analysis of the
hydrophobic effect is the set of C8, C7, and C6 aliphatic lactams 5–7. In these cases, we
could evaluate the incremental contributions of one additional CH2 group (between 5 and
6, and between 6 and 7) on the ∆H and ∆S contributions to guest binding in water [36].
They are of additional interest because of the possibility of catalysed amide hydrolysis
associated with accumulation of a high local concentration of hydroxide ions around the
bound guests.

The structure of H with guest 5 (2-aza-cyclononanone) contains one complete molecule
of 5 lying on one side of the cavity, and a pair of MeOH molecules with site occupancies
of 0.7 and 1.0 on the other side, i.e., the formulation is H•5•(MeOH)1.7 (Figure 6). The
guests (5 and the methanol pair) are all disordered across the central inversion centre such
that each asymmetric unit apparently contains a molecule of 5 with 0.5 site occupancy
superimposed on two MeOH molecules (site occupancies 0.35 and 0.5). If the molecule of
5 and both MeOH molecules are present together, the cavity occupancy is 55%—the centre
of the ideal range suggested by Rebek [34,35]. The separation between the O atoms of the
two methanol molecules, O(11S)•••O(15S), is 2.84 Å, which is strongly indicative of an
OH•••O hydrogen bond between the two molecules.
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Figure 6. Structure of the complex of H with guest 5. (a) A wireframe view of the whole cage with
the single guest (plus two MeOH molecules; see Table 2 for details); (b) a view of one guest and its
CH•••O hydrogen-bonding interactions with a fac tris-chelate vertex, with H•••O contacts of <3 Å
shown by dashed lines.

Protrusion of the amide O atom into the H-bond donor pocket at one of the fac tris-
chelate vertices follows the usual pattern with multiple CH•••O contacts with naphthyl
and methylene CH protons in the range 2.5–2.7 Å. We also note that the amide N–H proton
is directed towards a portal in one of the faces where a [BF4]– anion sits, bringing it close to
an F atom and forming an NH•••F hydrogen bond, as we saw above with guest 4. The
[BF4]– anion is disordered over two closely spaced positions; the shortest NH•••F contact
involving the pair of anion sites is 2.38 Å. Clearer examples of similar behaviour are shown
in the additional examples with lactam guests 6 and 7, below.

Removal of one CH2 group from the guest by using 6 as the guest gives a very similar
structure with one molecule of 6 and two of MeOH in the cavity (Figure 7), with the whole
set disordered across the inversion centre in the same way as we saw in the previous
example H•5•(MeOH)1.7.
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Figure 7. Structure of the complex of H with guest 6. (a) A view of the whole cage with the single
guest (plus two MeOH molecules; see Table 2 for details) shown in space-filling mode; (b) a view
of one guest and its CH•••O hydrogen-bonding interactions with a fac tris-chelate vertex, with
H•••O contacts of <3 Å shown by dashed lines; (c) a view of NH•••F hydrogen bonding between
the cavity-bound guest 6 and one of the (disordered) surface-bound fluoroborate anions, with H•••F
contacts of 2.44 and 2.54 Å shown as dashed lines.
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In this case, the fractional site occupancies give a formulation of H•6•(MeOH)2, with
again an OH•••O hydrogen bond between the two MeOH molecules (O•••O separa-
tion 2.80 Å). Again, we see an NH•••F hydrogen-bonding interaction between the guest
and a surface-bound [BF4]– anion (the shortest non-bonded N•••F separation is 3.09 Å)
though the relevant [BF4]– anion is disordered over two sites. Overall, the structure of
H•6•(MeOH)2 is very similar to that of H•5•(MeOH)1.7.

The complex of H with guest 7 (caprolactam; Figure 8) is different in that we see
two crystallographically equivalent guest species either side of the inversion centre, in the
same way as we see for the aromatic guests shown in the previous section, but the pair is
disordered across two significantly different orientations. This is illustrated in Figure 8:
each centrosymmetric guest pair, coloured in yellow and purple—but with the amide N
atom coloured blue to aid clarity—refines to a site occupancy of 0.4, which means a total
cavity occupancy of 1.6 guests. Although the different guest orientations are substantially
different for most atoms, the amide O atom is in almost the same position in the two guest
orientations, as this is the atom that is anchored to the cage interior surface via CH•••O
hydrogen bonding so has little scope to change its position. The two shortest O•••Co
separations, for example, are 5.41 and 5.56 Å, and the network of CH•••O interactions
is correspondingly comparable between the two guest orientations with several H•••O
contacts in the range 2.5–3 Å. The separation between the two guests within a pair, the
absence of any solvent molecules which are apparent in the structures with 5 and 6, and the
guest site occupancies indicate that two guest molecules can bind at the same time, which
would give a cavity packing coefficient of 57%. An additional pair of guests 7 lying astride
an inversion centre, each with a site occupancy of 0.5, forming a mutually NH•••O=C
pairwise H-bonding interaction across an inversion centre, is located outside the cavity in
the space between cage complexes.
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In addition to the usual network of CH•••O hydrogen bonds (Table 2) arising from 
the amide O atom projecting into the H-bond donor pocket, we can again see that the NH 
proton of each guest participates in an NH•••F hydrogen-bonding interaction with a sur-
face-bound BF4– anion, with non-bonded N•••F separations (from both guest orienta-
tions) of 2.97 Å. These fluoroborate anions that interact with the cavity-bound guests, 
based on B(5), are refined with a site occupancy of 0.65. For these interactions to occur, the 

Figure 8. Structure of the complex of H with guest 7. (a) A view of the whole cage and the cen-
trosymmetric pair of guests, disordered over two orientations (yellow and purple; N atoms are left
blue for clarity). (b) A view of the Co8 polyhedron showing the non-bonded N•••F interactions (all
2.97 Å) which indicate NH•••F hydrogen-bonding interactions of the guests with (BF4)– anions in an
opposite pair of cage windows.

In addition to the usual network of CH•••O hydrogen bonds (Table 2) arising from the
amide O atom projecting into the H-bond donor pocket, we can again see that the NH proton
of each guest participates in an NH•••F hydrogen-bonding interaction with a surface-
bound BF4

– anion, with non-bonded N•••F separations (from both guest orientations)
of 2.97 Å. These fluoroborate anions that interact with the cavity-bound guests, based on
B(5), are refined with a site occupancy of 0.65. For these interactions to occur, the two
participating BF4

– anions (on opposite sides of the cube) need to lie further into the cavity
than usual, such that the F atoms F(19) and F(1A) lie within hydrogen-bonding distance



Crystals 2024, 14, 873 11 of 15

of the NH proton of the cavity-bound guest. We can see this reflected in a particularly
short B•••B separation between the symmetrically equivalent pair of anions on that pair of
opposite faces of the cage. The separation between B(5) and its symmetry equivalent across
the cube is 10.57 Å, whereas for the other pairs of equivalent anions on opposite sides of
the cube, the B•••B separations are in the range 12–14 Å. Effectively, forming H-bonds to
the central guest NH protons has in this case pulled the relevant pair of anions based on
B(5) closer in towards the guests in the centre of the cube cavity. As with the structure with
guest 4 which displayed similar guest/anion interactions, this can be regarded as a simple
illustration of how surface-bound anions interact with cavity-bound guests during the
cage-based catalytic processes that we have observed [13,14]. We note that in this structure,
the substantial disorder of both guests and fluoroborate anions gives a significantly higher
R1 value (12.2%) than for the other nine structures (R1 in the range 6–9%) and accordingly
structural minutiae should not be over-interpreted. However, the basic picture of (a) a
centrosymmetric pair of guests disordered over two orientations in the cavity, which (b) is
involved in NH•••F interactions with surface-bound anions, is clear.

3.3. Epoxides

Epoxides are interesting possible guests given their well-known reactivity with anions,
which suggests that catalysed reactions of epoxides with anions might be catalysed by the
cubic cage if the epoxides can bind in the cage cavity. Three such examples of cage/guest
complexes, with cyclohexane epoxide (8), styrene epoxide (9), and 1,4-naphthoquinone
2,3-epoxide (10) as guests, are presented here. In all cases, the guests are compact enough
for there to be a pair of them astride the inversion centre, with (as seen in all previous
examples) an O atom acting as the H-bond acceptor and projecting into the H-bond donor
picket defined by the fac tris-chelate H-bond donor pockets.

With guest 8 (Figure 9), the two guests each have a crystallographic site occupancy of
0.86 such that there are 1.72 guests, on average, per cage. With guest 9 (Figure 10), each
guest has a total occupancy of 1.0, so there are two per cage, but each is disordered over
two sites with fractional occupancies of 0.62 and 0.38, such that the stacked pair has two
different orientations. In addition, molecules of 9 were located in the spaces between cages,
interacting with the external surfaces, with three such positions having 0.5 site occupancy
per asymmetric unit, i.e., three additional complete molecules of 9 per complete cage.
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Figure 10. Structure of the complex of H with guest 9. (a) A view of the whole cage and the pair of
guests shown in space-filling mode (major disorder component only); (b) a view of one guest and its
CH•••O hydrogen-bonding interactions with a fac tris-chelate vertex, with H•••O contacts of <3 Å
shown by dashed lines (major disorder component only).

These two guests are more compact than all of the others in that the H-bond acceptor
group (epoxide O atom) does not protrude from the core of the guest in the same way as it
does in all other cases, where a carbonyl C=O group acts as an H-bond acceptor. In order
to permit the CH•••O interactions between the epoxide guests and the H-bond donor
pockets on the cage, the guests have to lie close to those binding pockets and hence further
apart from each other. Despite the fact that 8 is aliphatic and 9 is aromatic, we see that
the distances between the ring units across the inversion centre are similar. The shortest
C•••C contact between the two cyclohexyl rings of 8 is 3.78 Å, which is unremarkable, but
the mean separation between the two aromatic rings of guest 9 across the crystallographic
inversion centre is an unusually large 3.80 or 3.95 Å (for the two disorder components) in
contrast to the more usual 3.3–3.4 Å (cf. guests 1–4). This facilitates the CH•••O interactions
of the guests with the cage interior surface; clearly, for guest 9, these hydrogen-bonding
interactions are more significant than any π-π stacking between guests in determining the
guest positioning in the cavity.

Guest 10 is significantly bulkier the 8 and 9: the crystal structure (Figure 11) reveals
two in the cage cavity, positioned either side the inversion centre, with site occupancies of
0.65 each (Figure 11). If both are present together, which must be possible sometimes given
the site occupancy, the cavity occupancy would be 70%, which is high for a solution-state
host/guest complex [34,35] but within normal parameters for solid-state structures [3,32].
In addition, one of the BF4

– anions based on B(2) protrudes significantly into the cavity in
one of its disordered positions and apparently has unfeasibly short contacts with a guest 10,
but the site occupancy of 0.35 for this anion means that this is only present in this position
when guest 10 is absent.
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Figure 11. Structure of the complex of H with guest 10. (a) A view of the whole cage and the pair
of guests shown in wireframe mode; (b) a view of one guest and its CH•••O hydrogen-bonding
interactions with a fac tris-chelate vertex, with H•••O contacts of <3 Å shown by dashed lines.
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The guest pair of 10 is more tightly packed than we saw with smaller guests 8 and 9,
with a separation of only 3.23 Å between the mean planes of the aromatic rings. However,
these do not overlap in a conventional π-stacking manner. The offset between the guests in
the centrosymmetric pair means that the aromatic ring of one overlaps principally with the
aliphatic ring of the other. It is also interesting to note that, in comparison to the structures
with epoxide guests 8 and 9, in this case, it is one of the carbonyl C=O oxygen atoms rather
than the epoxide O atom that is directed into the H-bonding pocket, presumably for simple
steric reasons.

4. Conclusions

Crystalline sponge experiments with an octanuclear coordination cage host and a
wide range of organic guests have been successful in allowing structural analysis of a
range of host/guest complexes in which the guests are taken up into the cage cavity. A
common feature of all of these is the hydrogen bonding between the cage interior surface
and Lewis basic sites (O atoms, either from C=O bonds in aldehydes, ketones, cyclic amides,
or epoxides) which anchors the guests in place. In many cases, small aromatic guests bind
as a π-stacked pair; we also see some cyclic aliphatic guests binding in pairs when they
are small enough, with the two guests related by inversion in every case. A significant
observation in cases where guests (4–7) contain H-bond donors (a phenol in the case of 4;
lactam N-H units for 5–7) is that these can form XH•••F hydrogen-bonding interactions
with surface-bound tetrafluoroborate anions, which illustrate nicely the way in which
interactions between cavity-bound guests and surface-bound anions promote catalysis
in solution. In some cases, guest molecules can also occupy spaces in the lattice outside
the cage cavities, interacting with the cage external surface. Overall, such studies inform
our understanding of cage/guest binding and thereby provide a valuable complement to
solution studies of cage-induced catalysis.
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