Advancements in and Applications of Crystal Plasticity Modelling of Metallic Materials
Abstract
:1. Introduction
- i.
- The c.s. defined by the deformation axes (e.g., for the case of rolling the RD (rolling direction), TD (transverse direction), and the ND (normal direction).
- ii.
- The c.s. based on the crystallography, which rotates along the grains during deformations. This is especially useful for single-crystal systems.
- iii.
- An external c.s. free of deformation, which is used for simplicity purposes (e.g., x, y, z).
- i.
- Aluminium (Al) alloys: The effect of grain topology on crack propagation for aerospace-grade materials [30], modelling of the Continuous Dynamic Recrystallization (CDRX) [31], and the behaviour of such alloys under cyclic compression loading [32], as well as their behaviour under high-cycle fatigue following 3D printing [33]. Moreover, they have been successfully utilized to study warm forming conditions [34] and even the Bauschinger effect on single crystals [35].
- ii.
- Iron (Fe) and steel alloys: The effect of non-metallic inclusion on the steel failure, e.g., of a 16MnCrS5 steel, has been studied [36]. The effect of martensite on forming has been studied [10,14]. Deep drawing of dual-phase (DP) steels [37], sintering of transformation-induced plasticity (TRIP) [38], and twinning-induced plasticity (TWIP) [39] steels have also been subjects of study. Recently, a formulation modification was proposed for studying the effect of the grain size and the slip system interaction in austenitic stainless steels [40]. Another example is the study of the behaviour of an austenitic steel under multiaxial loading [41].
- iii.
- Magnesium (Mg) alloys: The evolution of twin formation [42,43], the effect of heat treatments on the mechanical behaviour of the twins [44], the evolution [45] and effect [46] of twins in low-cycle fatigue conditions, as well as the effect of grain size on texture evolution under mechanical loading have been studied [47]. Cheng et al. expanded a model for it to be able to capture the effect of hotspots in the local deformation of twin bands [48]. A recent review detailing the applications for Mg alloys can be found in [49].
- iv.
- Titanium (Ti) alloys: The anisotropic plastic deformation of commercial alloys has been studied [50]. The behaviour of dual-phase Ti-alloys has also been studied [21]. Additionally, the results regarding the micro-mechanic response of a TNM alloy have been validated through nano-indentation [51]. Results from CP modelling have also been compared to High-Resolution EBSD (Electron Back-Scatter Diffraction) and High-Resolution DIC (Digital Image Correlation) during micro-slip [52] and stress/strain localization [53]. Another difficulty in simulating the response of highly anisotropic materials is the effect of kink bands during forming, for which an approach for Ti alloys has been proposed [54]. Lastly, the texture evolution during cold forming has also been studied, e.g., [55].
- v.
- Nickel (Ni) super-alloys: The effect of nano-indentation on the distribution of dislocation density of a single-crystal [56], mechanical testing on specimens produced by direct casting [57], applying the weak link methodology in order to evaluate the fatigue behaviour of the material, while taking into account the part size [58], multiaxial fatigue behaviour [59], and the effect of grain size on fatigue behaviour have been studied [60]. Apart from fatigue behaviour, the creep behaviour has also been studied, e.g., [61,62].
- vi.
- Other alloys: The behaviour of copper (Cu) alloy oligo-crystals under mechanical shock [63], the effect of additive manufacturing on the evolutions of residual stresses of tungsten (W) alloys [64], the low-cycle fatigue behaviour of cobalt–chromium (CoCr) alloys [22], and, lastly, the evolution of texture during severe plastic deformation (SPD) in high-entropy alloys through an expansion of the Taylor model have also been studied.
2. Motivation and Contribution
- i.
- It systematically presents the evolution and recent advancements of the CP method through selected milestones and applications with an emphasis on metallic crystalline materials while providing explanation of the basic formulations; in-depth mathematical analysis is omitted.
- ii.
- It is designed to be as short as possible while showcasing most of the critical aspects of running a CP simulation and providing relevant resources.
3. Evolvement of Crystal Plasticity Approaches
3.1. General Taxonomy of Crystal Plasticity Models
3.2. Approaches for Further Improvement of CP
- i.
- Improving execution time and accuracy. As mentioned, CP problems can be solved with either a FEM approach or a FFT approach. The CP-FFT methodology is significantly faster, mostly due to the low mesh sensitivity and the mathematical formulation. However, efforts have been made to further improve their computational efficiency [115] and accuracy [116]. Ling et al. [117] decreased the mesh sensitivity of the FEM solvers, allowing the application of a coarser grid while retaining result accuracy and indirectly accelerating the calculation process. Other efforts are focused on the optimization of resource allocation [118] via the modification of CP to run on a GPU and creating a hybrid CPU-GUP architecture to increase computational efficiency, while others focus on simplifying the FFT controls [114]. Zecevic et al. [119] introduced an LS-EVP-FFT (large-strain elasto-viscoplastic) model, which allows for increased accuracy in quantifying the effect of anisotropy on the creation of hotspots, through the modification of Green’s operator and introduction of more grids per material point. Admal et al. [120] depicted grain boundaries as a special category of geometrically necessary dislocations (GNDs) to better depict their impact. Recently, Romanov et al. [11] presented a statistical model, thus reducing execution time, capable of studying the ECAP test. Another topic of interest is the evaluation of the stability of the developed models [121,122].
- ii.
- iii.
- Optimizing input geometry. Apart from the geometry and the number of grains, an important parameter of the RVE file has proven to be the total volume of the synthetic microstructure [124,125]. This topic will be discussed in detail in Section 5.1.
- iv.
- v.
- Creation of tailored models. To achieve higher accuracy, some models are being created to be tailored to specific materials, e.g., [26], where a material-invariant approach of mesoscale parameters has been proposed, or processes, e.g., for the effect of the hardening parameters on the crystallographic texture evolution during the rolling of aluminium alloys [128].
- vi.
- Other efforts focus on expanding the field of potential applications, e.g., to other crystal systems by accounting for the dislocation slip and twinning of Hexagonal Closed Packed (HCP) systems [129] or even capturing the effect of sample size to the yield stress through an embedded, sub-routine for Discrete Dislocation Dynamics in a CPFEM model [28].
3.3. Coupling CP to Machine Learning Algorithms
- i.
- Model calibration. This approach can solve one of the most important issues of applying CP models, the determination of the correct values for the input parameters. Among others, Galan Lopez et al. [18], Chakraborty et al. [19], Plowman et al. [10], and Sedighiani et al. [127] have all performed a calibration of the input parameters needed for CP simulations through an ML algorithm, applied to data from tensile testing. A similar approach was followed by Sahoo et al. [29] for the phenomenological model. There are examples of calibration being performed under cyclic loading conditions [133].
- ii.
- Improved accuracy while maintaining the computation cost. Due to the increasing complexity of the Partial Differential Equations (PDEs), resulting from raising the accuracy and realism of the models, the implementation of such an approach is also expected to show an increase in the following years [134]. Adopting methodologies such as Convolutional Neural Networks (CNNs) can result in a reduction in the computational cost of macroscopic properties by 99% when compared to a two-dimensional (2D) CP simulation [135]. Applying Deep Neural Networks (DNNs) for the local response of an FFT solver, carried out by Mianroodi et al. [134], lead to an acceleration in the time needed for obtaining the results by ×8300 times for heterogeneous materials. Another example of achieving high accuracy, while maintaining a low computational cost, is the prediction of the local response in industrial aluminium alloys using a CNN-CPFEM methodology [136].
- iii.
- Surrogate modelling. Some indicative works are the one of Saidi et al. [137], in which they utilized the Taylor model to train an ML algorithm for the rolling of aluminium alloys. Khorrami et al. [138] calibrated a CNN model for tensile tests with results from VSPC (Viscoplastic Crystal plasticity), and accurately predicted the von Mises stresses.
4. Methodologies
4.1. Phenomenological and Physics-Based CP
4.2. FEM vs. Spectral Methods
- i.
- Computational efficiency: They are faster, by around an order of magnitude, and can therefore achieve higher resolution/grid density on the RVE at the same time.
- ii.
4.3. Indicative Available CP Packages
- i.
- ii.
- iii.
- iv.
- ρ-CP, co-developed by the Indian Institute of Technology and Georgia Institute of Technology, released in 2023 [163].
- v.
- AMITEX_FFTP, developed by the coalition Maison de la Simulation, consisting of the French National Centre for Scientific Research, the French Alternative Energies and Atomic Energy Commission (CEA), Université Paris-Saclay, and Université Versailles Saint-Quentin, also released in 2023 [164].
- vi.
5. Critical Aspects for CP Simulations
5.1. RVE Modelling
5.1.1. RVE Creation
5.1.2. RVE Size
5.1.3. Grid Density
5.2. Material Related Input Parameters
- i.
- Dislocation-Related Parameters. Here, included are parameters such as the dislocation density per dislocation type, the dislocation glide and transmissivity, and various other parameters that assist with the statistical representation of the dislocations.
- ii.
- Thermodynamical Parameters. These can be related to the solid solution, the diffusion, etc.
- iii.
- General Parameters. These can be, for example, the mechanical parameters of the material.
- iv.
- Case-specific parameters need to be calibrated for each case (fitted to experimental data). Parameters that do not necessarily have a physical meaning need to be fitted in each specific case, accounting both for the material and the process.
5.3. Macroscopic Loading Conditions
6. Closing Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- The Minerals, Metals & Materials Society. Integrated Computational Materials Engineering (ICME): Implementing ICME in the Aerospace, Automotive, and Maritime Industries; TMS: Warrendale, PA, USA, 2013. [Google Scholar]
- Hall, E.O. The Deformation and Ageing of Mild Steel: III Discussion of Results. Proceedings of the Physical Society. Sect. B 1951, 64, 747. [Google Scholar]
- Petch, N.J. The Cleavage Strength of Polycrystals. J. Iron Steel Inst. 1953, 174, 25–28. [Google Scholar]
- Rhines, F.N. Microstructure-property relationships in materials. Metall. Trans. A 1977, 8A, 127–133. [Google Scholar] [CrossRef]
- Diehl, M.; Wang, D.; Liu, C.; Miaroodi, J.R.; Han, F.; Ma, D.; Kok, P.J.; Roters, F.; Shanthraj, P. Solving Material Mechanics and Multuphysics Problems of Metals with Complex Microstructures Using DAMASK—The Dusseldorf Advanced Material Simulation Kit. Adavanced Eng. Mater. 2020, 22, 201901044. [Google Scholar]
- Wang, H.; Lee, H.-W.; Kang, S.-H.; Kim, D.-K. Crystal Plasticity Finite Element Analyses on the Formability of AA6061 Aluminum Alloy with Different Ageing Treatments. Metals 2024, 14, 503. [Google Scholar] [CrossRef]
- Asaro, R.J. Micromechanics of Crystals and Polycrystals. Adv. Appl. Mech. 1983, 23, 1–115. [Google Scholar]
- Yu, Q.; Martinez, E.; Segurado, J.; Marian, J. A stochastic solver based on the residence time algorithm for crystal plasticity models. Comput. Mech. 2021, 68, 1369–1384. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Bieler, T.R.; Raabe, D. Crystal Plasticity Finite Element Methods; Wiley-VHC Verlang GmbH & Co. KGaA: Weinheim, Germany, 2012. [Google Scholar]
- Plowman, A.; Jedrasiak, P.; Jailin, T.; Crowther, P.; Mishra, S.; Shanthraj, P.; Quinta de Fonseca, J. A novel integrated framework for reproducible formability predictions using virtual materials testing [version 1; peer review: Approved with reservations]. Mater. Open Res. 2023, 2, 2. [Google Scholar] [CrossRef]
- Romanov, K.; Shveykin, A.; Trusov, P. Advanced Statistical Crystal Plasticity Model: Description of Copper Grain Structure Refinement during Equal Channel Angular Pressing. Metals 2023, 13, 953. [Google Scholar] [CrossRef]
- Yuan, M.; Paradiso, S.; Meredig, B.; Niezgoda, S.R. Machine Learning–Based Reduce Order Crystal Plasticity Modeling for ICME Applications. Integr. Mater. Manuf. Innov. 2018, 7, 214–230. [Google Scholar] [CrossRef]
- Qayyum, F.; Guk, S.; Kawalla, R.; Prahl, U. On Attempting to Create a Virtual Laboratory for Application-Oriented Microstructural Optimization of Multi-Phase Materials. Appl. Sci. 2021, 11, 1506. [Google Scholar] [CrossRef]
- Hussein, T.; Umar, M.; Qayyum, F.; Guk, S.; Prahl, U. Micromechanical Effect of Martensite Attributes on Forming Limits of Dual-phase steels investigated by crystal plasticity. Crystals 2022, 12, 155. [Google Scholar] [CrossRef]
- Li, J.; Wu, X.; Jiang, H. Crystal Plasticity Finite Element Simulation of Grain Evolution Behavior in Aluminum Alloy Rolling. Materials 2024, 17, 3749. [Google Scholar] [CrossRef]
- Qayyum, F.; Guk, S.; Prahl, U. Applications of Crystal Plasticity in Forming Technologies. Crystals 2022, 12, 1466. [Google Scholar] [CrossRef]
- Auth, K.L.; Brouzoulis, J.; Ekh, M. A thermodynamic framework for ductile phase-field fracture and gradient-enhanced crystal plasticity. Eur. J. Mech.—A/Solids 2024, 108, 105418. [Google Scholar] [CrossRef]
- Galan-Lopez, J.; Hidalgo, J. Use of the Correlation between Grain Size and Crystallographic Orientation in Crystal Plasticity Simulations: Application to AISI 420 Stainless Steel. Crystals 2020, 10, 819. [Google Scholar] [CrossRef]
- Chakraborty, A.; Eisenlohr, P. Evaluation of an inverse methodology for estimating constitutive parameters in face-centered cubic materials from single crystal indentations. Eur. J. Mech. A/Solids 2017, 66, 114–124. [Google Scholar] [CrossRef]
- Roters, F.; Eisenlohr, P.; Hantcherli, L.; Tjahjanto, D.; Bieler, T.; Raabe, D. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling: Theory, experiments, applications. Acta Mater. 2009, 58, 1152–1211. [Google Scholar] [CrossRef]
- Hemery, S.; Villechaise, P.; Banerjee, D. Microplasticity at Room Temperature in α/β Titanium Alloys. Metall. Mater. Trans. A 2020, 51, 4931–4969. [Google Scholar] [CrossRef]
- Tu, Y.; Leen, S.B.; Harrison, N.M. A high-fidelity crystal-plasticity finite element methodology for low-cycle fatigue using automatic electron backscatter diffraction scan conversion: Application to hot-rolled cobalt–chromium alloy. J. Mater. Desing Appl. 2021, 235, 1901–1924. [Google Scholar] [CrossRef]
- Phalke, V.; FOrest, S.; Chang, H.-J.; Roos, A. Adiabatic shear banding in FCC metallic single and poly-crystals using a micromorphic crystal plasticity approach. Mech. Mater. 2022, 169, 104288. [Google Scholar] [CrossRef]
- Haouala, S.; Lucarini, S.; LLorca, J.; Segurado, J. Simulation of the Hall-Petch effect in FCC polycrystals by means of strain gradient crystal plasticity and FFT homogenization. J. Mech. Phys. Solids 2020, 134, 103755. [Google Scholar] [CrossRef]
- Jeong, J.; Voyiadjis, G.Z. A physics-based crystal plasticity model for the prediction of the dislocation densities in micropillar compression. J. Mech. Phys. Solids 2022, 167, 105006. [Google Scholar] [CrossRef]
- Dindarlou, S.; Castalluccio, G.M. Substructure-sensitive crystal plasticity with material-invariant parameters. Int. J. Plast. 2022, 155, 103306. [Google Scholar] [CrossRef]
- Xie, C.; Sun, T.; Li, L.; Zheng, Z. Effect of Microstructure on Fatigue Damage Accumulation in 7075 Aluminum Alloy Subjected to a Single Compressive Overload. Metals 2024, 14, 980. [Google Scholar] [CrossRef]
- Zhang, Z.; Tong, Z.; Jiang, X. Development of the Concurrent Multiscale Discrete-Continuum Model and Its Application in Plasticity Size Effect. Crystals 2022, 12, 329. [Google Scholar] [CrossRef]
- Sahoo, S.K.; Dhinwal, S.S.; Vu, V.Q.; Toth, L.S. A new macroscopic strain hardening function based on microscale crystal plasticity and its application in polycrystal modeling. Mater. Sci. Eng. A 2021, 823, 141634. [Google Scholar] [CrossRef]
- Grant, C.; Aboura, Y.; Burnett, T.L.; Prangnell, P.; Shanthraj, P. Computational study of the geometrical influence of grain topography on short crack propagation in AA7XXX series alloys. Materialia 2023, 29, 101798. [Google Scholar] [CrossRef]
- Chen, S.F.; Li, D.Y.; Zhang, S.H.; Han, H.N.; Lee, H.W.; Lee, M.G. Modelling continuous dynamic recrystallization of aluminum alloys based on the polycrystal plasticity approach. Int. J. Plast. 2020, 131, 102710. [Google Scholar] [CrossRef]
- Shiraiwa, T.; Broffod, F.; Enoki, M. Prediction of Fatigue Crack Initiation of 7075 Aluminum Alloy by Crystal Plasticity Simulation. Materials 2023, 16, 1595. [Google Scholar] [CrossRef]
- Luo, Z.; Li, D.; Ojha, A.; Lai, W.-J.; Engler-Pinto, C.; Li, Z.; Peng, Y. Prediction of high cycle fatigue strength for additive manufactured metals by defects incorporated crystal plasticity modeling. Mater. Sci. Eng. A 2023, 870, 144832. [Google Scholar] [CrossRef]
- El-Athy, A.A.; Ha, S.; Xu, Y.; Hou, Y.; Zhang, S.-H.; Alzahrani, B.; Ali, A.; Ahmed, M.M.Z. Coupling Computational Homogenization with Crystal Plasticity Modelling for Predicting the Warm Deformation Behaviour of AA2060-T8 Al-Li Alloy. Materials 2023, 16, 4069. [Google Scholar] [CrossRef] [PubMed]
- Aria, A.I.; Holmedal, B.; Manik, T.; Marthinsen, K. A Full-Field Crystal Plasticity Study on the Bauschinger Effect Caused by Non-Shearable Particles and Voids in Aluminium Single Crystals. Metals 2024, 14, 424. [Google Scholar] [CrossRef]
- Qayyum, F.; Umar, M.; Elagin, V.; Kirschner, M.; Hoffmann, F.; Guk, S.; Prahl, U. Influence of Non-Metallic Inclusions on Local Deformation and Damage Behavior of Modified 16MnCrS5 Steel. Crystals 2022, 12, 281. [Google Scholar] [CrossRef]
- Tjahjanto, D.D.; Eisenlohr, P.; Roters, F. Multiscale deep drawing analysis of dual-phase steels using grain cluster-based RGC schemedi. Model. Simul. Mater. Sci. Eng. 2015, 23, 045005. [Google Scholar] [CrossRef]
- Qayyum, F.; Guk, S.; Pruger, S.; Schmidtchen, M.; Saenko, I.; Kiefer, B.; Kawalla, R.; Prahl, U. Investigating the local deformation and transformation behavior of sintered X3CrMnNi16-7-6 TRIP steel using a calibrated crystal plasticity-based numerical simulation model. Int. J. Mater. Res. 2020, 111, 392–404. [Google Scholar] [CrossRef]
- Khan, R.; Pervez, T.; Alfozan, A.; Qamar, S.Z.; Mohsin, S. Numerical Modeling and Simulations of Twinning-Induced Plasticity Using Crystal Plasticity Finite Element Method. Crystals 2022, 12, 930. [Google Scholar] [CrossRef]
- Agious, D.; Kareer, A.; Al Mamun, A.; Truman, C.; Collins, D.M.; Mostafavi, M.; Knowles, D. A crystal plasticity model that accounts for grain size effects and slip system interactions on the deformation of austenitic stainless steels. Int. J. Plast. 2022, 152, 103249. [Google Scholar] [CrossRef]
- Biswas, A.; Kurtulan, D.; Ngeru, T.; Guzman, A.A.; Hanke, S.; Hartmaier, A. Mechanical Behavior of Austenitic Steel under Multi-Axial Cyclic Loading. Metals 2023, 16, 1367. [Google Scholar] [CrossRef]
- Wu, P.D.; Guo, X.Q.; Qiao, H.; Lloyd, D.J. A constitutive model of twin nucleation, propagation and growth in magnesium crystals. Mater. Sci. Eng. A 2015, 625, 140–145. [Google Scholar] [CrossRef]
- Zhang, H.; Jerusalem, A.; Salvati, E.; Papadaki, C.; Fong, K.S.; Song, X.; Korsunsky, A.M. Multi-scale mechanisms of twinning-detwinning in magnesium alloy AZ31B simulated by crystal plasticity modeling and validated via in situ synchrotron XRD and in situ SEM-EBSD. Int. J. Plast. 2019, 119, 43–56. [Google Scholar] [CrossRef]
- Ganesan, S.; Yaghoobi, M.; Githens, A.; Chen, Z.; Daly, S.; Allison, J.E. The effects of heat treatment on the response of WE43 Mg alloy: Crystal plasticity finite element simulation and SEM-DIC experiment. Int. J. Plast. 2021, 137, 102917. [Google Scholar] [CrossRef]
- Abdolvand, H.; Majkut, M.; Oddershede, J.; Schmidt, S.; Lienert, U.; Diak, B.J.; Withers, P.J.; Daymondd, M.R. On the daformation twinning of Mg AZ31B: A three-dimensional synchrotron X-ray diffraction experiment and crystal plasticity finite element model. Int. J. Plast. 2015, 70, 77–97. [Google Scholar] [CrossRef]
- Wu, L.; Agnew, S.; Ren, Y.; Brown, D.; Clausen, B.; Stoica, G.; Wenk, H.; Liaw, P. The effects of texture and extension twinning on the low-cycle fatigue behavior of a rolled magnesium alloy, AZ31B. Mater. Sci. Eng. A 2010, 527, 70057–77067. [Google Scholar] [CrossRef]
- Ravaji, B.; Joshi, S.P. A crystal plasticity investigation of grain size-texture interaction in magnesium alloys. Acta Mater. 2021, 208, 116743. [Google Scholar] [CrossRef]
- Cheng, J.; Hu, X.; Bong, H.J.; Ghosh, S.; Sun, X. A finite element formulation for deformation twinning induced strain localization in polycrystal magnesium alloys. Comput. Mater. Sci. 2021, 190, 110323. [Google Scholar] [CrossRef]
- Yaghoobi, M.; Voyiadjis, G.Z.; Sundararaghavan, V. Crystal Plasticity Simulation of Magnesium and Its Alloys: A Review of Recent Advances. Crystlas 2021, 11, 435. [Google Scholar] [CrossRef]
- Hama, T.; Kobuki, A.; Takuda, H. Crystal-plasticity finite-element analysis of anisotropic deformation behavior in a commercially pure titanium Grade 1 sheet. Int. J. Plast. 2017, 91, 77–108. [Google Scholar] [CrossRef]
- Yin, B.; Xue, X.; Zhang, M.; Deng, T.; Li, J.; Tang, B. Parameter identification and pileup behavior of TiAl alloy through nanoindentation and crystal plasticity simulation. J. Alloys Compd. 2023, 948, 169743. [Google Scholar] [CrossRef]
- Zhang, Z.; Lunt, D.; Abdolvand, H.; Wilkinson, A.J.; Preuss, M.; Dunne, F.P. Quantitative investigation of micro slip and localization in polycrystalline materials under uniaxial tension. Int. J. Plast. 2018, 108, 88–106. [Google Scholar] [CrossRef]
- Agius, D.; Cram, D.; Hutchinson, C.; Preuss, M.; Sterjovski, Z.; Wallbrink, C. An experimental and computational study into strain localisation in beta-annealed Ti-6Al-4V. Mater. Sci. Eng. 2023, 45, 4–11. [Google Scholar] [CrossRef]
- Marano, A.; Gélébart, L.; Forest, S. FFT-based simulations of slip and kink bands formation in 3D polycrystals: Influence of strain gradient crystal plasticity. J. Mech. Phys. Solids 2021, 149, 104295. [Google Scholar] [CrossRef]
- Mahadule, D.; Demiral, M.; Mulki, H.; Khatirkar, R.K. Experiments and Crystal Plasticity Finite Element Simulations of Texture Development during Cold Rolling in a Ti-15V-3Cr-3Sn-3Al Alloy. Crystals 2023, 13, 137. [Google Scholar] [CrossRef]
- Reuber, C.; Eisenlohr, P.; Roters, F.; Raabe, D. Dislocation density distribution around an indent in single-crystalline nickel: Comparing nonlocal crystal plasticity finite-element predictions with experiments. Acta Mater. 2014, 71, 333–348. [Google Scholar] [CrossRef]
- Sancho, R.; Segurado, J.; Erica, B.; Perez-Martin, M.-J.; Galvez, F. Crystal-Plasticity-Finite-Element Modeling of the Quasi-Static and Dynamic Response of a Directionally Solidified Nickel-Base Superalloy. Materials 2020, 13, 2990. [Google Scholar] [CrossRef]
- Lucarini, S.; Segurado, J. An upscaling approach for micromechanics based fatigue: From RVEs to specimens and component life prediction. Int. J. Fract. 2020, 223, 93–108. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, X.; Wang, J.; Ren, X.; Wang, X.; Chen, R.; Yue, Z. High cycle fatigue life prediction model based on crystal plasticity and continuum damage mechanics for Ni-based single crystal superalloys under a multiaxial stress state. Int. J. Plast. 2023, 162, 103526. [Google Scholar] [CrossRef]
- Cruzado, A.; Lucarini, S.; Llorca, J.; Segurado, J. Crystal plasticity simulation of the effect grain size on the fatigue behavior of polycrystalline Inconel 718. Int. J. Fatigue 2018, 113, 236–245. [Google Scholar] [CrossRef]
- Skamniotis, C.; Grilli, N.; Cocks, A.C. Crystal plasticity analysis of fatigue-creep behavior at cooling holes in single crystal Nickel based gas turbine blade components. Int. J. Plast. 2023, 166, 103589. [Google Scholar] [CrossRef]
- Keshavarz, S.; Campell, C.E.; Reid, A.C.E. Multi-Scale Crystal Plasticity Model of Creep Responses in Nickel-Based Superalloys. Materials 2022, 15, 4447. [Google Scholar] [CrossRef]
- Luscher, D.J.; Bronkhorst, C.A.; Alleman, C.N.; Addessio, F.L. A model for finite-deformation nonlinear thermomechanical response of single crystal copper under shock conditions. J. Mech. Phys. Solids 2013, 61, 1877–1894. [Google Scholar] [CrossRef]
- Wang, C.; Li, Z.J.; Ji, C.Q.; Gao, S.W.; Cui, Y.N. Crystal plasticity analysis of the evolutions of temperature, stress and dislocation in additively manufactured tungsten. Int. J. Refract. Met. Hard Mater. 2023, 110, 106041. [Google Scholar] [CrossRef]
- Beyerlein, I.J.; Knezevic, M. Review of microstructure and micromechanism-based constitutive modeling of polycrystals with a low-symmetry crystal structure. J. Mater. Res. 2018, 33, 3711–3738. [Google Scholar] [CrossRef]
- Lucarini, S.; Upadhyay, M.; Segurado, J. FFT based approaches in micromechanics: Fundamentals, methods and applications. Model. Simul. Mater. Sci. Eng. 2021, 30, 023002. [Google Scholar] [CrossRef]
- Roters, F.; Diehl, M.; Shanthraj, P.; Eisenlohr, P.; Reuber, C.; Wong, S.L.; Maiti, T.; Ebrahimi, A.; Hochrainer, T.; Fabritius, H.-O.; et al. DAMASK—The Dusseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from single crystal up to the component scale. Comput. Mater. Sci. 2019, 158, 420–478. [Google Scholar] [CrossRef]
- Taylor, G.I.; Elam, C.F. The distortion of an aluminium crystal during a tensile test. Proceedings of the Royal Society of London A: Mathematical. Phys. Eng. Sci. 1923, 102, 126–135. [Google Scholar]
- Taylor, G. The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical. Proc. R. Soc. Lond. Ser. A 1934, 145, 362–387. [Google Scholar]
- Beaudoin, A.J.; Mathur, K.K.; Dawson, P.R.; Johnson, G. Three-Dimensional Deformation Process Simulation with Explicit use of Polyctystal Plasticity Models. Int. J. Plast. 1993, 9, 833–860. [Google Scholar] [CrossRef]
- Volterra, V. Sur l’équilibre des corps élastiques multiplement connexes. Ann. Sci. Ec. Norm. Super. 1907, 24, 401–517. [Google Scholar] [CrossRef]
- Orwan, E. Problems of plastic gliding. Proc. Phys. Soc. 1940, 52, 8–22. [Google Scholar] [CrossRef]
- Becker, R.; Butler, J.F.; Hu, H.; Lalli, L.A. Analysis of an aluminum single crystal with unstable initial orientation (001) [111] in channel die compression. Metall. Trans. A 1991, 22, 45–58. [Google Scholar] [CrossRef]
- Becker, R. Analysis of texture evolution in channel die compression—I. Effects of grain interaction. Acta Metall. 1991, 39, 1211–1230. [Google Scholar] [CrossRef]
- Orowan, E. Zur Kristallplastizität, I.–III. Z. Phys. 1934, 89, 605–659. [Google Scholar] [CrossRef]
- Polanyi, M. Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Z. Phys. 1934, 89, 660–664. [Google Scholar] [CrossRef]
- Peirce, D.; Asaro, R.J.; Needleman, A. An analysis of nonuniform and localized deformation in ductile single crystals. Acta Metall. 1982, 30, 1087–1119. [Google Scholar] [CrossRef]
- Moulinec, H.; Suquet, P. A numerical method for computing the overall response of nonlinear composites 64j 3 Crystal Plasticity Modeling with complex microstructure. Comput. Methods Appl. Mech. Eng. 1998, 157, 69–94. [Google Scholar] [CrossRef]
- Estrin, Y.; Kubin, L.P. Local strain hardening and nonuniformity of plastic deformation. Acta Metall. 1986, 34, 2455–2664. [Google Scholar] [CrossRef]
- Arsenlis, A.; Parks, D.M. Modeling the evolution of crystallographic dislocation density in crystal plasticity. J. Mech. Phys. Solids 2002, 50, 1979–2009. [Google Scholar] [CrossRef]
- Evers, L.P.; Brekelmans, W.A.; Geers, M. Non-local crystal plasticity model with intrinsic SSD and GND effects. J. Mech. Phys. Solids 2004, 52, 23792401. [Google Scholar] [CrossRef]
- Ma, A.; Roters, F.; Raabe, D. Studying the effect of grain boundaries in dislocation density based crystal-plasticity finite elements simulations. Int. J. Solids Struct. 2006, 43, 7287–7303. [Google Scholar] [CrossRef]
- Ma, A.; Roters, F.; Raabe, D. On the consideration of interactions between dislocations and grain boundaries in crystal plasticity finite element modeling—Theory, experiments and simulations. Acta Mater. 2006, 54, 2181–2194. [Google Scholar] [CrossRef]
- Ito, K.; Vitek, V. Atomistic study of non-Schmid effects in the plastic yielding of BCC metals. Philos. Mag. A 2001, 81, 1387–1407. [Google Scholar] [CrossRef]
- Vitek, V.; Mrovec, M.; Bassani, J. Influence of non-glide stresses on plastic flow: From atomistic to continuum modeling. Mat. Sci. Eng. A 2004, 365, 31–37. [Google Scholar] [CrossRef]
- Madec, R.; Devincre, B.; Kubin, L.; Hoc, T.; Rodney, D. The role of collinear interaction in dislocation-induced hardening. Science 2003, 301, 1879–1882. [Google Scholar] [CrossRef] [PubMed]
- Kubin, L.; Devincre, B.; Hoc, T. Modeling dislocation storage rates and mean free paths in face-centered cubic crystals. Acta Mater. 2008, 56, 6040–6049. [Google Scholar] [CrossRef]
- Bertram, A.; Krawietz, A. On the introduction of thermoplasticity. Acta Mech. 2012, 223, 2257–2268. [Google Scholar] [CrossRef]
- Zheng, Z.; Li, X.; Xu, D.; Lu, L.; Gao, H.; Zhu, T. Gradient plasticity in gradient nano-grained metals. Extrem. Mech. Lett. 2016, 8, 213–219. [Google Scholar] [CrossRef]
- Xiao, M.; Yao, J.; Huang, C. Fracture Model of Al–Cu Alloys with Gradient Crystals Based on Crystal Plasticity. Metals 2024, 14, 694. [Google Scholar] [CrossRef]
- Van Houttee, P.; Kanjarla, A.K.; Van Bael, A.; Seefeldt, M.; Delannay, L. Multiscale modelling of the plastic anisotropy and deformation texture of polycrystalline materials. Eur. J. Mech. A/Solids 2006, 25, 634–648. [Google Scholar] [CrossRef]
- Hashin, Z.; Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. Mech. Phys. Solids 1963, 11, 127–140. [Google Scholar] [CrossRef]
- Segurado, J.; Lebensohn, R.A.; LLorca, J. Computational Homogenization of Polycrystals. Adv. Appl. Mech. 2018, 51, 1–114. [Google Scholar]
- Tjahjanto, D.D.; Eisenlohr, P.; Roters, F. A novel grain cluster-based homogenization scheme. Model. Simul. Mater. Sci. Eng. 2009, 18, 015006. [Google Scholar] [CrossRef]
- Tjahjanto, D.; Eisenlohr, P.; Roters, F. Relaxed Grain Cluster (RGC) Homogenization Scheme. Int. J. Mater. Form. 2009, 2, 939–942. [Google Scholar] [CrossRef]
- Eisenlohr, P.; Tjahjanto, D.D.; Hochrainer, T.; Roters, F.; Raabe, D. Comparison of texture evolution in fcc metals predicted by various grain cluster homogenization schemes. Int. J. Mater. Res. 2009, 100, 500–509. [Google Scholar] [CrossRef]
- Trusov, P.; Shveykin, A.; Kondratev, N. Some Issues on Crystal Plasticity Models Formulation: Motion Decomposition and Constitutive Law Variants. Crystals 2021, 11, 1392. [Google Scholar] [CrossRef]
- Habraken, A.M. Modelling the plastic anisotropy of metals. Arch. Comput. Methods Eng. 2004, 11, 3–96. [Google Scholar] [CrossRef]
- Van Houtte, P. Crystal Plasticity Based Modelling of Deformation Textures. In Microstructure and Texture in Steels; Springer: London, UK, 2009. [Google Scholar]
- Zhang, K.; Holmedal, B.; Hopperstad, O.S.; Dumoulin, S.; Gawad, J.; Van Bael, A.; Van Houtte, P. Multi-level modelling of mechanical anisotropy of commercial pure aluminium plate: Crystal plasticity models, advanced yield functions and parameter identification. Int. J. Plast. 2015, 66, 3–30. [Google Scholar] [CrossRef]
- Petkov, M.P.; Hu, J.; Tarleton, E.; Cocks, A.C. Comparison of self-consistent and crystal plasticity FE approaches for modelling the high-temperature deformation of 316H austenitic stainless steel. Int. J. Solids Struct. 2019, 171, 54–80. [Google Scholar] [CrossRef]
- Lebensohn, R.A.; Turner, P.A.; Signorelli, J.W.; Canova, G.R.; Tomé, N.C. Calculation of intergranular stresses based on a large-strain viscoplastic self-consistent polycrystal model. Model. Simul. Mater. Sci. Eng. 1998, 6, 447. [Google Scholar] [CrossRef]
- Zhang, X.; Zhao, J.; Kang, G.; Zaiser, M. Geometrically necessary dislocations and related kinematic hardening in gradient grained materials: A nonlocal crystal plasticity study. Int. J. Plast. 2023, 163, 103553. [Google Scholar] [CrossRef]
- Gurtin, M.E. A gradient theory of single-crystal viscoplasticity that accounts for geometrically necessary dislocations. J. Mech. Phys. Solids 2002, 50, 5–32. [Google Scholar] [CrossRef]
- Arsenlis, A.; Parks, D.M.; Becker, R.; Bulatov, V.V. On the evolution of crystallographic dislocation density in non-homogenously deforming crystals. J. Mech. Phys. Solids 2004, 52, 1213–1246. [Google Scholar] [CrossRef]
- Groma, I.; Csikor, F.F.; Zaiser, M. Spatial correlations and higher-order gradient terms in a continuum description of dislocation dynamics. Acta Mater. 2003, 51, 1271–1281. [Google Scholar] [CrossRef]
- Hochraine, T.; Sandfeld, S.; Zaise, M.; Gumbusch, P. Continuum dislocation dynamics: Towards a physical theory of crystal plasticity. J. Mech. Phys. Solids 2014, 63, 167–178. [Google Scholar] [CrossRef]
- Leung, H.S.; Leung, P.S.S.; Cheng, B.; Ngan, A.H.W. A new dislocation-density-function dynamics scheme for computational crystal plasticity by explicit consideration of dislocation elastic interactions. Int. J. Plast. 2015, 67, 1–25. [Google Scholar] [CrossRef]
- Lim, H.; Lee, M.G.; Kim, J.H.; Adams, B.L.; Wagoner, R.H. Simulation of polycrystal deformation with grain and grain boundary effects. Int. J. Plast. 2011, 27, 1328–1354. [Google Scholar] [CrossRef]
- Luscher, D.J.; Mayer, J.R.; Mourad, H.M.; Hunter, A.; Kenamond, M.A. Coupling continuum dislocation transport with crystal plasticity for application to shock loading conditions. Int. J. Plast. 2016, 76, 11–129. [Google Scholar] [CrossRef]
- Mayer, J.R.; Mourad, H.M.; Darby, J.L.; Abigail, H.; Kenamond, M.A. Numerical implementation of a crystal plasticity model with dislocation transport for high strain rate applications. Model. Simul. Mater. Sci. Eng. 2016, 24, 045013. [Google Scholar] [CrossRef]
- Wulfinghoff, S.; Böhlke, T. Gradient crystal plasticity including dislocation-based work-hardening and dislocation transport. Int. J. Plast. 2015, 69, 152–169. [Google Scholar] [CrossRef]
- Lebensohn, R.A. PoPolycrystal Plasticity Models Based on Green’s Functions: Mean-Field Self-Consistent and Full-Field Fast Fourier Transform Formulations. In Handbook of Materials Modeling; Springer: London, UK, 2018. [Google Scholar]
- Dadhich, R.; Alankar, A. A modular spectral solver for crystal plasticity. Int. J. Plast. 2022, 156, 103328. [Google Scholar] [CrossRef]
- Lucarini, S.; Segurado, J. DBFFT: A displacement based FFT approach for non-linear homogenization of the mechanical behavior. Int. J. Eng. Sci. 2019, 144, 103131. [Google Scholar] [CrossRef]
- Lucarini, S.; Segurado, J. On the accuracy of spectral solvers for micromechanics based fatigue modeling. Comput. Mech. 2019, 63, 365–382. [Google Scholar] [CrossRef]
- Ling, C.; Forest, S.; Besson, J.; Tanguy, B.; Latourte, F. A reduced micromorphic single crystal plasticity model at finite deformations. Application to strain localization and void growth in ductile metals. Int. J. Solids Struct. 2018, 134, 43–69. [Google Scholar] [CrossRef]
- Knezevic, M.; Savage, D.J. A high-performance computational framework for fast crystal plasticity simulations. Comput. Mater. Sci. 2014, 83, 101–106. [Google Scholar] [CrossRef]
- Zecevic, M.; Lebensohn, A.R.; Capolungo, L. New large-strain FFT-based formulation and its application to model strain localization in nano-metallic laminates and other strongly anisotropic crystalline materials. Mech. Mater. 2022, 166, 104208. [Google Scholar] [CrossRef]
- Admal, N.C.; Po, G.; Marian, J. Diffuse-interface polycrystal plasticity: Expressing grain boundaries as geometrically necessary dislocations. Mater. Theory 2017, 1, 6. [Google Scholar] [CrossRef]
- Shveikin, A.I.; Trusov, P.V.; Romanov, K.A. On an Approach to Numerical Estimation of the Stability of Multilevel Constitutive Models of Materials. Contin. Comput. Mech. 2021, 14, 61–76. [Google Scholar] [CrossRef]
- Shveikin, A.; Trusov, P.; Romanov, K. Stability of Crystal Plasticity Constitutive Models: Observations in Numerical Studies and Analytical Justification. Metals 2024, 14, 947. [Google Scholar] [CrossRef]
- Alharbi, H.F.; Kalidindi, S.R. Crystal plasticity finite element simulations using a database of discrete Fourier transforms. Int. J. Plast. 2015, 66, 71–84. [Google Scholar] [CrossRef]
- Bargmann, S.; Klusemann, B.; Markmann, J.; Schnabel, J.; Schneider, K.; Soyarslan, C.; Wilmers, J. Generation of 3D representative volume elements for heterogeneous materials: A review. Prog. Mater. Sci. 2018, 96, 322–384. [Google Scholar] [CrossRef]
- Harris, W.; Chiu, W. Determining the representative volume element size for three-dimensional microstructural material characterization. Part 1: Predictive models. J. Power Sources 2015, 282, 552–561. [Google Scholar] [CrossRef]
- Bertin, M.; Du, C.; Hoefnagels, J.P.; Hild, F. Crystal plasticity parameter identification with 3D measurements and Integrated Digital Image Correlation. Acta Mater. 2016, 116, 321–331. [Google Scholar] [CrossRef]
- Sedighiani, K.; Diehl, M.; Traka, K.; Roters, F.; Sietsma, J.; Raabe, D. An efficient and robust way to determine material parameters of crystal plasticity constitutive laws from macro-scale stress-strain curves. Int. J. Plast. 2020, 134, 102779. [Google Scholar] [CrossRef]
- Cantergiani, E.; Falkinger, G.; Mitsche, S.; Theissing, M.; Klitschke, S.; Roters, F. Influence of Strain Rate Sensitivity on Cube Texture Evolution in Aluminium Alloys. Metall. Mater. Trans. A 2022, 53, 2832–2860. [Google Scholar] [CrossRef]
- Patel, M.; Paudel, Y.; Mujahid, S.; Rhee, H.; El Kadiri, H. Self-Consistent Crystal Plasticity Modeling of Slip-Twin Interactions in Mg Alloys. Crystals 2023, 13, 653. [Google Scholar] [CrossRef]
- Mirzoev, A.A.; Gelchinski, B.R.; Rempel, A.A. Neural Network Prediction of Interatomic Interaction in Multielement Substances and High-Entropy Alloys: A Review. Dokl. Phys. Chem. 2022, 504, 51–77. [Google Scholar] [CrossRef]
- Papaefthymiou, S.; Bouzouni, M.; Loukadakis, V. Opportunities of AI and ICME in Metals Recycling, Production and Processing. Mater. Proc. 2021, 5, 49. [Google Scholar] [CrossRef]
- Maurizi, M.; Gao, C.; Berto, F. Predicting stress, strain and deformation fields in materials and structures with graph neural networks. Sci. Rep. 2022, 12, 21834. [Google Scholar] [CrossRef] [PubMed]
- Frydrych, K.; Tomczak, M.; Papanikolaou, S. Crystal Plasticity Parameter Optimization in Cyclically Deformed Electrodeposited Copper—A Machine Learning Approach. Materials 2024, 17, 3397. [Google Scholar] [CrossRef]
- Mianroodi, J.R.; Siboni, N.H.; Raabe, D. Teaching solid mechanics to artificial intelligence—A fast solver for heterogeneous materials. NPJ Comput. Mater. 2021, 7, 99. [Google Scholar] [CrossRef]
- Frankel, A.; Tachida, K.; Jones, R. Prediction of the evolution of the stress field of polycrystals undergoing elastic-plastic deformation with a hybrid neural network model. Mach. Learn. Sci. Technol. 2020, 1, 035005. [Google Scholar] [CrossRef]
- Ibragimova, O.; Brahme, A.; Muhammad, W.; Connolly, D.; Levesque, J.; Inal, K. A convolutional neural network based crystal plasticity finite element framework to predict localised deformation in metals. Int. J. Plast. 2022, 157, 103374. [Google Scholar] [CrossRef]
- Saidi, P.; Pirgazi, H.; Sanjari, M.; Tamimi, S.; Mohammadi, M.; Beland, L.K.; Daymond, M.R.; Tamblyn, I. Deep learning and crystal plasticity: A preconditioning approach for accurate orientation evolution prediction. Comput. Methods Appl. Mech. Eng. 2022, 389, 114392. [Google Scholar] [CrossRef]
- Khorrami, M.S.; Mianroodi, J.R.; Siboni, H.N.; Goyal, P.; Svendsen, B.; Benner, P.; Raabe, D. An artificial neural network for surrogate modeling of stress fields in viscoplastic polycrystalline materials. NPJ Comput. Mater. 2023, 9, 37. [Google Scholar] [CrossRef]
- Eres-Castellanos, A.; Hidalgo, J.; Morales-Rivas, L.; Caballero, F.G.; Garcia-Mateo, C. The role of plastic strains on variant selection in ausformed bainitic microstructures studied by finite elements and crystal plasticity simulations. J. Mater. Res. Technol. 2021, 13, 1416–1430. [Google Scholar] [CrossRef]
- Kords, C. On the Role of Dislocation Transport in the Constitutive Description of Crystal Plasticity; RWTH Aachen: Aachen, Germany, 2013. [Google Scholar]
- Ganghoffer, J.; Brekelmans, W.; Geers, M. Distribution based model for the grain boundaries in polycrystalline plasticity. Eur. J. Mech. A Solids 2008, 27, 737–763. [Google Scholar] [CrossRef]
- Ma, A.; Roters, F.; Raabe, D. A dislocation density based constitutive model for crystal-plasticity FEM including geometrically necessary dislocations. Acta Mater. 2006, 54, 2169–2179. [Google Scholar] [CrossRef]
- Bertin, N.; Sills, R.B.; Cai, W. Frontiers in the Simulation of Dislocations. Annu. Rev. Mater. Res. 2020, 50, 437–464. [Google Scholar] [CrossRef]
- Shanthraj, P.; Eisenlohr, P.; Diehl, M.; Roters, F. Numerical robust spectral methods for crystal plasticity simulations of heterogeneous meterials. Int. J. Plast. 2015, 66, 31–45. [Google Scholar] [CrossRef]
- Lebensohn, R.A. N-site modeling of a 3D viscoplastic polycrystal using fast Fourier transformation. Acta Mater. 2001, 49, 2723–2737. [Google Scholar] [CrossRef]
- Lucarini, S.; Segurado, J. An algorithm for stress and mixed control in galerkin-based fft homogenization. Int. J. Numer. Methods Eng. 2019, 119, 797–805. [Google Scholar] [CrossRef]
- Roterz, F.; Diehl, M.; Eisenlohr, P.; Raabe, D. Crystal Plasticity Modeling. In Microstructural Design of Advanced Engineering Materials; Wiley-VCH: Hoboken, NJ, USA, 2013; pp. 41–67. [Google Scholar]
- Roters, F.; Eisenlohr, P.; Kords, C.; Tjahjano, D.D.; Diehl, M.; Raabe, D. DAMASK: The Düsseldorf Advanced MAterial Simulation Kit for studying crystal plasticity using an FE based or a spectral numerical solver. Procedia IUTAM 2012, 3, 3–10. [Google Scholar] [CrossRef]
- Eisenlohr, P.; Diehl, M.; Lebensohn, R.; Roters, F. A spectral method solution to crystal elasto-viscoplasticity at finite strains. Int. J. Plast. 2013, 46, 37–53. [Google Scholar] [CrossRef]
- Moulinec, H.; Suquet, P. A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Mecahnics Solids—Paris Acad. Sci. 1994, 3218, 1417–1423. [Google Scholar]
- Ahrens, J.; Geveci, B.; Law, C. ParaView: An End-User Tool for Large Data Visualization. In Visualization Handbook; Elsevier: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Ayachit, U. The ParaView Guide: A Parallel Visualization Application; Kitware: Clifton Park, NY, USA, 2015. [Google Scholar]
- Maiti, T.; Eisenlohr, P. Fourier-based spectral method solution to finite strain crystal plasticity with free surfaces. Scr. Mater. 2018, 145, 37–40. [Google Scholar] [CrossRef]
- Diehl, M.; Niehuesbernd, J.; Bruder, E. Quantifying the Contribution of Crystallographic Texture and Grain Morphology on the Elastic and Plastic Anisotropy of bcc Steel. Metals 2019, 9, 1252. [Google Scholar] [CrossRef]
- Mangal, A.; Holm, E.A. Applied machine learning to predict stress hotspots I: Face centered cubic materials. Int. J. Plast. 2018, 111, 122–134. [Google Scholar] [CrossRef]
- Sedighiani, K.; Shah, V.; Traka, K.; Diehl, M.; Roters, F.; Sietsma, J.; Raabe, D. Large-deformation crystal plasticity simulation of microstructure and microtexture evolution through adaptive remeshing. Int. J. Plast. 2021, 146, 103078. [Google Scholar] [CrossRef]
- Ortolano, J.M.; Hernandez, J.A.; Oliver, J. A Comparative Study on Homogenization Strategies for Multi-Scale Analysis of Materials; International Center for Numerical Methods in Engineering: Barcelona, Spain, 2013. [Google Scholar]
- Max-Planck-Institut für Eisenforschung GmbH. DAMASK. Max-Planck-Institut für Eisenforschung GmbH, 2011–2023. [Online]. Available online: https://damask.mpie.de/index.html (accessed on 2 June 2023).
- Yaghoobi, M.; Ganesan, S.; Sundar, S.; Lakshmanan, A.; Rudraraju, S.; Allison, J.E.; Sundararaghavan, V. PRISMS-Plasticity: An open-source crystal plasticity finite element software. Comput. Mater. Sci. 2019, 169, 109078. [Google Scholar] [CrossRef]
- PRISMS Center, “Software,” University of Michigan, [Online]. Available online: http://www.prisms-center.org/#/ctools/software (accessed on 2 June 2023).
- Segurado, J.; Llorca, J. Simulation of the deformation of polycrystalline nanostructured Ti by computational homogenization. Comput. Mater. Sci. 2013, 76, 3–11. [Google Scholar] [CrossRef]
- Javier, S.; Javier, L.; Sergio, L.; Aitor, C.; Sarra, H.; Vicente, H. CAPSUL. IMDEA Materiales and Universidad Politécnica de Madrid, 2012–2023. [Online]. Available online: https://materials.imdea.org/capsul/ (accessed on 2 June 2023).
- Patra, A.; Chaudhary, S.; Pai, N.; Ramgopal, T.; Khandelwal, S.; Rao, A.; McDowell, D.L. ρ-CP: Open source dislocation density based crystal plasticity framework for simulating temperature- and strain rate-dependent deformation. Comput. Mater. Sci. 2023, 224, 112182. [Google Scholar] [CrossRef]
- Gelebart, L. AMITEX_FFTP. Maison de la Simulation, [Online]. Available online: https://amitexfftp.github.io/AMITEX/index.html (accessed on 2 June 2023).
- Lebensohn, R.A.; Kanjarla, A.K.; Eisenlohr, P. An elasto-viscoplastic formulation based on fast Fourier transforms for the prediction of micromechanical fields in polycrystalline materials. Int. J. Plast. 2012, 32–33, 59–69. [Google Scholar] [CrossRef]
- Tran, A.; Wildey, T.; Lim, H. Microstructure-sensitive uncertainty quantification for crystal plasticity finite element constitutive models using stochastic collocation methods. Frontier 2022, 9, 915254. [Google Scholar] [CrossRef]
- Eghtesad, A.; Luo, Q.; Shang, S.-L.; Lebensohn, R.A.; Knezevic, M.; Liu, Z.-K.; Beese, A.M. Machine learning-enabled identification of micromechanical stress and strain hotspots predicted via dislocation density-based crystal plasticity simulations. Int. J. Plast. 2023, 166, 103646. [Google Scholar] [CrossRef]
- Quey, R.; Kasemer, M. The Neper/FEPX project: Free/open-source polycrystal generation, eformation simulation and post-processing. In IOP Conference Series Materials Science and Engineering; IOP Publishing: Bristol, UK, 2022; Volume 1249. [Google Scholar]
- Groeber, M.A.; Jackson, M.A. DREAM.3D: A Digital Representation Environment for the Analysis of Microstructure in 3D. Integr. Mater. Manuf. Innov. 2014, 3, 56–72. [Google Scholar] [CrossRef]
- Rycroft, C.H. Voro++: A three-dimensional Voronoi cell library in C++. Chaos 2009, 19, 041111. [Google Scholar] [CrossRef]
- Vittorietti, M.; Kok, P.J.; Sietsma, J.; Li, W.; Jongbloed, G. General framework for testing Poisson-Voronoi assumption for real microstructures. Appl Stoch. Models Bus Ind. 2020, 36, 604–627. [Google Scholar] [CrossRef]
- Μünch, B.; Gesser, P.; Holzer, L.; Flatt, R. FIB-nanotomography of particulate systems Part II: Particle recognition and effect of boundary truncation. J. Am. Ceram. Soc. 2006, 89, 2586–2595. [Google Scholar] [CrossRef]
- Jørgensen, P.; Hansen, K.; Larsen, R.; Bowen, J. A framework for automatic segmentation in three dimensions of microstrural tomography data. Ultramicroscopy 2010, 110, 216–218. [Google Scholar] [CrossRef]
- Spowart, J.; Mullens, H.; Puchala, B. Collecting and analyzing microstructures in three dimensions: A fully automated approach. JOM 2003, 55, 35–37. [Google Scholar] [CrossRef]
- Kelly, T.; Miller, M. Atom Probe Tomography. Rev. Scient. Instrum. 2007, 78, 031101. [Google Scholar] [CrossRef]
- Bostanabad, R.; Zhang, Y.; Li, X.; Kearney, T.; Brinson, L.C.; Apley, D.W.; Liu, W.K.; Chen, W. Computational microstructure characterization and reconstruction: Review of the state-of-the-art techniques. Prog. Mater. Sci. 2018, 95, 1–41. [Google Scholar] [CrossRef]
- Chatterjee, K.; Echlin, M.; Kasemer, M.; Callahan, P.; Pollock, T.; Dawson, P. Prediction of tensile stiffness and strength of Ti-6Al-4V using instantiated volume elements and crystal plasticity. Acta Mater. 2018, 157, 21–32. [Google Scholar] [CrossRef]
- Gallardo-Basile, F.-J.; Naunheim, Y.; Roters, F.; Diehl, M. Lath Martensite Microstructure Modeling: A High-Resolution Crystal Plasticity Simulation Study. Materials 2021, 14, 691. [Google Scholar] [CrossRef]
- Tseng, S.; Qayyum, F.; Guk, S.; Chao, C.; Prahl, U. Transformation of 2D RVE Local Stress and Strain Dstributions to 3D Observations in Full Phase Crystal Plasticity Simulations of Dual-Phase Steels. Crystals 2022, 12, 955. [Google Scholar] [CrossRef]
- Ramazani, A.; Mukherjee, K.; Quade, H.; Prahl, U.; Bleck, W. Correlation between 2D and 3D flow curve modelling of DP steels using a microstructure-based RVE approach. Mater. Sci. Eng. A 2013, 560, 129–139. [Google Scholar] [CrossRef]
- Qayyum, F.; Chaudhry, A.A.; Guk, S.; Schmidtchen, M.; Kawalla, R.; Prahl, U. Effect of 3D Representative Volume Element (RVE) Thickness on Stress and Strain Partitioning in Crystal Plasticity Simulations of Multi-Phase Materials. Crystals 2020, 10, 944. [Google Scholar] [CrossRef]
- Mirhosseini, S.; Perdahcioglu, E.S.; Atzema, E.H.; van den Boogard, A.H. Response of 2D and 3D crystal plasticity models subjected to plane strain condition. Mech. Res. Commun. 2023, 128, 104047. [Google Scholar] [CrossRef]
- Tian, X.-Y.; Zhang, H.-L.; Nong, Z.-S.; Cui, X.; Gu, Z.-H.; Liu, T.; Li, H.-M.; Arzikulov, E. Effect of Alloying on Microstructure and Mechanical Properties of AlCoCrFeNi2.1 Eutectic High-Entropy Alloy. Materials 2024, 17, 4471. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhang, Q.; Ge, Q.; Wang, X.; Shen, Y. Improving Texture Prediction by Increasing Mesh Resolution in Submodel: A Crystal Plasticity FE Study and Experiment Verification. Crystals 2023, 13, 849. [Google Scholar] [CrossRef]
- Frydrych, K.; Papanikolaou, S. Unambiguous Identification of Crystal Plasticity Parameters from Spherical Indentation. Crystals 2022, 12, 1341. [Google Scholar] [CrossRef]
- Volin, T.E.; Balluffi, R.W. Annealing Kinetics of Voids and the Self-Diffusion Coefficient in Aluminum. Phys. Stat. Sol. 1986, 25, 163–173. [Google Scholar] [CrossRef]
- Cantergiani, E.; Falkinger, G.; Roters, F. Crystal plasticity simulations of Cube in-grain fragmentation in aluminium: Influence of crystal neighbor orientation. Int. J. Solids Struct. 2022, 252, 111801. [Google Scholar] [CrossRef]
- El Shawish, S.; Cizelj, L. Combining Single- and Poly- Crystalline Measurements for Identification of Crystal Plasticity Parameters: Application to Austenitic Stainless Steel. Crystals 2017, 7, 181. [Google Scholar] [CrossRef]
- Zheng, X.; Kong, Y.; Chang, T.; Liao, X.; Ma, Y.; Du, Y. High-Throughput Computing Assisted by Knowledge Graph to Study the Correlation between Microstructure and Mechanical Properties of 6XXX Aluminum Alloy. Materials 2022, 15, 5296. [Google Scholar] [CrossRef]
- Wang, S.; Zhu, Z.; Starink, M. Estimation of dislocation densities in cold rolled Al-Mg-Cu-Mn alloys by combination of yield strength data, EBSD and strength models. J. Microsc. 2005, 217, 174–178. [Google Scholar] [CrossRef]
- Luan, Q.; Lee, J.; Zheng, J.H.; Hopper, C.; Jiang, J. Combining microstructural characterization with crystal plasticity and phase-field modelling for the study of static recrystallization in pure aluminium. Comput. Mater. Sci. 2020, 173, 109419. [Google Scholar] [CrossRef]
- Wu, R.; Zhao, Y.; Yin, Q.; Wang, J.; Ai, X.; Wen, Z. Atomistic simulation studies of Ni-based superalloys. J. Alloys Compd. 2021, 855, 157355. [Google Scholar] [CrossRef]
- Rodney, D.; Ventelon, L.; Clouet, E.; Pizzagalli, L.; Willaime, F. Ab initio modeling of dislocation core properties in metals and semicondactors. Acta Mater. 2017, 124, 633–659. [Google Scholar] [CrossRef]
- Gallardo, F.; Roters, F.; Jentner, R.M.; Srivastava, K.; Scholl, S.; Diehl, M. Modeling Bainite Dual-Phase Steels: A High-Resolution Crystal Plasticity Simulation Study. Crystals 2023, 13, 673. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Suo, T.; Wei, Q. Numerical simulations of adiabatic shear localization in textured FCC metal based on crystal plasticity finite element method. Mater. Sci. Eng. A 2018, 737, 348–363. [Google Scholar] [CrossRef]
- Chen, B.; Hamada, S.; Li, W.; Noguchi, H. Crystal plasticity FEM study of material and mechanical effects on damage accumulation mode of fatigue crack propagation. Int. J. Fatigue 2023, 173, 107683. [Google Scholar] [CrossRef]
- Anderson, P.M.; Hirth, J.P.; Lothe, J. Theory of Dislocations, 3rd ed. Cambridge University Press: Cambridge, UK, 2017.
- Trusov, P.; Kondratev, N.; Podsedertsev, A. Description of Dynamic Recrystallization be Means of An Advanced Statistical Multilevel Model: Grain Stracture Evolution Analysis. Crystals 2022, 12, 653. [Google Scholar] [CrossRef]
- Roters, F. Advaned Material Models for the Crystal Plasticity Finite Element Method; RWTH Aachen: Aachen, Germany, 2011. [Google Scholar]
- Queyreau, S. On the Saturation Stress of Deformed Metalsl; HAL Open Science, No. hal-03916664. 2022. Available online: https://hal.science/hal-03916664v1/file/on_the_saturation_stress_of_deformed_metals.pdf (accessed on 2 June 2023).
- Rezaei, M.J.; Sedighi, M.; Pourbashiri, M. Developing a new method to represent the low and high angle grain boundaries by using multi-scale modeling of crystal plasticity. J. Alloys Compd. 2023, 939, 168844. [Google Scholar] [CrossRef]
- Ta, N.; Bilal, M.U.; Hausler, I.; Saxena, A.; Lin, Y.-Y.; Schleifer, F.; Fleck, M.; Glatzel, B.; Kamachali, R.D. Simulation of the θ′ Precipitation Process with Interfacial Anisotropy Effects in Al-Cu Alloys. Materials 2021, 14, 1280. [Google Scholar] [CrossRef]
- Alankar, A.; Mastorakos, I.N.; Field, D.P. A dislocation-density-based 3D crystal plasticity model for pure aluminum. Acta Mater. 2009, 57, 5936–5946. [Google Scholar] [CrossRef]
- Bulut, O.; Acar, S.S.; Yalcinkaya, T. The influence of thickness/grain size ratio in microforming through crystal plasticity. Procedia Struct. Integr. 2022, 35, 228–236. [Google Scholar] [CrossRef]
- Pai, N.; Prakash, A.; Samajdar, I.; Patra, A. Study of grain boundary orientation gradients through combined experiments and strain gradient crystal plasticity modeling. Int. J. Plast. 2022, 156, 103360. [Google Scholar] [CrossRef]
Solver | Formulation | Access | |||
---|---|---|---|---|---|
FEM | FFT | Phenomenological | Physics-Based | Open Access (OA)/ Commercial Licence (CL) | |
PRISMS | X | X | OA | ||
CAPSUL | X | X | X | CL | |
FFTMAD | X | OA/CL | |||
ρ-CP | X | X | OA | ||
AMITEX | X | OA | |||
DAMASK | X | X | X | X | OA |
Tensile Test | Nanoindentation | XRD | Elec. Cond. | EDS | Diffusion Couple | TEM/High Resolution | Atom Probe Tom. | Atomic Force Mi. | Fitting | Atomic-Level Simulation | |
---|---|---|---|---|---|---|---|---|---|---|---|
Elastic constants | X | X | |||||||||
Dislocation core radius | X | X | |||||||||
Atomic volume | X | X | |||||||||
Attempt frequency | X | X | |||||||||
Mean free P path | X | X | X | ||||||||
Width (double kink) | X | X | X | X | |||||||
Drag coefficient | X | ||||||||||
Solid solution activation energy | X | X | |||||||||
Atomic concentration | X | ||||||||||
Transmissivity parameters | X | ||||||||||
Energy for dislocation climb | X | X | |||||||||
Peierls stress | X | X | |||||||||
Minimum dislocation density of the material | X | X | |||||||||
Starting dislocation density | X | X | |||||||||
Fitting parameters | X | ||||||||||
Energy required for a solute atom to move | X | X | |||||||||
Contribution of edge dislocations to the multiplication of dislocations | X | X | |||||||||
Dislocation interaction | X | X | X | X | |||||||
Poisson’s ratio | X | X |
Alloy Category | Indicative References |
---|---|
Fe and Steel | [13,36,139, 179194] |
Ti | [21,114] |
Ni | [24,56] |
Cu | [24,25,63,87,195,196,197,198,199] |
Al | [6,24,30,114,128,140,187,200,201,202,203,204,205] |
Parameter | α-Fe | α′-Fe | β-Ti | ||||
---|---|---|---|---|---|---|---|
First elastic stiffness constant with normal strain | C11 | 233.3 | 417.4 | [13,195] | 160 | [114] | GPa |
[36] | 135 | [21] | |||||
Second elastic stiffness constant with normal strain | C12 | 135.5 | 242.4 | [13,179] | 87 | [114] | GPa |
235.5 | [36] | 113 | [21] | ||||
First elastic stiffness constant with shear strain | C44 | 128.0 | 211.1 | [13,179] | 54 | [114] | GPa |
[36] | 54.9 | [21] | |||||
Shear strain rate | 0.001 | 0.001 | [13] | 0.001 | [114] | s−1 | |
0.56 | [36] | ||||||
Initial shear resistance on [111] | S0 [111] | 95 | 406 | [13,179] | MPa | ||
[36] | |||||||
Saturation shear resistance on [111] | S∞ [111] | 222 | 873 | [13,179] | MPa | ||
[36] | |||||||
Initial shear resistance on [112] | S0 [112] | 96 | 457 | [13,179] | MPa | ||
[36] | |||||||
Saturation shear resistance on [112] | S∞ [112] | 412 | 971 | [13,179] | MPa | ||
[36] | |||||||
Slip hardening parameter/self-hardening coefficient | h0 | 1.0 | 563 | [13,179] | 0.1 | GPa | |
[36] | |||||||
Interaction hardening parameter/hardening matrix | hα,β | 1.0 | 1.0 | [13,179] | - | ||
[36] | |||||||
Stress exponent | N | 20 | 20 | [13,179] | - | ||
3 | [36] | ||||||
m = strain rate sensitivity component | 1/m | 20 | [114] | - | |||
Curve fitting parameter | W | 2.0 | 2.0 | [13,179] | - | ||
[36] | |||||||
Critical resolved shear stress | |||||||
Initial slip hardness | τ0α | 60 | [114] | MPa | |||
120 × 103 | [21] | ||||||
Saturation value of slip resistance | τs | 450 | [114] | MPa | |||
Hardening exponent | A | 2.25 | [114] | - | |||
(Self and coplanar slip systems) | qab | - | |||||
(Non-coplanar slip systems) | qab | 1.4 | [114] | - | |||
Burgers vector | B | 2.86 × 10−10 | [21] | m | |||
Reference dislocation velocity | v0 | 10−3 | [21] | m s−1 | |||
Exponent | P | 0.71 | [21] | ||||
Q | 1.1 | [21] | |||||
Total initial dislocation density | ρ0 | 10+13 | [21] | m−2 | |||
Critical radius for edge annihilation | Re | 11.5 | [21] | nm | |||
Critical radius for screw annihilation | Rs | 58 | [21] | nm | |||
Strength interaction coefficients | g0 | 0.5 | [21] | - | |||
g1 | 0.5 | [21] | - | ||||
g2 | 0.8 | [21] | - | ||||
g3 | 0.8 | [21] | - | ||||
g4 | 0.8 | [21] | - | ||||
g5 | 0.8 | [21] | - | ||||
g6 | 0.8 | [21] | - | ||||
Segment length interaction coefficients | h0 | 0.0 | [21] | - | |||
h1 | 0.0 | [21] | - | ||||
h2 | 0.2 | [21] | - | ||||
h3 | 0.02 | [21] | - | ||||
h4 | 0.01 | [21] | - | ||||
h5 | 0.18 | [21] | - | ||||
h6 | 0.02 | [21] | - | ||||
Free energy of activation | F0 | 3.1 × 10−23 | [21] | J K−1 |
Description | Symbol | Values | Reference | Units |
---|---|---|---|---|
First elastic stiffness constant with normal strain | C11 | 106.75 | [114,128,140] | GPa |
100 | [127] | |||
108 | [24,203] | |||
108.2 | [204] | |||
Second elastic stiffness constant with normal strain | C12 | 60.41 | [114,128,140] | GPa |
60 | [127] | |||
61.3 | [24,203,204] | |||
First elastic stiffness constant with shear strain | C44 | 28.34 | [114,128,140] | GPa |
30 | [127] | |||
28.0 | [24] | |||
28.5 | [203,204] | |||
Isotropic shear modulus | Μ | 26.27 | [140] | GPa |
25.0 | [24,203] | |||
Poisson ratio | ν | 0.345 | [140] | - |
Burger vector | b | 0.286 | [24,140,200,205] | nm |
Atomic volume | Ω | 0.017 | [140] | nm3 |
1.7 × 10−29 | [200] | |||
Shear strain rate | 0.001 | [19,114,127,128,204] | /s | |
400 | [205] | |||
Slip hardening parameter/self-hardening coefficient | h0 | 75 | [114] | ΜPa |
400 | [19] | |||
190 | [204] | |||
80 | [127] | |||
Stress exponent | N | - | ||
m = strain rate sensitivity component | 1/m | 20 | [114,127] | - |
60 | [204] | |||
25 | [19] | |||
20 | [187] | |||
6.66 | ||||
4 | ||||
333.33 | [187] | |||
5.88 | ||||
Curve fitting parameter | W | - | ||
Slip resistance | τ0 | 30 | [127] | MPa |
58.5 | [205] | |||
47 | [204] | |||
31 | [19] | |||
Critical resolved shear stress | 31 | [128] | MPa | |
Saturation value of slip resistance | τs | 63 | [19,114,128] | MPa |
95 | [204] | |||
60 | [127] | |||
Hardening exponent | a | 2.25 | [19,114,128] | - |
2 | [127] | |||
(Self and coplanar slip systems) | qab | 1 | [128] | - |
(Non-coplanar slip systems) | qab | 1.4 | [128] | - |
Latent/self-hardening ratio | 1.4 | [204] | ||
Minimum edge dipole separation | 1.6 | [140] | nm | |
1 × 10−9 | [200] | m | ||
Minimum screw dipole separation | 10 | [140] | nm | |
1 × 10−9 | [200] | m | ||
Dislocation multiplication constant | λ0 | 60 | [140] | |
100 | [200] | |||
Edge contribution to multiplication | k1 | 0.1 | [140] | |
Initial overall dislocation density | ρ0 | 6 × 1010 | [140] | m−2 |
Self-diffusivity (at T = 300 K) | DSD | 7 × 10−29 | [140] | m2 s−1 |
Solid solution activation energy | QSol | 1.25 | [140] | eV |
Activation energy for dislocation climb | Qcl | 3 × 10−19 | [200] | |
Solid solution concentration | cat | 1.5 × 10−6 | [140] | |
Solid solution size | dobst | 0.572 | [140] | nm |
Peierls stress | τP | 0.1 | [140] | MPa |
Double kink width | wk | 2.86 | [140] | nm |
Energy barrier profile constants | p | 1 | [140] | |
0.233 | [205] | |||
q | 2 | [205] | ||
1 | [140] | |||
Attack frequency | να | 50 | [140] | GHz |
Dislocation viscosity | η | 0.01 | [140] | Pa s |
Edge jog formation factor | k3 | 1 | [140] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Loukadakis, V.; Papaefthymiou, S. Advancements in and Applications of Crystal Plasticity Modelling of Metallic Materials. Crystals 2024, 14, 883. https://doi.org/10.3390/cryst14100883
Loukadakis V, Papaefthymiou S. Advancements in and Applications of Crystal Plasticity Modelling of Metallic Materials. Crystals. 2024; 14(10):883. https://doi.org/10.3390/cryst14100883
Chicago/Turabian StyleLoukadakis, Vasilis, and Spyros Papaefthymiou. 2024. "Advancements in and Applications of Crystal Plasticity Modelling of Metallic Materials" Crystals 14, no. 10: 883. https://doi.org/10.3390/cryst14100883
APA StyleLoukadakis, V., & Papaefthymiou, S. (2024). Advancements in and Applications of Crystal Plasticity Modelling of Metallic Materials. Crystals, 14(10), 883. https://doi.org/10.3390/cryst14100883