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Abstract: Integrated Computational Materials Engineering (ICME) is a set of methodologies utilized
by researchers and engineers assisting the study of material behaviour during production processes
and/or service. ICME aligns with societal efforts for the twin green and digital transitions while
improving the sustainability and cost efficiency of relevant products/processes. A significant link
of the ICME chain, especially for metallic materials, is the crystal plasticity (CP) formulation. This
review examines firstly the progress CP has made since its conceptualization and secondly the
relevant thematic areas of its utilization and portraits them in a concise and condensed manner. CP is
a proven tool able to capture complex phenomena and to provide realistic results, while elucidating
on the material behaviour under complex loading conditions. To this end, a significant number of
formulations falling under CP, each with their unique strengths and weaknesses, is offered. It is a
developing field and there are still efforts to improve the models in various terms. One of the biggest
struggles in setting up a CP simulation, especially a physics-based one, is the definition of the proper
values for the relevant parameters. This review provides valuable data tables with indicative values.

Keywords: crystal plasticity; materials modelling; deformation mechanisms; simulation parameters

1. Introduction

Nowadays, the twin green and digital transitions force society to change products,
processes, and “lifestyle”, targeting circularity and taking action towards raw material
preservation. Integrated Computational Materials Engineering (ICME) is aligned with these
goals as it can be applied in the development of new alloys while addressing the improve-
ment in sustainability and cost efficiency of alloys/products, taking into consideration all
requirements from their design and processing to their service.

Gradually, with the development of computer processing power, the complexity of
systems and geometries has significantly increased to the point where ICME approaches
today have become more realistic even for materials/systems of great complexity.

This dynamic environment creates a need for developing materials and processes
guided by a deep understanding of the mechanisms and phenomena occurring on a
microscopic level. This can be achieved through the coupling of different computational
approaches. Such approaches, involving among other things the thermodynamic behaviour
of the system and the deformation behaviour of the material, need to occur in fast, cost-
effective, and sustainable development cycles. The structural design process needs to
expand now to also include the material instead of narrowly focusing on the geometry of
the part, as has been the case [1].

ICME provides improved understanding of the mechanics of the material, through
which two main aspects of a material’s lifecycle are addressed, namely the production
process and the operational behaviour. The potential benefits of utilizing ICME in the
process optimization are as follows: (i) development of products with higher added value,
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(ii) process optimization resulting in reduced energy consumption, and lastly, (iii) improved
product properties, which also target reduced raw material consumption. On the other
hand, through the understanding of the behaviour during service, the requirements that
the microstructure needs to meet become more clear, potentially leading to light-weight
design and increased safety without compromising on the part’s life. At the same time, the
operating conditions for materials constantly gets more demanding. Additionally, to tailor
the properties of materials to their respective applications, microstructures are becoming
more complex. Another emerging challenge derives from circularity. The increasing level
of impurities from scrap, following the recycling rates of materials, may negatively affect
the microstructure through the build-up of residual elements, with some of them being
critical for the integrity of the microstructure.

These potential benefits highlight the alignment between the adaptation of ICME
approaches and the Sustainable Development Goals set by the United Nations, namely goals
4—Quality Education; 8—Decent work and economic growth; 9—Industry, innovation and
infrastructure; 12—Responsible consumption and production; and 17—partnerships for
the goals.

There are several methodologies under the umbrella of ICME. These can either focus
on the “process–microstructure” (e.g., phase field) or the “microstructure–properties”
(e.g., crystal plasticity) relations. The coupling of the two approaches allows the consecutive
study of the effect of a process on the microstructure (e.g., thermal treatment) and then
the use of the affected microstructure as input and prediction of its mechanical properties,
enabling the tailoring of the properties to each application. Indeed, these approaches have
been a subject of study for decades, with examples such as the Hall–Petch effect [2,3] and
the work of Rhines [4], where critical microstructural parameters, such as the volume
fraction of phases, have been connected with the mechanical properties. CP modelling falls
under the microstructure–properties category [5], allowing the impact of factors such as
the β-precipitation of AA6061 on mechanical properties to be obtained [6], yet it can also
be used to examine the effect of mechanical loading on grains.

The CP approach is based on two fundamental axioms. Firstly, each grain is con-
sidered a continuum, and secondly, the total deformation is controlled by the interaction
of the active slip systems of each grain. The latter is identified as the most important
differentiator between CP and the other computational approaches [7]. Yu et al. [8] attribute
the significance of the CP methodology to (i) its strong mathematical foundations, (ii) the
correlation between slip systems and geometry, and lastly (iii) the high-fidelity algorithms
solving such problems. These factors, in combination with the knowledge accumulated
around continuum solid mechanics [9], and CP’s lower costs when compared to physical
experiments [10], have enabled the prediction of mechanical properties in relation to mi-
crostructural characteristics under complex loading conditions [11], making CP a widely
used tool to study the mechanical responses of alloys [8], such as the deformation mechan-
ics, e.g., during metal forming processes [12–15] or Forming Limit Diagrams, FLDs [10,16].
Additionally, when CP is coupled with other methodologies, the frameworks can expand to
capture more phenomena such as the behaviour under cyclic loading [17]. This enables an
enhanced understanding of how the material behaves during service and how to effectively
tailor the process. Through this understanding, the development of complex, tailored
materials with desired/advanced mechanical properties can be realized [16].

As mentioned, the deformation of each grain is influenced by the orientation of the slip
systems in relationship with the applied load. Polycrystalline materials have grains with
different orientations. This combination of the different orientations present in the material
is known as crystallographic texture. This affects how the applied loading influences the
material’s total deformation due to the synergetic slip of all the grains deformed. This
explains why the quantification and study of anisotropy, especially in relation to crystal
texture, is of importance [18,19].

Texture is measured in reference to a coordination system (c.s.). Usually, the selection
is between the three commonly used c.s., which are as follows [20]:
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i. The c.s. defined by the deformation axes (e.g., for the case of rolling the RD (rolling
direction), TD (transverse direction), and the ND (normal direction).

ii. The c.s. based on the crystallography, which rotates along the grains during deforma-
tions. This is especially useful for single-crystal systems.

iii. An external c.s. free of deformation, which is used for simplicity purposes (e.g., x,
y, z).

Modern CP models, utilizing either a Finite Element Solver (FEM) or a Spectral
Element Solver (SEM), can successfully predict, among others, the TRIP and TWIP ef-
fects of HSLA steels and the fatigue behaviour of dual-phase Ti-alloys [21] and Co-Cr
alloys [22]. Other applications include adiabatic shear banding of FCC crystals [23] and
the effect of grain size on the flow stress [24], with more models being tested even today,
indicatively [25,26], and even the effect of activated slip systems on fatigue behaviour [27].
Additionally, it is often the case that the research is focused, e.g., [28], on micro-mechanical
testing. This is a result of three main factors. Firstly, models need validation tests on single
crystals, secondly, due to the lesser complexity of the system, they have lower computa-
tional cost, and, lastly, conducting physical experiments, under controlled conditions, on
this scale is complex. Mechanical testing on single crystals is rarely preferred and most
models rely on macroscopical quantities, such as stress–strain curves, for validation [29].

The importance of the CP methodology today is evidence by the breadth of research
topics and alloying systems. Indicatively, some recent subjects of study, categorized by
material, are as follows:

i. Aluminium (Al) alloys: The effect of grain topology on crack propagation for aerospace-
grade materials [30], modelling of the Continuous Dynamic Recrystallization
(CDRX) [31], and the behaviour of such alloys under cyclic compression loading [32],
as well as their behaviour under high-cycle fatigue following 3D printing [33]. More-
over, they have been successfully utilized to study warm forming conditions [34] and
even the Bauschinger effect on single crystals [35].

ii. Iron (Fe) and steel alloys: The effect of non-metallic inclusion on the steel failure,
e.g., of a 16MnCrS5 steel, has been studied [36]. The effect of martensite on forming
has been studied [10,14]. Deep drawing of dual-phase (DP) steels [37], sintering
of transformation-induced plasticity (TRIP) [38], and twinning-induced plasticity
(TWIP) [39] steels have also been subjects of study. Recently, a formulation modi-
fication was proposed for studying the effect of the grain size and the slip system
interaction in austenitic stainless steels [40]. Another example is the study of the
behaviour of an austenitic steel under multiaxial loading [41].

iii. Magnesium (Mg) alloys: The evolution of twin formation [42,43], the effect of heat
treatments on the mechanical behaviour of the twins [44], the evolution [45] and
effect [46] of twins in low-cycle fatigue conditions, as well as the effect of grain
size on texture evolution under mechanical loading have been studied [47]. Cheng
et al. expanded a model for it to be able to capture the effect of hotspots in the local
deformation of twin bands [48]. A recent review detailing the applications for Mg
alloys can be found in [49].

iv. Titanium (Ti) alloys: The anisotropic plastic deformation of commercial alloys has
been studied [50]. The behaviour of dual-phase Ti-alloys has also been studied [21].
Additionally, the results regarding the micro-mechanic response of a TNM alloy have
been validated through nano-indentation [51]. Results from CP modelling have also
been compared to High-Resolution EBSD (Electron Back-Scatter Diffraction) and High-
Resolution DIC (Digital Image Correlation) during micro-slip [52] and stress/strain
localization [53]. Another difficulty in simulating the response of highly anisotropic
materials is the effect of kink bands during forming, for which an approach for Ti
alloys has been proposed [54]. Lastly, the texture evolution during cold forming has
also been studied, e.g., [55].

v. Nickel (Ni) super-alloys: The effect of nano-indentation on the distribution of dis-
location density of a single-crystal [56], mechanical testing on specimens produced
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by direct casting [57], applying the weak link methodology in order to evaluate the
fatigue behaviour of the material, while taking into account the part size [58], mul-
tiaxial fatigue behaviour [59], and the effect of grain size on fatigue behaviour have
been studied [60]. Apart from fatigue behaviour, the creep behaviour has also been
studied, e.g., [61,62].

vi. Other alloys: The behaviour of copper (Cu) alloy oligo-crystals under mechanical
shock [63], the effect of additive manufacturing on the evolutions of residual stresses of
tungsten (W) alloys [64], the low-cycle fatigue behaviour of cobalt–chromium (CoCr)
alloys [22], and, lastly, the evolution of texture during severe plastic deformation
(SPD) in high-entropy alloys through an expansion of the Taylor model have also
been studied.

However, despite the constant progress of CP and the utility of its results, determining
the input parameters is still a matter of study [9,26].

This review is structured as follows: After the introduction to the subject (Section 1),
the motivation for this work and our contribution to the field is presented (Section 2). This
contribution does not only reflect on how the crystal plasticity methodology has evolved
over the years (Section 3), but in addition provides a discussion regarding the proper model
selection including the constitutive equations (phenomenological or physics-based), the
solver (Finite Elements or Fast Fourier Transformations), and the most used packages
(Section 4). Then, carefully selected parameters crucial for the execution of a CP simulation,
which are absolutely necessary for every researcher working in the field, are gathered,
assessed, and coded in very handy table form (Section 5). Furthermore, the required critical
steps (i.e., geometry, material, and loading conditions) for a successful simulation execution
also considering important parameters affecting the process are presented and discussed as
well. Finally, this work concludes with our closing remarks (Section 6).

2. Motivation and Contribution

Crystal plasticity (CP) has significantly evolved since its conceptualization. What
began as a tool for studying the deformation of single crystals under uniaxial deformation
has become capable of capturing complex phenomena in multiphase polycrystals, even
in materials with a gradient crystal structure under complex loading conditions, while at
the same time improving computational efficiency and accuracy. There are several papers
that perform a review on CP and relevant methodologies, indicatively, Beyerlein et al. [65]
reviewed extensively the various models and the difference in their mathematical formu-
lation, Lucarini et al. [66] followed a very detailed, textbook-like approach in explaining
Fast Fourier Transformations in relation to micro-mechanics, Yaghoobi et al. [49] details the
challenges of magnesium alloy modelling and highlights the relevant literature, whereas,
Roters et al. [67] showcased the extent of the possible applications. These reviews provide
the reader with a detailed description of the mathematical formulation and mostly focus
on literature directly relevant to the specific subject. This review differentiates from those
mentioned above (and similar approaches) in the following aspects:

i. It systematically presents the evolution and recent advancements of the CP method
through selected milestones and applications with an emphasis on metallic crys-
talline materials while providing explanation of the basic formulations; in-depth
mathematical analysis is omitted.

ii. It is designed to be as short as possible while showcasing most of the critical aspects
of running a CP simulation and providing relevant resources.

3. Evolvement of Crystal Plasticity Approaches

Taylor [68] described the slip of single-crystal materials and he was the first to present
crystal plasticity in 1982 [69]. By 1993, Beaudoin et al. [70] were already using three-
dimensional (3D) models. Figure 1 [71–78] highlights some, non-exhaustive, milestones
in the evolution of the mathematical models describing the plastic behaviour of materials
from the first mention of dislocations up to today. The formulations connecting plastic
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and hardening behaviours to dislocations only became accepted in 1986 by Estren and
Kubin [79]. The dislocations were introduced in the study of polycrystalline materials by
Arsenlis et al. [80] in the early 21st century and quickly started developing [81]. These
early adaptations restricted dislocation movement across multiple grains [81], with this
limitation to be overcome by Ma, Roters, and Raabe [82,83].

Crystals 2024, 14, x FOR PEER REVIEW 5 of 25 
 

 

3. Evolvement of Crystal Plasticity Approaches 
Taylor [68] described the slip of single-crystal materials and he was the first to present 

crystal plasticity in 1982 [69]. By 1993, Beaudoin et al. [70] were already using three-di-
mensional (3D) models. Figure 1 [71–78] highlights some, non-exhaustive, milestones in 
the evolution of the mathematical models describing the plastic behaviour of materials 
from the first mention of dislocations up to today. The formulations connecting plastic 
and hardening behaviours to dislocations only became accepted in 1986 by Estren and 
Kubin [79]. The dislocations were introduced in the study of polycrystalline materials by 
Arsenlis et al. [80] in the early 21st century and quickly started developing [81]. These 
early adaptations restricted dislocation movement across multiple grains [81], with this 
limitation to be overcome by Ma, Roters, and Raabe [82,83]. 

 
Figure 1. Evolution of the understanding and mathematical description of the deformation mecha-
nisms in polycrystalline materials, through eight milestones. 

The first attempts to utilize CP were restricted to simple geometries and significant 
assumptions were made to simplify the problem. Gradually, the complexity of the systems 
and geometries has significantly increased to the point where they have become realistic 
even for more complex materials. The evolvement of CP models is partly dependent on 
atomic-scale models, since their results can help improve the CP formulation. This can be 
seen by the expansion of the phenomenological models to include BCC materials [84,85], 
from FCC where they were originally applied. Additionally, through atomic-scale studies, 
it was proven that the work-hardening of FCC metals was mainly affected by the collinear 
dislocation interaction [86], i.e., the result of attraction of dislocations moving on the same 
slip plane. This created a need to incorporate the dislocation interaction into CP models, 
resulting in what is now known as physics-based CP. Parameters from various scales, such 
as dislocations, are used in a statistical manner to calculate the final macroscopic defor-
mation and stress distribution. Due to such parameters being statistically integrated, in-
stead of being explicitly studied, physics-based CP still falls under continuum solid me-
chanics (mesoscale modelling). The interaction of mobile dislocations with dislocation for-
ests was studied via a multiscale approach, combining the dislocation density with the 
resolved shear stress on each slip system [87]. This was followed by efforts to capture the 
effect of deformation-induced heat on the material behaviour for small deformations [88]. 
CP is also a capable tool for the study of gradient crystal materials [89,90]. 

There are currently three multiscale modelling approaches to study alloys [91]. 
Firstly, the embedded approach, according to which the lower-scale models are embed-
ded in the higher-order ones, which has high accuracy and is often used in physics-based 
CP. According to the hierarchical approach, a separate model is used at each scale and the 
outputs of lower scales are iteratively used as input for the higher scales, and lastly, the 

Figure 1. Evolution of the understanding and mathematical description of the deformation mecha-
nisms in polycrystalline materials, through eight milestones.

The first attempts to utilize CP were restricted to simple geometries and significant
assumptions were made to simplify the problem. Gradually, the complexity of the systems
and geometries has significantly increased to the point where they have become realistic
even for more complex materials. The evolvement of CP models is partly dependent on
atomic-scale models, since their results can help improve the CP formulation. This can be
seen by the expansion of the phenomenological models to include BCC materials [84,85],
from FCC where they were originally applied. Additionally, through atomic-scale studies,
it was proven that the work-hardening of FCC metals was mainly affected by the collinear
dislocation interaction [86], i.e., the result of attraction of dislocations moving on the same
slip plane. This created a need to incorporate the dislocation interaction into CP models,
resulting in what is now known as physics-based CP. Parameters from various scales,
such as dislocations, are used in a statistical manner to calculate the final macroscopic
deformation and stress distribution. Due to such parameters being statistically integrated,
instead of being explicitly studied, physics-based CP still falls under continuum solid
mechanics (mesoscale modelling). The interaction of mobile dislocations with dislocation
forests was studied via a multiscale approach, combining the dislocation density with the
resolved shear stress on each slip system [87]. This was followed by efforts to capture the
effect of deformation-induced heat on the material behaviour for small deformations [88].
CP is also a capable tool for the study of gradient crystal materials [89,90].

There are currently three multiscale modelling approaches to study alloys [91]. Firstly,
the embedded approach, according to which the lower-scale models are embedded in
the higher-order ones, which has high accuracy and is often used in physics-based CP.
According to the hierarchical approach, a separate model is used at each scale and the
outputs of lower scales are iteratively used as input for the higher scales, and lastly, the
Adaptive Sampling Method (ASM) according to which, the lower-scale models executed
only once, and their results are used in many different scenarios.

Heterogeneities within the material have been successfully studied, firstly by Hashin
et al. [92] using a framework for homogenized and fully elastic (linear) microstructural
models [93]. A shift from the iso-strain homogenization scheme to the Relaxed Grain
Cluster (RGC) model [94,95] can allow the study of the interaction between the grains
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within the representative volume element (RVE). RGC is a homogenization technique used
to reduce the computational cost while retaining sufficient information [95] at an improved
speed [94]. This is achieved through clustering grain behaviour under mechanical loading
yet allowing a degree of freedom to minimize the energy of the cluster. The impact of the
homogenization scheme on texture evolution was studied by Eisenlohr et al. [96].

3.1. General Taxonomy of Crystal Plasticity Models

There are many ways to categorize crystal plasticity models. A branch of the categories
described by Trusov et al. [97] are depicted in Figure 2. They can be categorized as follows:
Statistical, which is better suited for uniformly deformed volumes [98–100], Self-Consistent,
which can study steady-state deformation [65], and Direct models, which are mostly used
for nonuniform deformations [97]. The Self-Consistent approach was considered separate
to crystal plasticity [101] until Lebensohn et al. [102] integrated them. Each approach
can follow a local or a non-local approach while calculating the critical shear stress. The
local approach takes into account the stress applied in each calculation point, whereas
the non-local approach utilizes either [103] the deformation gradient (e.g., [24,81,104]) or
continuum dislocation dynamics (e.g., [56,105–112]).

Taking the strain gradient into consideration, studying the effect of the RVE size on the
results is allowed. Furthermore, non-local strain-based models can be further categorized
as lower or higher order, depending on the formulation of the boundary conditions [53,54].
Lastly, they are described as mean or full field (e.g., [113]) by the selection of the solver, as
discussed in Section 4.2. Utilization of a full-field formulation translates to the ability to
study local heterogeneities in the macroscopical mechanical behaviour of the materials [114]
and a prediction of localized stresses [18].
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3.2. Approaches for Further Improvement of CP

The CP framework is constantly being upgraded and optimized in its ability to utilize
and predict complex phenomena, e.g., [25,26]. Other approaches for improvement can be
categorized as follows:

i. Improving execution time and accuracy. As mentioned, CP problems can be solved
with either a FEM approach or a FFT approach. The CP-FFT methodology is sig-
nificantly faster, mostly due to the low mesh sensitivity and the mathematical for-
mulation. However, efforts have been made to further improve their computational
efficiency [115] and accuracy [116]. Ling et al. [117] decreased the mesh sensitivity
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of the FEM solvers, allowing the application of a coarser grid while retaining result
accuracy and indirectly accelerating the calculation process. Other efforts are focused
on the optimization of resource allocation [118] via the modification of CP to run
on a GPU and creating a hybrid CPU-GUP architecture to increase computational
efficiency, while others focus on simplifying the FFT controls [114]. Zecevic et al. [119]
introduced an LS-EVP-FFT (large-strain elasto-viscoplastic) model, which allows for
increased accuracy in quantifying the effect of anisotropy on the creation of hotspots,
through the modification of Green’s operator and introduction of more grids per
material point. Admal et al. [120] depicted grain boundaries as a special category of
geometrically necessary dislocations (GNDs) to better depict their impact. Recently,
Romanov et al. [11] presented a statistical model, thus reducing execution time, ca-
pable of studying the ECAP test. Another topic of interest is the evaluation of the
stability of the developed models [121,122].

ii. Combining the CPFEM and CPFFT approaches. Yu et al. [8] combined the two solvers
(FEM and FFT), allowing the expansion of possible applications. Alharbi et al. [123]
used the results of the FFT approach as input for the CPFEM, achieving faster results.

iii. Optimizing input geometry. Apart from the geometry and the number of grains, an
important parameter of the RVE file has proven to be the total volume of the synthetic
microstructure [124,125]. This topic will be discussed in detail in Section 5.1.

iv. Streamlining the parameter identification process. This can be achieved through
in situ tensile tests [126] or genetic algorithms [127]. Furthermore, some CP mod-
els are being designed to be material-independent [26] to increase the spectrum of
potential applications.

v. Creation of tailored models. To achieve higher accuracy, some models are being
created to be tailored to specific materials, e.g., [26], where a material-invariant
approach of mesoscale parameters has been proposed, or processes, e.g., for the
effect of the hardening parameters on the crystallographic texture evolution during
the rolling of aluminium alloys [128].

vi. Other efforts focus on expanding the field of potential applications, e.g., to other
crystal systems by accounting for the dislocation slip and twinning of Hexagonal
Closed Packed (HCP) systems [129] or even capturing the effect of sample size to the
yield stress through an embedded, sub-routine for Discrete Dislocation Dynamics in a
CPFEM model [28].

3.3. Coupling CP to Machine Learning Algorithms

A different approach is the utilization of Artificial Intelligence (AI) and machine
learning (ML) methodologies in conjunction with crystal plasticity modelling. A description
of such approaches can be found in [130], but they will not be discussed in detail here. The
usage of these approaches in the field of materials modelling is expected to grow [131]. One
of the most important issues preventing their widespread application [132] is the volume of
data needed for training and validation [127]. The coupling of these tools with CP usually
has one of the following goals:

i. Model calibration. This approach can solve one of the most important issues of
applying CP models, the determination of the correct values for the input parameters.
Among others, Galan Lopez et al. [18], Chakraborty et al. [19], Plowman et al. [10], and
Sedighiani et al. [127] have all performed a calibration of the input parameters needed
for CP simulations through an ML algorithm, applied to data from tensile testing.
A similar approach was followed by Sahoo et al. [29] for the phenomenological
model. There are examples of calibration being performed under cyclic loading
conditions [133].
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ii. Improved accuracy while maintaining the computation cost. Due to the increasing
complexity of the Partial Differential Equations (PDEs), resulting from raising the
accuracy and realism of the models, the implementation of such an approach is also ex-
pected to show an increase in the following years [134]. Adopting methodologies such
as Convolutional Neural Networks (CNNs) can result in a reduction in the computa-
tional cost of macroscopic properties by 99% when compared to a two-dimensional
(2D) CP simulation [135]. Applying Deep Neural Networks (DNNs) for the local re-
sponse of an FFT solver, carried out by Mianroodi et al. [134], lead to an acceleration in
the time needed for obtaining the results by ×8300 times for heterogeneous materials.
Another example of achieving high accuracy, while maintaining a low computational
cost, is the prediction of the local response in industrial aluminium alloys using a
CNN-CPFEM methodology [136].

iii. Surrogate modelling. Some indicative works are the one of Saidi et al. [137], in which
they utilized the Taylor model to train an ML algorithm for the rolling of aluminium
alloys. Khorrami et al. [138] calibrated a CNN model for tensile tests with results from
VSPC (Viscoplastic Crystal plasticity), and accurately predicted the von Mises stresses.

4. Methodologies

This section discusses the main difference in the formulation of phenomenological
CP models and physics-based CP models, includes a comparison between the Fast Fourier
Transformation (FFT) and the Finite Element (FEM) solvers, and, lastly, refers to some
indicative commonly used CP packages.

4.1. Phenomenological and Physics-Based CP

Regardless of the chosen model category, the shear rate of each slip system is correlated
with the deformation of the whole volume under consideration. Equation (1) [20] provides
the formulation for the speed of the plastic deformation gradient (Lp), where m is the vector
normal to the slip system, a represents the slip system, n is the total number of independent
slip systems (i.e., 12 for FCC, 5 for BCC, and 3 for HCP), and

.
γ
α is the shear rate of the ath

slip system.

Lp =
n

∑
a=1

.
γ
α·mα ⊗ nα (1)

The expression of the shear rate is one of the most fundamental differences between
the phenomenological and the physics-based formulations. For the phenomenological
models, the shear rate is given by Equation (2). In Equation (2), the variable m differs from
the one in Equation (1) as it a case-specific parameter with no physical meaning, modified
to achieve the best fit with experimental observations.

.
γ
α
=

.
γ0·

∣∣∣∣ταταc
∣∣∣∣ 1

m
·sinh(τα) (2)

ταC is the critical shear stress on the slip plane, while τα is the saturation shear
stress [139] and a is the number of slip systems in the crystal.

On the other hand, the realism provided by the formulation incorporating physics laws
leads to a more a more complex expression, with a significant number of parameters [127].
An example of such a formulation is the work of Kords [140], shown in Equation (3). It
can be seen that, additionally to stress-related terms, it includes quantities such as the
dislocation density (ρ) and speed (v0), the burger vector (b), solid solution activation
energy (Qs), the Bolman’s constant (kB), and temperature (T), plus two parameters (p,
q) controlling dislocation movement behaviour. Most of these terms have their own
mathematical formulation, resulting in more parameters being involved.

.
γ = ρ·bs·v0·e

[− Qs
kB ·T

·{1−(
|τeff |
τsol

)
ps}

qs
]·sgn(τ) (3)
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Considering complex interactions, even in a statistical manner, is a computationally
expensive process. The mathematical foundations for reducing the cost of capturing the
dislocation movement in CP modelling were laid by Arsenlis et al. [105] and Ganghoffer
et al. [141], who developed differential equations for the calculation of the dislocations, with
higher degrees of freedom. Later, Ma, Roters, and Raabe [142] suggested an alternative,
which is more efficient under complex loads. Subsequent developments further enhanced
the accuracy of dislocation movement [56].

Physics-based CP models, although they can receive input parameters (e.g., atomic
volume and dislocation density) from lower scales (i.e., atomic scale), still examine the
grain as a continuum body. Phenomena such as dislocation interaction are considered in a
statistical manner [143] instead of being individually tracked. Thus, just like phenomeno-
logical models, physics-based ones also fall under the mesoscale modelling category, since
they consider each grain a continuum.

4.2. FEM vs. Spectral Methods

As mentioned, each of the CP models can be solved either with the FEM or with a
spectral approach (FFT), which was proposed as an alternative [144], resulting in CPFFT
and CPFEM categories. Even though FFT was suggested relatively early, its use on poly-
crystalline materials is rather new, firstly proposed by Lebensohn [145], from where it was
expanded to anisotropic materials with significant texture [91]. Spectral solvers (FFT) have
two main basic advantages over the FEM [146], which are as follows [25,115,147–149]:

i. Computational efficiency: They are faster, by around an order of magnitude, and can
therefore achieve higher resolution/grid density on the RVE at the same time.

ii. Due to their low mesh sensitivity, they enable the use of a coarser grid without
sacrificing result accuracy [93,146]. An example of this is [38], where they used one
calculation point per grain.

On the other hand, these benefits involve some trade-offs that need to be considered
for each case. Firstly, due to the periodic boundary conditions applied it is difficult to study
the materials near the free surfaces. This is a result of the fact that the volume under study
is virtually extended infinitely around itself in three-dimensional space [150].

To demonstrate the periodic boundary conditions, Figure 3 shows an RVE created
based on the Voronoi methodology containing 30 grains with a grid of 5003 voxels visual-
ized through ParaView [151,152] (Figure 3a). Grain morphology is also shown (Figure 3b–d)
whereas in Figure 3e,f, a face of the original RVE is repeated in space. Since the material
is constantly in contact with other identical volumes, RVEs studied under the periodic
conditions’ assumptions have no free surfaces.

To overcome the limitation introduced by the lack of free surfaces, Maiti and Eisen-
lohr [153] proposed to enclose the RVE of interest in another material, simulating the
interaction with the free surface, resulting, however, in a significantly more complex RVE.
Additionally, it can only work with the use of a normal/regular (x = z = y) grid [154,155]
and the remeshing processes have proven to be rather complex [156]. It should be noted
that the issue regarding the grid sensitivity of the FEM solver can in some cases be over-
come by utilizing the micro-morphic crystal plasticity technique [23]. A more detailed
comparison of the approaches can be found in [157].

4.3. Indicative Available CP Packages

A significant number of CP-related software/codes exist, with research groups trying
to develop in-house/custom packages, with some of them being openly available. The
most widely used, to the best of the authors knowledge, are as follows:

i. DAMASK, developed by the Max Plank Institute for Sustainable Materials GmbH—
R&D centre, released in 2011 [67,158].

ii. PRISMS, developed by the University of Michigan [159,160].
iii. CAPSUL and FFTMAD, both developed by the IMDEA Research centre, released in

2012 [161,162].
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iv. ρ-CP, co-developed by the Indian Institute of Technology and Georgia Institute of
Technology, released in 2023 [163].

v. AMITEX_FFTP, developed by the coalition Maison de la Simulation, consisting of the
French National Centre for Scientific Research, the French Alternative Energies and
Atomic Energy Commission (CEA), Université Paris-Saclay, and Université Versailles
Saint-Quentin, also released in 2023 [164].

vi. Other packages available in the literature are the ones found in [66,104,165] as well as
in [166], implementing CPFFT and CPFEM, respectively [167].

Table 1 provides a concise overview of the packages in terms of (i) the solver used, FEM
vs FFT as previously discussed, (ii) the formulation used, phenomenological or physics
based, and, lastly, (iii) if they are open access or require a commercial licence.
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Table 1. Comparison between the selected packages.

Solver Formulation Access

FEM FFT Phenomenological Physics-Based
Open Access (OA)/

Commercial Licence
(CL)

PRISMS X X OA

CAPSUL X X X CL

FFTMAD X OA/CL

ρ-CP X X OA

AMITEX X OA

DAMASK X X X X OA
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5. Critical Aspects for CP Simulations

This section is focused on the most critical aspects of setting up a CP simulation. These
aspects include the RVE dimensions, the parameters that describe the material behaviour,
and the loading conditions.

5.1. RVE Modelling
5.1.1. RVE Creation

Proper selection of geometry-related parameters is the first, and crucial [18], step
towards the design of the synthetic microstructure. The most common ways to create
an RVE are either through (i) a 1:1 representation based on data provided by techniques
such as serial sectioning [124], Atom Probe Tomography (APT), 3D EBSD, assisted by
software, such as NEPER [168], DREAM 3D [169], and Voro++ [170], through the cellular
automata approach [124] or (ii) creating the RVE based on typical data obtained by standard
metallography procedures, via the aforementioned software, most commonly utilizing the
Voronoi methodology [171]. These two approaches are not interchangeable in their results.
Indicatively, Tu et al. [22] studied the effect of the grain morphology of the RVE under
fatigue and found that the RVEs with an accurate morphology had a 10% better fit with
the experiments in comparison to Voronoi-based microstructures. As explained in [93],
the experimentally produced RVEs have some deviation in capturing grain-boundary-
related phenomena, whereas the computationally calculated RVEs mostly consider grain
boundaries to be planes. Moreover, during serial sectioning, the information between the
sections is lost [124].

There are studies regarding measurement accuracy, e.g., [172–174] through focused
ion beam-scanning electron microscopy (FIB-SEM) and automation for larger scales and
APT [175] for smaller scales, which, however, greatly increases the cost of the RVE extraction.
An extended review on advanced Microstructure Characterization and Reconstruction
(MCR) techniques was performed by Bostanabad et al. [176].

5.1.2. RVE Size

A critical parameter when designing the RVE is the size. Specifically, small volumes,
depending on the formulation used, may behave like oligo-crystals, losing information
about the interaction between grain and phase boundaries, while large volumes have a
higher computational cost [177]. For most cases focusing on deformation, a volume of a
few hundreds of grains can suffice [24] or equivalently an edge of the RVE equal to a few
hundred micrometres [128]. Studies involving statistical quantities (e.g., crystallographic
texture) require a significantly larger number of grains [155].

Size also incorporates the thickness of the RVE. Macroscopically, there is evidence [178]
suggesting that the fit with the validation points may be sufficient regardless of the thick-
ness. However, the thickness can influence the accuracy on a local level, especially when
the comparison is between a 2D and a 3D volume [179–181]. Mirhosseini et al. [182]
schematically demonstrate the effect of the size for 2D and 3D RVEs with grains in the
range between 9 and 225 and from 8 to 125, respectively. Specifically, it was shown that
3D RVEs require less grains in total for a similar accuracy. An approach for transferring
the results of 2D experiments to the 3D space is described in the recent work of Tseng
et al. [179]. The effect of the selected size on the calculated mechanical properties, as well as
the differences between RVEs and statistical RVEs (S-RVEs or SVEs), is discussed in [183].

For each case, the proper size needs to be determined a posteriori through a depen-
dency analysis [124], especially in the cases of fatigue analysis, where size has been found
to have a significant impact on the accuracy of the fatigue prediction [58]. This means using
progressively larger volumes until the results become stable.

5.1.3. Grid Density

Grid, or mesh, density refers to the number of calculation points within the volume of
a given RVE. The required grid density mostly depends on the scale of interest. Specifically,
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if focus of the study is on macro-mechanical properties (e.g., stress–strain curves) a few
calculation points per grain are considered enough, whereas at the mesoscale 102–103 [156]
calculation points per grain would be needed, significantly increasing calculation time.

Texture as a statistical quantity is considered macroscopical and, thus, it is considered
to be mesh-independent if there are calculation points in all grains. Yet, Yu et al. [184]
observed that when utilizing only some of the original voxels as an RVE (an approach
called sub-modelling), effectively increasing the resolution in this area, the prediction of
micro-texture and in grain variations was enhanced.

A grid sensitivity analysis is required to determine the proper grid size of each system.
Moreover, due to the heterogenous nature of the local deformation and strain localization,
the grid is subjected to degradation [156]. To counter this, an adaptive remeshing approach,
i.e., changing the mesh along with RVE size, has been proposed.

5.2. Material Related Input Parameters

Defining the input parameters (calibration) for the simulations remains a
challenging [9,26,29] and time-consuming task [185]. Some parameters, such as self-
diffusion, can be easily found in the relevant literature, e.g., [186], whereas others have
proven to be more difficult. This is due to their dependency on loading conditions and material
properties [26,187], chemistry, e.g., [21], as well as on the methodology/formulation utilized.

The efforts made to surpass these challenges [127,188] and their quantification can
be considered to be a separate field of study [19]. Zeng et al. [189] quantified the effect of
each parameter of their model. Moreover, for some models, e.g., [127], it has been proven
that each one of the various parameters for the physics-based model takes a single value
for each case. As was discussed in Section 4.1, the use of physics-based models entails the
quantification of a significant number of parameters. The parameters used in such models
can be categorized as follows:

i. Dislocation-Related Parameters. Here, included are parameters such as the dislocation
density per dislocation type, the dislocation glide and transmissivity, and various
other parameters that assist with the statistical representation of the dislocations.

ii. Thermodynamical Parameters. These can be related to the solid solution, the
diffusion, etc.

iii. General Parameters. These can be, for example, the mechanical parameters of
the material.

iv. Case-specific parameters need to be calibrated for each case (fitted to experimental
data). Parameters that do not necessarily have a physical meaning need to be fitted in
each specific case, accounting both for the material and the process.

One of the most difficult-to-measure parameters is the dislocation density, usually
measured in m/m3 [190]. It is the carrier of plastic deformation [20] and thus heavily influ-
ences the mechanical response of the material. Some formulations, e.g., [140], differentiate
between edge and screw dislocations and further divide them into dipolar (immobile) and
monopolar (mobile) dislocation density as well as positive and negative. In one study [105],
monopolar ρ is also found as GNDs (Geometrically Necessary Dislocations), while the
dipoles are found as SSDs (statistically stored dislocations).

Their importance is not restricted to mechanics, since phenomena such as grain growth
are heavily dependent on them. Recently, their effect on static recrystallization has been
studied through a coupling of crystal plasticity with phase field [191]. Phase field modelling
for nickel super alloys revealed that under high values of shear stresses, their movement
speed is constant, whereas for lower values, it was found to be periodic [192].

Wang et al. [190] calculated the dislocation density for cold-rolled aluminium alloys
through the Taylor model and compared their results to experimental measurements via
Transmission electron microscopy (TEM), with a deviation of 30%. Significant change,
around 500%, in their population as the forming progresses is also observed.

Table 2 summarizes some of the experimental methods and techniques used for
calculating specific parameters, based on the earlier categorization. Parameters that lack a
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physical meaning, usually non-dimensional, such as the energy barrier profile constants,
can be determined through macroscopic (e.g., comparing the texture after the applied
deformation and stress—strain curves) or microscopic (e.g., using Digital Image Correlation,
DIC, to compare the stresses developed) tests until the result agrees with experimental
results. Parameters referring to lower scales, such as kink width, are more difficult to
measure experimentally and require access to equipment such as APT. Most of the required
parameters can also be calculated from atomistic simulations such as ab initio or molecular
dynamics. An example of parameter calculations through the ab initio approach is [193].

Table 2. Indicative required equipment for the measurement of the values of parameters used by
physics-based CP models.
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Elastic constants X X

Dislocation core radius X X

Atomic volume X X

Attempt frequency X X

Mean free P
path X X X

Width (double kink) X X X X

Drag coefficient X

Solid solution activation energy X X

Atomic concentration X

Transmissivity parameters X

Energy for dislocation climb X X

Peierls stress X X

Minimum dislocation density of the
material X X

Starting dislocation density X X

Fitting parameters X

Energy required for a solute atom to
move X X

Contribution of edge dislocations to
the multiplication of dislocations X X

Dislocation interaction X X X X

Poisson’s ratio X X

Experimentally determined parameters necessary for physics-based CP simulation
execution are difficult to achieve. Alternative possible approaches to calibrate the models
are as follows: (i) an iterative one, either via hand or via a dedicated algorithm until the
results demonstrate good fit with experimental validation points such as the stress–strain
curve, (ii) use machine learning algorithms to approximate the values of the required
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parameters, and (iii) finding relevant data in the available literature. The manual–iterative
approach is extremely time-consuming, especially for formulations that have a significant
number of required inputs. The automated–iterative approach seems to provide a good
balance of cost–benefit, yet the, limited, available codes may be designed for a different for-
mulation and, thus, require some basic programming skills. Arguably, the faster approach
is the machine learning, albiet it requires significant amounts of data. Lastly, a dedicated
literature review requires a significant investment of time in order to properly retrieve
valuable data.

Table 3 shows indicative articles providing the values used for the various parameters
organized by material. The parameters included in these articles are also compared to each
other to highlight the variance they may exhibit for the same material. Table 4 provides
indicative literature for the BCC- Fe, BCT-Fe (α and α′ respectively) and the BCC-Ti (β),
whereas the Table 5, provides similar information for FCC-Al (α).

Table 3. Indicative references per alloy category.

Alloy Category Indicative References

Fe and Steel [13,36,139,179,194]

Ti [21,114]

Ni [24,56]

Cu [24,25,63,87,195–199]

Al [6,24,30,114,128,140,187,200–205]

Table 4. Indicative crystal plasticity parameters for Fe (BCC—BCT) and β-Ti (BCC).

Parameter α-Fe α′-Fe β-Ti

First elastic stiffness constant with
normal strain

C11 233.3
417.4 [13,195] 160 [114]

GPa
[36] 135 [21]

Second elastic stiffness constant with
normal strain

C12
135.5 242.4 [13,179] 87 [114]

GPa
235.5 [36] 113 [21]

First elastic stiffness constant with
shear strain

C44 128.0
211.1 [13,179] 54 [114]

GPa
[36] 54.9 [21]

Shear strain rate
.
γ0

0.001 0.001 [13]
0.001 [114] s−1

0.56 [36]

Initial shear resistance on [111] S0
[111] 95

406 [13,179]
MPa

[36]

Saturation shear resistance on [111] S∞
[111] 222

873 [13,179]
MPa

[36]

Initial shear resistance on [112] S0
[112] 96

457 [13,179]
MPa

[36]

Saturation shear resistance on [112] S∞
[112] 412

971 [13,179]
MPa

[36]

Slip hardening parameter/
self-hardening coefficient h0 1.0

563 [13,179]
0.1 GPa

[36]

Interaction hardening
parameter/hardening matrix

hα,β 1.0
1.0 [13,179]

-
[36]
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Table 4. Cont.

Parameter α-Fe α′-Fe β-Ti

Stress exponent N
20 20 [13,179]

-
3 [36]

m = strain rate sensitivity component 1/m 20 [114] -

Curve fitting parameter W 2.0
2.0 [13,179]

-
[36]

Critical resolved shear stress τ
β
c

Initial slip hardness τ0
α

60 [114]
MPa

120 × 103 [21]

Saturation value of slip resistance τs 450 [114] MPa

Hardening exponent A 2.25 [114] -

(Self and coplanar slip systems) qab -

(Non-coplanar slip systems) qab 1.4 [114] -

Burgers vector B 2.86 × 10−10 [21] m

Reference dislocation velocity v0 10−3 [21] m s−1

Exponent P 0.71 [21]

Q 1.1 [21]

Total initial dislocation density ρ0 10+13 [21] m−2

Critical radius for edge annihilation Re 11.5 [21] nm

Critical radius for screw annihilation Rs 58 [21] nm

Strength interaction coefficients

g0 0.5 [21] -

g1 0.5 [21] -

g2 0.8 [21] -

g3 0.8 [21] -

g4 0.8 [21] -

g5 0.8 [21] -

g6 0.8 [21] -

Segment length interaction coefficients

h0 0.0 [21] -

h1 0.0 [21] -

h2 0.2 [21] -

h3 0.02 [21] -

h4 0.01 [21] -

h5 0.18 [21] -

h6 0.02 [21] -

Free energy of activation F0 3.1 × 10−23 [21] J K−1
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Table 5. Indicative parameters for aluminium alloys.

Description Symbol Values Reference Units

First elastic stiffness constant with normal strain C11

106.75 [114,128,140]

GPa
100 [127]

108 [24,203]

108.2 [204]

Second elastic stiffness constant with normal strain C12

60.41 [114,128,140]

GPa60 [127]

61.3 [24,203,204]

First elastic stiffness constant with shear strain C44

28.34 [114,128,140]

GPa
30 [127]

28.0 [24]

28.5 [203,204]

Isotropic shear modulus M
26.27 [140]

GPa
25.0 [24,203]

Poisson ratio ν 0.345 [140] -

Burger vector b 0.286 [24,140,200,205] nm

Atomic volume Ω
0.017 [140]

nm3
1.7 × 10−29 [200]

Shear strain rate
.
γ0

0.001 [19,114,127,128,204]
/s

400 [205]

Slip hardening parameter/self-hardening coefficient h0

75 [114]

MPa
400 [19]

190 [204]

80 [127]

Stress exponent N -

m = strain rate sensitivity component 1/m

20 [114,127]

-

60 [204]

25 [19]

20

[187]6.66

4

333.33
[187]

5.88

Curve fitting parameter W -

Slip resistance τ0

30 [127]

MPa
58.5 [205]

47 [204]

31 [19]

Critical resolved shear stress τ
β
c 31 [128] MPa
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Table 5. Cont.

Description Symbol Values Reference Units

Saturation value of slip resistance τs

63 [19,114,128]

MPa95 [204]

60 [127]

Hardening exponent a
2.25 [19,114,128]

-
2 [127]

(Self and coplanar slip systems) qab 1 [128] -

(Non-coplanar slip systems) qab 1.4 [128] -

Latent/self-hardening ratio 1.4 [204]

Minimum edge dipole separation ďe

1.6 [140] nm

1 × 10−9 [200] m

Minimum screw dipole separation ďs

10 [140] nm

1 × 10−9 [200] m

Dislocation multiplication constant λ0
60 [140]

100 [200]

Edge contribution to multiplication k1 0.1 [140]

Initial overall dislocation density ρ0 6 × 1010 [140] m−2

Self-diffusivity (at T = 300 K) DSD 7 × 10−29 [140] m2 s−1

Solid solution activation energy QSol 1.25 [140] eV

Activation energy for dislocation climb Qcl 3 × 10−19 [200]

Solid solution concentration cat 1.5 × 10−6 [140]

Solid solution size dobst 0.572 [140] nm

Peierls stress τP 0.1 [140] MPa

Double kink width wk 2.86 [140] nm

Energy barrier profile constants

p
1 [140]

0.233 [205]

q
2 [205]

1 [140]

Attack frequency να 50 [140] GHz

Dislocation viscosity η 0.01 [140] Pa s

Edge jog formation factor k3 1 [140]

5.3. Macroscopic Loading Conditions

Information about the loading conditions, the deformation (F), the applied stresses (P),
and their rates (

.
F,

.
P) is also required. An example of such input is the following, where the

macroscopic load is applied steadily for the duration of the experiment:

F =

x R R
R x R
R R x

 P =

R x x
x R x
x x R


In the tables above, R stands for a known real number and x means that the value is

undefined and to be determined by the algorithm. It should be noted that these matrices
refer to the macroscopic values of strain and pressure applied to the material. For example, a
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tensile test with a known enforced total deformation (εtot) along one axis can be formulated
as follows [154]:

F =

εtot 0 0
0 x 0
0 0 x

 P =

x x x
x 0 x
x x 0


Alternatively, the process can be described by the applied strain rate (

.
ε) through the

rate of the strain gradient (
.
F).

During flat rolling, the material deforms in two directions. The rolling direction (RD)
and in the Normal to the rolling direction (ND). Macroscopically, it is not subjected to
shearing, nor is the width of the plate affected. Thus, the proper formulation would be
as follows:

F =

εRD 0 0
0 0 0
0 0 εND


By defining all the nine elements of the deformation matrix, all the elements of the

stress matrix should be left undefined. For more complex metal forming processes, e.g.,
extrusion, these matrices can be calculated through FEM simulations.

6. Closing Remarks

Since its introduction, crystal plasticity has widened its spectrum of applications from
FCC single crystals under tensile testing to realistic, multiphase polycrystalline materials
under multiaxial loading conditions. The range of the possible applications have piqued
the interest of the scientific community, as has become evident through the volume of
relevant published work, as well as by the variety of models that have been developed. Yet,
there is a need for further improvement of the models to reduce their computational costs,
to overcome remaining limitations, to further increase their accuracy, to streamline their set
up, to reduce the difficulty of their calibration, and to link them with other models.

It is evident that CP simulations can provide valuable insight into the material be-
haviour and the impact of micromechanics during forming processes or for fatigue damage.
For each case, the selection of the proper type of CP and solver are the first steps that need
to be guided by a deep understanding of the process and the assumptions each choice
inevitably entails. Each formulation comes with its own set of parameters that need to
be determined either experimentally or via an extensive literature review. Regarding the
solver (FFT or FEM), the choice is guided by the area of interest. For complex geometries or
free surfaces, the FEM solver is usually best suited, compromising, however, the execution
speed. For achieving reliable results, proper dependency analysis for the RVE size and
mesh density also need to be performed. The selection of the constitutive model„ i.e.,
phenomenological or physics-based, relies on (i) the area of interest, since for macroscopical
phenomena the phenomenological approach is significantly faster and delivers reliable
results, whereas for local phenomena the physics-based models seems to be better suited,
and (ii) the overall modelling approach, since the models incorporating parameters with
physical meaning can be better integrated with various models covering all length scales.

One of the biggest struggles of implementing ICME solutions is the calibration of the
models utilized. The first adopters of these methodologies did highlight the importance of
creating repositories for the values of the various parameters used. This is also the case
for CP. Despite the fact that increasingly more authors publish their parameters, there is a
lack of a widespread repository or review articles providing this information per material
and process. This should be weighed against the competitive advantage of having in-
house databases for the material/processes, which as discussed are not as easy to produce.
Utilizing machine learning raises the issue of proper data storage, labelling where needed,
and of course it usually requires a significant amount of data. On the other hand, when
possible, its use can significantly accelerate the R&D cycle.
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Finally, regarding Sustainable Development, CP has a lot to offer. As a challenging
field of study, researchers utilizing CP need to be highly trained (SDG 4). Its application
can help optimize industrial processes (SDG 9) creating new job positions in the industry
(SDG 8) and reducing the environmental footprint of the product (SDG 12 and SDG 13). CP
is often provided as a service from research centers to the industry (SDG 17) and its exact
impact, qualitative or quantitative, must be calculated for each case individually.
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